spacer
spacer

PDBsum entry 3ei3

Go to PDB code: 
protein ligands Protein-protein interface(s) links
DNA binding protein PDB id
3ei3

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
1105 a.a. *
355 a.a. *
Ligands
PG4
Waters ×697
* Residue conservation analysis
PDB id:
3ei3
Name: DNA binding protein
Title: Structure of the hsddb1-drddb2 complex
Structure: DNA damage-binding protein 1. Chain: a. Synonym: hsddb1, damage-specific DNA-binding protein 1, uv-damaged DNA-binding factor, ddb p127 subunit, DNA damage-binding protein a, ddba, uv-damaged DNA-binding protein 1, uv-ddb 1, xeroderma pigmentosum group e-complementing protein, xpce, xpe-binding factor, xpe-bf, hbv x-associated protein 1, xap-1. Engineered: yes. DNA damage-binding protein 2.
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: ddb1, xap1. Expressed in: trichoplusia ni. Expression_system_taxid: 7111. Expression_system_cell_line: bti-tn-5b1-4. Expression_system_cell: high five cells. Danio rerio.
Resolution:
2.30Å     R-factor:   0.210     R-free:   0.251
Authors: A.Scrima,N.H.Thoma
Key ref:
A.Scrima et al. (2008). Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex. Cell, 135, 1213-1223. PubMed id: 19109893 DOI: 10.1016/j.cell.2008.10.045
Date:
15-Sep-08     Release date:   20-Jan-09    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q16531  (DDB1_HUMAN) -  DNA damage-binding protein 1 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1140 a.a.
1105 a.a.
Protein chain
Pfam   ArchSchema ?
Q2YDS1  (DDB2_DANRE) -  DNA damage-binding protein 2 from Danio rerio
Seq:
Struc:
496 a.a.
355 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: Chains A, B: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1016/j.cell.2008.10.045 Cell 135:1213-1223 (2008)
PubMed id: 19109893  
 
 
Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex.
A.Scrima, R.Konícková, B.K.Czyzewski, Y.Kawasaki, P.D.Jeffrey, R.Groisman, Y.Nakatani, S.Iwai, N.P.Pavletich, N.H.Thomä.
 
  ABSTRACT  
 
Ultraviolet (UV) light-induced pyrimidine photodimers are repaired by the nucleotide excision repair pathway. Photolesions have biophysical parameters closely resembling undamaged DNA, impeding discovery through damage surveillance proteins. The DDB1-DDB2 complex serves in the initial detection of UV lesions in vivo. Here we present the structures of the DDB1-DDB2 complex alone and bound to DNA containing either a 6-4 pyrimidine-pyrimidone photodimer (6-4PP) lesion or an abasic site. The structure shows that the lesion is held exclusively by the WD40 domain of DDB2. A DDB2 hairpin inserts into the minor groove, extrudes the photodimer into a binding pocket, and kinks the duplex by approximately 40 degrees. The tightly localized probing of the photolesions, combined with proofreading in the photodimer pocket, enables DDB2 to detect lesions refractory to detection by other damage surveillance proteins. The structure provides insights into damage recognition in chromatin and suggests a mechanism by which the DDB1-associated CUL4 ubiquitin ligase targets proteins surrounding the site of damage.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Overall Structure of the DDB1–DDB2–DNA Complex
(A) Ribbon representation of the DDB[dr]–DNA^6-4PP complex: DDB2, green; DDB1-BPA, red; DDB1-BPB, magenta; DDB1-BPC, yellow; DDB1-CTD, gray. The DNA^6-4PP damaged and undamaged strands are depicted in black and gray, respectively.
(B) Ribbon representation of the DDB[dr]–DNA^6-4PP complex rotated by 90° about the vertical axis relative to (A).
(C) Schematic representation of hsDDB1 and drDDB2 with domain boundaries.
Figure 3.
Figure 3. Mechanism of 6-4 Photodimer Recognition
(A) Close-up of the DDB2 hairpin insertion (green) at the lesion with the damaged and undamaged strands depicted in yellow and brown, respectively.
(B) Interaction of DDB2 with the DNA^6-4PP backbone. The backbone of both strands is contacted by an array of positively charged residues crucial for the stabilization of the phosphate backbone compression at the damaged site (D[+1], D[+2]). Parts of the DNA are omitted for clarity.
(C) Close-up of the photodimer binding pocket stabilizing the flipped-out dinucleotide. Contacting residues are shown as stick models in yellow. The pyrimidine ring D[+1] and the pyrimidone ring D[+2] are shown in black and gray, respectively. Parts of the DNA have been omitted for clarity.
(D) Chemical structure of the 6-4 pyrimidine-pyrimidone dimer.
(E) Schematic representation of interactions between DDB2 and DNA^6-4PP (with colors as in A and B).
 
  The above figures are reprinted from an Open Access publication published by Cell Press: Cell (2008, 135, 1213-1223) copyright 2008.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21304489 E.Castells, J.Molinier, G.Benvenuto, C.Bourbousse, G.Zabulon, A.Zalc, S.Cazzaniga, P.Genschik, F.Barneche, and C.Bowler (2011).
The conserved factor DE-ETIOLATED 1 cooperates with CUL4-DDB1DDB2 to maintain genome integrity upon UV stress.
  EMBO J, 30, 1162-1172.  
21549310 F.W.Schmitges, A.B.Prusty, M.Faty, A.Stützer, G.M.Lingaraju, J.Aiwazian, R.Sack, D.Hess, L.Li, S.Zhou, R.D.Bunker, U.Wirth, T.Bouwmeester, A.Bauer, N.Ly-Hartig, K.Zhao, H.Chan, J.Gu, H.Gut, W.Fischle, J.Müller, and N.H.Thomä (2011).
Histone Methylation by PRC2 Is Inhibited by Active Chromatin Marks.
  Mol Cell, 42, 330-341.
PDB codes: 2yb8 2yba
21388382 K.S.Oh, K.Imoto, S.Emmert, D.Tamura, J.J.DiGiovanna, and K.H.Kraemer (2011).
Nucleotide excision repair proteins rapidly accumulate but fail to persist in human XP-E (DDB2 mutant) cells.
  Photochem Photobiol, 87, 729-733.  
21107348 K.S.Oh, S.Emmert, D.Tamura, J.J.DiGiovanna, and K.H.Kraemer (2011).
Multiple skin cancers in adults with mutations in the XP-E (DDB2) DNA repair gene.
  J Invest Dermatol, 131, 785-788.  
20861000 M.Firczuk, M.Wojciechowski, H.Czapinska, and M.Bochtler (2011).
DNA intercalation without flipping in the specific ThaI-DNA complex.
  Nucleic Acids Res, 39, 744-754.
PDB code: 3ndh
21240268 M.Jaciuk, E.Nowak, K.Skowronek, A.TaƄska, and M.Nowotny (2011).
Structure of UvrA nucleotide excision repair protein in complex with modified DNA.
  Nat Struct Mol Biol, 18, 191-197.
PDB code: 3pih
21747402 O.Bell, V.K.Tiwari, N.H.Thomä, and D.Schübeler (2011).
Determinants and dynamics of genome accessibility.
  Nat Rev Genet, 12, 554-564.  
20499085 A.Bernhardt, S.Mooney, and H.Hellmann (2010).
Arabidopsis DDB1a and DDB1b are critical for embryo development.
  Planta, 232, 555-566.  
20368362 A.Takedachi, M.Saijo, and K.Tanaka (2010).
DDB2 complex-mediated ubiquitylation around DNA damage is oppositely regulated by XPC and Ku and contributes to the recruitment of XPA.
  Mol Cell Biol, 30, 2708-2723.  
20577208 C.Biertümpfel, Y.Zhao, Y.Kondo, S.Ramón-Maiques, M.Gregory, J.Y.Lee, C.Masutani, A.R.Lehmann, F.Hanaoka, and W.Yang (2010).
Structure and mechanism of human DNA polymerase eta.
  Nature, 465, 1044-1048.
PDB codes: 3mr2 3mr3 3mr4 3mr5 3mr6 3si8
20451393 C.U.Stirnimann, E.Petsalaki, R.B.Russell, and C.W.Müller (2010).
WD40 proteins propel cellular networks.
  Trends Biochem Sci, 35, 565-574.  
20974918 C.Xu, C.Bian, W.Yang, M.Galka, H.Ouyang, C.Chen, W.Qiu, H.Liu, A.E.Jones, F.MacKenzie, P.Pan, S.S.Li, H.Wang, and J.Min (2010).
Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2).
  Proc Natl Acad Sci U S A, 107, 19266-19271.
PDB codes: 3jpx 3jzg 3jzh 3jzn 3k26 3k27
20181483 F.Liu, and K.J.Walters (2010).
Multitasking with ubiquitin through multivalent interactions.
  Trends Biochem Sci, 35, 352-360.  
20502938 J.L.Tubbs, and J.A.Tainer (2010).
Alkyltransferase-like proteins: molecular switches between DNA repair pathways.
  Cell Mol Life Sci, 67, 3749-3762.  
21117171 K.L.Jones, L.Zhang, K.L.Seldeen, and F.Gong (2010).
Detection of bulky DNA lesions: DDB2 at the interface of chromatin and DNA repair in eukaryotes.
  IUBMB Life, 62, 803-811.  
20039786 P.A.Muniandy, J.Liu, A.Majumdar, S.T.Liu, and M.M.Seidman (2010).
DNA interstrand crosslink repair in mammalian cells: step by step.
  Crit Rev Biochem Mol Biol, 45, 23-49.  
19927323 X.H.Wu, H.Zhang, and Y.D.Wu (2010).
Is Asp-His-Ser/Thr-Trp tetrad hydrogen-bond network important to WD40-repeat proteins: a statistical and theoretical study.
  Proteins, 78, 1186-1194.  
19809470 J.E.Cleaver, E.T.Lam, and I.Revet (2009).
Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity.
  Nat Rev Genet, 10, 756-768.  
19516334 J.L.Tubbs, V.Latypov, S.Kanugula, A.Butt, M.Melikishvili, R.Kraehenbuehl, O.Fleck, A.Marriott, A.J.Watson, B.Verbeek, G.McGown, M.Thorncroft, M.F.Santibanez-Koref, C.Millington, A.S.Arvai, M.D.Kroeger, L.A.Peterson, D.M.Williams, M.G.Fried, G.P.Margison, A.E.Pegg, and J.A.Tainer (2009).
Flipping of alkylated DNA damage bridges base and nucleotide excision repair.
  Nature, 459, 808-813.
PDB codes: 3gva 3gx4 3gyh
19681599 L.Jia, K.Kropachev, S.Ding, B.Van Houten, N.E.Geacintov, and S.Broyde (2009).
Exploring damage recognition models in prokaryotic nucleotide excision repair with a benzo[a]pyrene-derived lesion in UvrB.
  Biochemistry, 48, 8948-8957.  
19818708 M.Zhuang, M.F.Calabrese, J.Liu, M.B.Waddell, A.Nourse, M.Hammel, D.J.Miller, H.Walden, D.M.Duda, S.N.Seyedin, T.Hoggard, J.W.Harper, K.P.White, and B.A.Schulman (2009).
Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases.
  Mol Cell, 36, 39-50.
PDB codes: 3hqh 3hqi 3hql 3hqm 3hsv 3htm 3hu6 3hve 3ivq 3ivv
19190661 O.D.Schärer, and A.J.Campbell (2009).
Wedging out DNA damage.
  Nat Struct Mol Biol, 16, 102-104.  
19684342 P.A.Muniandy, D.Thapa, A.K.Thazhathveetil, S.T.Liu, and M.M.Seidman (2009).
Repair of laser-localized DNA interstrand cross-links in G1 phase mammalian cells.
  J Biol Chem, 284, 27908-27917.  
19818632 S.Jackson, and Y.Xiong (2009).
CRL4s: the CUL4-RING E3 ubiquitin ligases.
  Trends Biochem Sci, 34, 562-570.  
19609301 U.Camenisch, D.Träutlein, F.C.Clement, J.Fei, A.Leitenstorfer, E.Ferrando-May, and H.Naegeli (2009).
Two-stage dynamic DNA quality check by xeroderma pigmentosum group C protein.
  EMBO J, 28, 2387-2399.  
19288212 W.M.Al Khateeb, and D.F.Schroeder (2009).
Overexpression of Arabidopsis damaged DNA binding protein 1A (DDB1A) enhances UV tolerance.
  Plant Mol Biol, 70, 371-383.  
20047468 Z.Zeng, J.Richardson, D.Verduzco, D.L.Mitchell, and E.E.Patton (2009).
Zebrafish have a competent p53-dependent nucleotide excision repair pathway to resolve ultraviolet B-induced DNA damage in the skin.
  Zebrafish, 6, 405-415.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer