spacer
spacer

PDBsum entry 3p8o

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Hydrolase/hydrolase inhibitor PDB id
3p8o

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
182 a.a.
13 a.a.
Ligands
L5T ×2
Metals
_NA ×2
Waters ×66
PDB id:
3p8o
Name: Hydrolase/hydrolase inhibitor
Title: Crystal structure of hcv ns3/ns4a protease complexed with des-bromine analogue of bi 201335
Structure: Hcv serine protease ns3. Chain: a, b. Engineered: yes. Hcv non-structural protein 4a. Chain: c, d. Fragment: ns3 interacting peptide. Engineered: yes
Source: Hepatitis c virus. Hcv. Organism_taxid: 11116. Strain: isolate japanese. Gene: polg_hcvja. Expressed in: escherichia coli. Expression_system_taxid: 562. Synthetic: yes
Resolution:
2.30Å     R-factor:   0.208     R-free:   0.255
Authors: C.T.Lemke
Key ref: C.T.Lemke et al. (2011). Combined X-ray, NMR, and kinetic analyses reveal uncommon binding characteristics of the hepatitis C virus NS3-NS4A protease inhibitor BI 201335. J Biol Chem, 286, 11434-11443. PubMed id: 21270126 DOI: 10.1074/jbc.M110.211417
Date:
14-Oct-10     Release date:   26-Jan-11    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
P26662  (POLG_HCVJA) -  Genome polyprotein from Hepatitis C virus genotype 1b (isolate Japanese)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
3010 a.a.
182 a.a.*
Protein chains
P26662  (POLG_HCVJA) -  Genome polyprotein from Hepatitis C virus genotype 1b (isolate Japanese)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
3010 a.a.
13 a.a.*
Key:    Secondary structure  CATH domain
* PDB and UniProt seqs differ at 5 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 1: Chains A, B, C, D: E.C.2.7.7.48  - RNA-directed Rna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: RNA(n) + a ribonucleoside 5'-triphosphate = RNA(n+1) + diphosphate
RNA(n)
+ ribonucleoside 5'-triphosphate
= RNA(n+1)
+ diphosphate
   Enzyme class 2: Chains A, B, C, D: E.C.3.4.21.98  - hepacivirin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Hydrolysis of four peptide bonds in the viral precursor polyprotein, commonly with Asp or Glu in the P6 position, Cys or Thr in P1 and Ser or Ala in P1'.
   Enzyme class 3: Chains A, B, C, D: E.C.3.4.22.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 4: Chains A, B, C, D: E.C.3.6.1.15  - nucleoside-triphosphate phosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a ribonucleoside 5'-triphosphate + H2O = a ribonucleoside 5'-diphosphate + phosphate + H+
ribonucleoside 5'-triphosphate
+ H2O
= ribonucleoside 5'-diphosphate
+ phosphate
+ H(+)
   Enzyme class 5: Chains A, B, C, D: E.C.3.6.4.13  - Rna helicase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O = ADP + phosphate + H+
ATP
+ H2O
= ADP
+ phosphate
+ H(+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1074/jbc.M110.211417 J Biol Chem 286:11434-11443 (2011)
PubMed id: 21270126  
 
 
Combined X-ray, NMR, and kinetic analyses reveal uncommon binding characteristics of the hepatitis C virus NS3-NS4A protease inhibitor BI 201335.
C.T.Lemke, N.Goudreau, S.Zhao, O.Hucke, D.Thibeault, M.Llinàs-Brunet, P.W.White.
 
  ABSTRACT  
 
Hepatitis C virus infection, a major cause of liver disease worldwide, is curable, but currently approved therapies have suboptimal efficacy. Supplementing these therapies with direct-acting antiviral agents has the potential to considerably improve treatment prospects for hepatitis C virus-infected patients. The critical role played by the viral NS3 protease makes it an attractive target, and despite its shallow, solvent-exposed active site, several potent NS3 protease inhibitors are currently in the clinic. BI 201335, which is progressing through Phase IIb trials, contains a unique C-terminal carboxylic acid that binds noncovalently to the active site and a bromo-quinoline substitution on its proline residue that provides significant potency. In this work we have used stopped flow kinetics, x-ray crystallography, and NMR to characterize these distinctive features. Key findings include: slow association and dissociation rates within a single-step binding mechanism; the critical involvement of water molecules in acid binding; and protein side chain rearrangements, a bromine-oxygen halogen bond, and profound pK(a) changes within the catalytic triad associated with binding of the bromo-quinoline moiety.
 

 

spacer

spacer