spacer
spacer

PDBsum entry 3cvr

Go to PDB code: 
protein links
Ligase PDB id
3cvr

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
477 a.a. *
Waters ×39
* Residue conservation analysis
PDB id:
3cvr
Name: Ligase
Title: Crystal structure of the full length ipah3
Structure: Invasion plasmid antigen. Chain: a. Synonym: ubiquitin e3 ligase. Engineered: yes
Source: Shigella flexneri 2a. Organism_taxid: 198214. Strain: 301. Gene: ipah_3. Expressed in: escherichia coli. Expression_system_taxid: 511693.
Resolution:
2.80Å     R-factor:   0.252     R-free:   0.277
Authors: Y.Zhu,F.Shao
Key ref:
Y.Zhu et al. (2008). Structure of a Shigella effector reveals a new class of ubiquitin ligases. Nat Struct Biol, 15, 1302-1308. PubMed id: 18997779 DOI: 10.1038/nsmb.1517
Date:
19-Apr-08     Release date:   11-Nov-08    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q83RJ4  (IPA3_SHIFL) -  E3 ubiquitin-protein ligase ipaH3 from Shigella flexneri
Seq:
Struc:
 
Seq:
Struc:
571 a.a.
477 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.2.3.2.27  - RING-type E3 ubiquitin transferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: S-ubiquitinyl-[E2 ubiquitin-conjugating enzyme]-L-cysteine + [acceptor protein]-L-lysine = [E2 ubiquitin-conjugating enzyme]-L-cysteine + N6- ubiquitinyl-[acceptor protein]-L-lysine

 

 
DOI no: 10.1038/nsmb.1517 Nat Struct Biol 15:1302-1308 (2008)
PubMed id: 18997779  
 
 
Structure of a Shigella effector reveals a new class of ubiquitin ligases.
Y.Zhu, H.Li, L.Hu, J.Wang, Y.Zhou, Z.Pang, L.Liu, F.Shao.
 
  ABSTRACT  
 
Bacterial pathogens have evolved effector proteins with ubiquitin E3 ligase activities through structural mimicking. Here we report the crystal structure of the Shigella flexneri type III effector IpaH3, a member of the leucine-rich repeat (LRR)-containing bacterial E3 family. The LRR domain is structurally similar to Yersinia pestis YopM and potentially binds to substrates. The structure of the C-terminal E3 domain differs from the typical RING- and HECT-type E3s. IpaH3 synthesizes a Lys48-linked ubiquitin chain, and the reaction requires noncovalent binding between ubiquitin and a specific E2, UbcH5. Free ubiquitin serves as an acceptor for IpaH3-catalyzed ubiquitin transfer. Cys363 within a conserved CXD motif acts as a nucleophile to catalyze ubiquitin transfer through a transthiolation reaction. The D365N mutant is devoid of E3 activities but turns into a potent ubiquitin-E2 thioesterase. Our analysis establishes a structurally and mechanistically distinct class of ubiquitin ligases found exclusively in pathogenic or symbiotic bacteria.
 
  Selected figure(s)  
 
Figure 2.
(a) Stereo view of the overall structure of full-length IpaH3. The structure consists of two domains: the N-terminal leucine-rich repeat (LRR) domain (gold) and the C-terminal helical domain (green) with the E3 ligase activity. Secondary structures are marked with numbered labels, and broken lines indicate disordered loop regions. (b) Secondary-structure organization and amino acid compositions of the nine LRR motifs in IpaH3. Secondary-structural elements are depicted along and above the sequence. The consensus sequences of LRR1–LRR7 are highlighted in green and the YopM sequence is listed underneath for comparison. (c) Backbone superimposition of the structures of YopM (blue; PDB 1JL5) and the LRR domain of IpaH3 (gold).
Figure 3.
(a) Structure of the C-terminal E3 ligase domain of IpaH3. Secondary structures are marked with numbered labels, and broken lines indicate disordered loop regions. Cys363 and Asp365, which are important for catalyzing ubiquitin transfer, are highlighted in yellow and shown in sticks. (b) Representative structures of RING-finger and U-box E3 ligases. The RING-finger and U-box domains were selected from RING-type E3 ligase Cbl (PDB 1FBV) and U-box E3 ligase Ufd2p (PDB 2QIZ), respectively. The zinc ions in Cbl are colored orange. (c) Structure of the HECT domain of E6AP (PDB 1D5F). The N and C lobes are colored red and purple, respectively. The catalytic cysteine (Cys820) and the hinge loop connecting the two lobes are indicated.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (2008, 15, 1302-1308) copyright 2008.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20980253 D.Y.Lin, J.Diao, D.Zhou, and J.Chen (2011).
Biochemical and structural studies of a HECT-like ubiquitin ligase from Escherichia coli O157:H7.
  J Biol Chem, 286, 441-449.
PDB codes: 3naw 3nb2
20934372 H.Ashida, M.Ogawa, M.Kim, S.Suzuki, T.Sanada, C.Punginelli, H.Mimuro, and C.Sasakawa (2011).
Shigella deploy multiple countermeasures against host innate immune responses.
  Curr Opin Microbiol, 14, 16-23.  
  21450104 I.N.Okeke, L.R.Macfarlane-Smith, J.N.Fletcher, and A.M.Snelling (2011).
IS3 profiling identifies the enterohaemorrhagic Escherichia coli O-island 62 in a distinct enteroaggregative E. coli lineage.
  Gut Pathog, 3, 4.  
21151032 L.Bedford, J.Lowe, L.R.Dick, R.J.Mayer, and J.E.Brownell (2011).
Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets.
  Nat Rev Drug Discov, 10, 29-46.  
20977569 O.Steele-Mortimer (2011).
Exploitation of the ubiquitin system by invading bacteria.
  Traffic, 12, 162-169.  
20585566 B.Wu, T.Skarina, A.Yee, M.C.Jobin, R.Dileo, A.Semesi, C.Fares, A.Lemak, B.K.Coombes, C.H.Arrowsmith, A.U.Singer, and A.Savchenko (2010).
NleG Type 3 effectors from enterohaemorrhagic Escherichia coli are U-Box E3 ubiquitin ligases.
  PLoS Pathog, 6, e1000960.
PDB codes: 2kkx 2kky
20129784 C.A.Collins, and E.J.Brown (2010).
Cytosol as battleground: ubiquitin as a weapon for both host and pathogen.
  Trends Cell Biol, 20, 205-213.  
20010814 H.Ashida, M.Kim, M.Schmidt-Supprian, A.Ma, M.Ogawa, and C.Sasakawa (2010).
A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKgamma to dampen the host NF-kappaB-mediated inflammatory response.
  Nat Cell Biol, 12, 66.  
20133640 I.Levin, C.Eakin, M.P.Blanc, R.E.Klevit, S.I.Miller, and P.S.Brzovic (2010).
Identification of an unconventional E3 binding surface on the UbcH5 ~ Ub conjugate recognized by a pathogenic bacterial E3 ligase.
  Proc Natl Acad Sci U S A, 107, 2848-2853.  
20335166 J.Bernal-Bayard, E.Cardenal-Muñoz, and F.Ramos-Morales (2010).
The Salmonella type III secretion effector, salmonella leucine-rich repeat protein (SlrP), targets the human chaperone ERdj3.
  J Biol Chem, 285, 16360-16368.  
20688984 J.Cui, Q.Yao, S.Li, X.Ding, Q.Lu, H.Mao, L.Liu, N.Zheng, S.Chen, and F.Shao (2010).
Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family.
  Science, 329, 1215-1218.  
21046319 J.Peng, J.Yang, and Q.Jin (2010).
Research progress in Shigella in the postgenomic era.
  Sci China Life Sci, 53, 1284-1290.  
  20957203 M.Hentschke, L.Berneking, C.Belmar Campos, F.Buck, K.Ruckdeschel, and M.Aepfelbacher (2010).
Yersinia virulence factor YopM induces sustained RSK activation by interfering with dephosphorylation.
  PLoS One, 5, 0.  
20368345 M.W.McCoy, M.L.Marré, C.F.Lesser, and J.Mecsas (2010).
The C-terminal tail of Yersinia pseudotuberculosis YopM is critical for interacting with RSK1 and for virulence.
  Infect Immun, 78, 2584-2598.  
20300064 N.Dong, L.Liu, and F.Shao (2010).
A bacterial effector targets host DH-PH domain RhoGEFs and antagonizes macrophage phagocytosis.
  EMBO J, 29, 1363-1376.  
20036613 S.W.Hicks, and J.E.Galán (2010).
Hijacking the host ubiquitin pathway: structural strategies of bacterial E3 ubiquitin ligases.
  Curr Opin Microbiol, 13, 41-46.  
21151961 T.Kubori, N.Shinzawa, H.Kanuka, and H.Nagai (2010).
Legionella metaeffector exploits host proteasome to temporally regulate cognate effector.
  PLoS Pathog, 6, e1001216.  
19273841 C.M.Quezada, S.W.Hicks, J.E.Galán, and C.E.Stebbins (2009).
A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases.
  Proc Natl Acad Sci U S A, 106, 4864-4869.
PDB code: 3g06
19690162 J.Bernal-Bayard, and F.Ramos-Morales (2009).
Salmonella type III secretion effector SlrP is an E3 ubiquitin ligase for mammalian thioredoxin.
  J Biol Chem, 284, 27587-27595.  
  19527884 J.E.Galán (2009).
Common themes in the design and function of bacterial effectors.
  Cell Host Microbe, 5, 571-579.  
19785004 J.Song, J.Wang, A.A.Jozwiak, W.Hu, P.M.Swiderski, and Y.Chen (2009).
Stability of thioester intermediates in ubiquitin-like modifications.
  Protein Sci, 18, 2492-2499.  
19523153 T.Spallek, S.Robatzek, and V.Göhre (2009).
How microbes utilize host ubiquitination.
  Cell Microbiol, 11, 1425-1434.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer