spacer
spacer

PDBsum entry 2hcs

Go to PDB code: 
protein metals links
Transferase PDB id
2hcs

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
487 a.a. *
Metals
_ZN ×2
Waters ×106
* Residue conservation analysis
PDB id:
2hcs
Name: Transferase
Title: Crystal structure of RNA dependant RNA polymerase domain of west nile virus
Structure: RNA-directed RNA polymerase (ns5). Chain: a. Fragment: RNA-directed RNA polymerase domain. Engineered: yes
Source: Kunjin virus. Organism_taxid: 11077. Strain: kunjin. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
2.50Å     R-factor:   0.208     R-free:   0.243
Authors: M.P.Egloff,H.Malet,Marseilles Structural Genomics Program @ Afmb (Msgp)
Key ref:
H.Malet et al. (2007). Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5. J Biol Chem, 282, 10678-10689. PubMed id: 17287213 DOI: 10.1074/jbc.M607273200
Date:
18-Jun-06     Release date:   06-Feb-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P14335  (POLG_KUNJM) -  Genome polyprotein from Kunjin virus (strain MRM61C)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
3433 a.a.
487 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 1: E.C.2.1.1.56  - mRNA (guanine-N(7))-methyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L- methionine = a 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L-homocysteine
5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L- methionine
= 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L-homocysteine
   Enzyme class 2: E.C.2.1.1.57  - methyltransferase cap1.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L-methionine = a 5'-end (N(7)-methyl 5'-triphosphoguanosine)- (2'-O-methyl-ribonucleoside) in mRNA + S-adenosyl-L-homocysteine + H+
5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L-methionine
= 5'-end (N(7)-methyl 5'-triphosphoguanosine)- (2'-O-methyl-ribonucleoside) in mRNA
+ S-adenosyl-L-homocysteine
+ H(+)
   Enzyme class 3: E.C.2.7.7.48  - RNA-directed Rna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: RNA(n) + a ribonucleoside 5'-triphosphate = RNA(n+1) + diphosphate
RNA(n)
+ ribonucleoside 5'-triphosphate
= RNA(n+1)
+ diphosphate
   Enzyme class 4: E.C.3.4.21.91  - flavivirin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Selective hydrolysis of Xaa-Xaa-|-Xbb bonds in which each of the Xaa can be either Arg or Lys and Xbb can be either Ser or Ala.
   Enzyme class 5: E.C.3.6.1.15  - nucleoside-triphosphate phosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a ribonucleoside 5'-triphosphate + H2O = a ribonucleoside 5'-diphosphate + phosphate + H+
ribonucleoside 5'-triphosphate
+ H2O
= ribonucleoside 5'-diphosphate
+ phosphate
+ H(+)
   Enzyme class 6: E.C.3.6.4.13  - Rna helicase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O = ADP + phosphate + H+
ATP
+ H2O
= ADP
+ phosphate
+ H(+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1074/jbc.M607273200 J Biol Chem 282:10678-10689 (2007)
PubMed id: 17287213  
 
 
Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5.
H.Malet, M.P.Egloff, B.Selisko, R.E.Butcher, P.J.Wright, M.Roberts, A.Gruez, G.Sulzenbacher, C.Vonrhein, G.Bricogne, J.M.Mackenzie, A.A.Khromykh, A.D.Davidson, B.Canard.
 
  ABSTRACT  
 
Viruses of the family Flaviviridae are important human and animal pathogens. Among them, the Flaviviruses dengue (DENV) and West Nile (WNV) cause regular outbreaks with fatal outcomes. The RNA-dependent RNA polymerase (RdRp) activity of the non-structural protein 5 (NS5) is a key activity for viral RNA replication. In this study, crystal structures of enzymatically active and inactive WNV RdRp domains were determined at 3.0- and 2.35-A resolution, respectively. The determined structures were shown to be mostly similar to the RdRps of the Flaviviridae members hepatitis C and bovine viral diarrhea virus, although with unique elements characteristic for the WNV RdRp. Using a reverse genetic system, residues involved in putative interactions between the RNA-cap methyltransferase (MTase) and the RdRp domain of Flavivirus NS5 were identified. This allowed us to propose a model for the structure of the full-length WNV NS5 by in silico docking of the WNV MTase domain (modeled from our previously determined structure of the DENV MTase domain) onto the RdRp domain. The Flavivirus RdRp domain structure determined here should facilitate both the design of anti-Flavivirus drugs and structure-function studies of the Flavivirus replication complex in which the multifunctional NS5 protein plays a central role.
 
  Selected figure(s)  
 
Figure 1.
FIGURE 1. Crystal structure of WNV POL1 and comparison with HCV RdRp. A, stereo view of a ribbon representation of WNV POL1 in its front orientation. The palm, thumb, and fingers domains and the priming loop are colored in green, red, dark blue, and purple, respectively. -Helices and -sheets are indicated. Insertions in WNV POL1 compared with HCV RdRp are displayed in yellow, and major structural differences are shown in orange. These and other figures were prepared with PyMOL. B, ribbon representation of HCV RdRp in its front orientation (50) (PDB code 1NB6). The color code is the same as in A. Insertions in HCV RdRp compared with WNV are colored in yellow.
Figure 3.
FIGURE 3. Divalent ion binding site in WNV POL. Stereo view of the calcium/magnesium ion non-catalytic binding site. The POL2 model is represented in green sticks and the corresponding electronic density in blue. The Ca^2+ ion is shown as a green sphere. The figure is centered on the aspartic acids of motifs A and C colored in yellow. Coordination with Asp^536 (motif A) and Asp^669 (motif C) are indicated by black dotted lines. Corresponding aspartic acids of motifs A and C in Phi6 (Asp^324, Asp^453, and Asp^454) (PDB code 1HI0) are represented in magenta sticks. The position of the two ions in the catalytic position, inferred from the Phi6 RdRp structure, is indicated in purple.
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (2007, 282, 10678-10689) copyright 2007.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21078673 Z.Jin, J.Deval, K.A.Johnson, and D.C.Swinney (2011).
Characterization of the elongation complex of dengue virus RNA polymerase: assembly, kinetics of nucleotide incorporation, and fidelity.
  J Biol Chem, 286, 2067-2077.  
  20862256 L.J.Yap, D.Luo, K.Y.Chung, S.P.Lim, C.Bodenreider, C.Noble, P.Y.Shi, and J.Lescar (2010).
Crystal structure of the dengue virus methyltransferase bound to a 5'-capped octameric RNA.
  PLoS One, 5, 0.
PDB code: 2xbm
20106931 M.Laurent-Rolle, E.F.Boer, K.J.Lubick, J.B.Wolfinbarger, A.B.Carmody, B.Rockx, W.Liu, J.Ashour, W.L.Shupert, M.R.Holbrook, A.D.Barrett, P.W.Mason, M.E.Bloom, A.García-Sastre, A.A.Khromykh, and S.M.Best (2010).
The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling.
  J Virol, 84, 3503-3515.  
20237086 P.Niyomrattanakit, Y.L.Chen, H.Dong, Z.Yin, M.Qing, J.F.Glickman, K.Lin, D.Mueller, H.Voshol, J.Y.Lim, S.Nilar, T.H.Keller, and P.Y.Shi (2010).
Inhibition of dengue virus polymerase by blocking of the RNA tunnel.
  J Virol, 84, 5678-5686.  
18796313 A.Sampath, and R.Padmanabhan (2009).
Molecular targets for flavivirus drug discovery.
  Antiviral Res, 81, 6.  
  19821990 B.E.Pickett, and E.J.Lefkowitz (2009).
Recombination in West Nile Virus: minimal contribution to genomic diversity.
  Virol J, 6, 165.  
  20165556 B.J.Geiss, H.Stahla, A.M.Hannah, H.H.Gari, and S.M.Keenan (2009).
Focus on flaviviruses: current and future drug targets.
  Future Med Chem, 1, 327.  
19787040 D.Ghosh, and A.Basu (2009).
Japanese encephalitis-a pathological and clinical perspective.
  PLoS Negl Trop Dis, 3, e437.  
19199833 K.Ellencrona, A.Syed, and M.Johansson (2009).
Flavivirus NS5 associates with host-cell proteins zonula occludens-1 (ZO-1) and regulating synaptic membrane exocytosis-2 (RIMS2) via an internal PDZ binding mechanism.
  Biol Chem, 390, 319-323.  
19850911 M.Issur, B.J.Geiss, I.Bougie, F.Picard-Jean, S.Despins, J.Mayette, S.E.Hobdey, and M.Bisaillon (2009).
The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure.
  RNA, 15, 2340-2350.  
19694536 M.S.Diamond (2009).
Mechanisms of evasion of the type I interferon antiviral response by flaviviruses.
  J Interferon Cytokine Res, 29, 521-530.  
19401763 Q.Y.Koo, A.M.Khan, K.O.Jung, S.Ramdas, O.Miotto, T.W.Tan, V.Brusic, J.Salmon, and J.T.August (2009).
Conservation and variability of West Nile virus proteins.
  PLoS ONE, 4, e5352.  
19710254 R.A.Hall, S.E.Tan, B.Selisko, R.Slade, J.Hobson-Peters, B.Canard, M.Hughes, J.Y.Leung, E.Balmori-Melian, S.Hall-Mendelin, K.B.Pham, D.C.Clark, N.A.Prow, and A.A.Khromykh (2009).
Monoclonal antibodies to the West Nile virus NS5 protein map to linear and conformational epitopes in the methyltransferase and polymerase domains.
  J Gen Virol, 90, 2912-2922.  
18632861 A.Gruez, B.Selisko, M.Roberts, G.Bricogne, C.Bussetta, I.Jabafi, B.Coutard, A.M.De Palma, J.Neyts, and B.Canard (2008).
The crystal structure of coxsackievirus B3 RNA-dependent RNA polymerase in complex with its protein primer VPg confirms the existence of a second VPg binding site on Picornaviridae polymerases.
  J Virol, 82, 9577-9590.
PDB codes: 3cdu 3cdw
18448528 B.Zhang, H.Dong, Y.Zhou, and P.Y.Shi (2008).
Genetic interactions among the West Nile virus methyltransferase, the RNA-dependent RNA polymerase, and the 5' stem-loop of genomic RNA.
  J Virol, 82, 7047-7058.  
18625078 C.E.Gardella-Garcia, G.Perez-Ramirez, J.Navarrete-Espinosa, A.Cisneros, F.Jimenez-Rojas, L.R.Ramírez-Palacios, R.Rosado-Leon, M.Camacho-Nuez, and M.d.e. .L.Munoz (2008).
Specific genetic markers for detecting subtypes of dengue virus serotype-2 in isolates from the states of Oaxaca and Veracruz, Mexico.
  BMC Microbiol, 8, 117.  
18598919 D.Ghosh, and A.Basu (2008).
Present perspectives on flaviviral chemotherapy.
  Drug Discov Today, 13, 619-624.  
17942558 D.Luo, T.Xu, C.Hunke, G.Grüber, S.G.Vasudevan, and J.Lescar (2008).
Crystal structure of the NS3 protease-helicase from dengue virus.
  J Virol, 82, 173-183.
PDB code: 2vbc
18042258 K.Werme, M.Wigerius, and M.Johansson (2008).
Tick-borne encephalitis virus NS5 associates with membrane protein scribble and impairs interferon-stimulated JAK-STAT signalling.
  Cell Microbiol, 10, 696-712.  
18667512 M.Hass, M.Lelke, C.Busch, B.Becker-Ziaja, and S.Günther (2008).
Mutational evidence for a structural model of the Lassa virus RNA polymerase domain and identification of two residues, Gly1394 and Asp1395, that are critical for transcription but not replication of the genome.
  J Virol, 82, 10207-10217.  
18940872 M.M.Poranen, P.S.Salgado, M.R.Koivunen, S.Wright, D.H.Bamford, D.I.Stuart, and J.M.Grimes (2008).
Structural explanation for the role of Mn2+ in the activity of phi6 RNA-dependent RNA polymerase.
  Nucleic Acids Res, 36, 6633-6644.
PDB codes: 2jl9 2jlf 2jlg
18644250 R.Perera, and R.J.Kuhn (2008).
Structural proteomics of dengue virus.
  Curr Opin Microbiol, 11, 369-377.  
18442978 S.Chinnaswamy, I.Yarbrough, S.Palaninathan, C.T.Kumar, V.Vijayaraghavan, B.Demeler, S.M.Lemon, J.C.Sacchettini, and C.C.Kao (2008).
A locking mechanism regulates RNA synthesis and host protein interaction by the hepatitis C virus polymerase.
  J Biol Chem, 283, 20535-20546.  
18848710 S.E.Galloway, P.E.Richardson, and G.W.Wertz (2008).
Analysis of a structural homology model of the 2'-O-ribose methyltransferase domain within the vesicular stomatitis virus L protein.
  Virology, 382, 69-82.  
17459929 G.S.Park, K.L.Morris, R.G.Hallett, M.E.Bloom, and S.M.Best (2007).
Identification of residues critical for the interferon antagonist function of Langat virus NS5 reveals a role for the RNA-dependent RNA polymerase domain.
  J Virol, 81, 6936-6946.  
17989694 M.De la Peña, O.J.Kyrieleis, and S.Cusack (2007).
Structural insights into the mechanism and evolution of the vaccinia virus mRNA cap N7 methyl-transferase.
  EMBO J, 26, 4913-4925.
PDB code: 2vdw
17537850 N.Beerens, B.Selisko, S.Ricagno, I.Imbert, L.van der Zanden, E.J.Snijder, and B.Canard (2007).
De novo initiation of RNA synthesis by the arterivirus RNA-dependent RNA polymerase.
  J Virol, 81, 8384-8395.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer