spacer
spacer

PDBsum entry 2dps

Go to PDB code: 
protein Protein-protein interface(s) links
Transferase PDB id
2dps

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
228 a.a. *
Waters ×70
* Residue conservation analysis
PDB id:
2dps
Name: Transferase
Title: Structure of leucyl/phenylalanyl-tRNA-protein transferase
Structure: Leucyl/phenylalanyl-tRNA--protein transferase. Chain: a, b. Synonym: l/f-transferase, leucyltransferase, phenyalanyltransferase. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Resolution:
2.40Å     R-factor:   0.220     R-free:   0.272
Authors: K.Suto,Y.Shimizu,K.Tomita
Key ref:
K.Suto et al. (2006). Crystal structures of leucyl/phenylalanyl-tRNA-protein transferase and its complex with an aminoacyl-tRNA analog. EMBO J, 25, 5942-5950. PubMed id: 17110926 DOI: 10.1038/sj.emboj.7601433
Date:
14-May-06     Release date:   02-Jan-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P0A8P1  (LFTR_ECOLI) -  Leucyl/phenylalanyl-tRNA--protein transferase from Escherichia coli (strain K12)
Seq:
Struc:
234 a.a.
228 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.2.3.2.6  - lysine/arginine leucyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. N-terminal L-lysyl-[protein] + L-leucyl-tRNA(Leu) = N-terminal L-leucyl-L-lysyl-[protein] + tRNA(Leu) + H(+)
2. N-terminal L-arginyl-[protein] + L-leucyl-tRNA(Leu) = N-terminal L-leucyl-L-arginyl-[protein] + tRNA(Leu) + H(+)
N-terminal L-lysyl-[protein]
+ L-leucyl-tRNA(Leu)
= N-terminal L-leucyl-L-lysyl-[protein]
+ tRNA(Leu)
+ H(+)
N-terminal L-arginyl-[protein]
+ L-leucyl-tRNA(Leu)
= N-terminal L-leucyl-L-arginyl-[protein]
+ tRNA(Leu)
+ H(+)
      Cofactor: Monovalent cation
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1038/sj.emboj.7601433 EMBO J 25:5942-5950 (2006)
PubMed id: 17110926  
 
 
Crystal structures of leucyl/phenylalanyl-tRNA-protein transferase and its complex with an aminoacyl-tRNA analog.
K.Suto, Y.Shimizu, K.Watanabe, T.Ueda, S.Fukai, O.Nureki, K.Tomita.
 
  ABSTRACT  
 
Eubacterial leucyl/phenylalanyl-tRNA protein transferase (L/F-transferase), encoded by the aat gene, conjugates leucine or phenylalanine to the N-terminal Arg or Lys residue of proteins, using Leu-tRNA(Leu) or Phe-tRNA(Phe) as a substrate. The resulting N-terminal Leu or Phe acts as a degradation signal for the ClpS-ClpAP-mediated N-end rule protein degradation pathway. Here, we present the crystal structures of Escherichia coli L/F-transferase and its complex with an aminoacyl-tRNA analog, puromycin. The C-terminal domain of L/F-transferase consists of the GCN5-related N-acetyltransferase fold, commonly observed in the acetyltransferase superfamily. The p-methoxybenzyl group of puromycin, corresponding to the side chain of Leu or Phe of Leu-tRNA(Leu) or Phe-tRNA(Phe), is accommodated in a highly hydrophobic pocket, with a shape and size suitable for hydrophobic amino-acid residues lacking a branched beta-carbon, such as leucine and phenylalanine. Structure-based mutagenesis of L/F-transferase revealed its substrate specificity. Furthermore, we present a model of the L/F-transferase complex with tRNA and substrate proteins bearing an N-terminal Arg or Lys.
 
  Selected figure(s)  
 
Figure 1.
Figure 1 Overall architecture of E. coli L/F-transferase. (A) Stereo view of the E. coli L/F-transferase structure. The NH[2]-terminal domain (residues 2–62) and the COOH-terminal domain (residues 63–232) are colored blue and green, respectively. The puromycin bound to the hydrophobic pocket is colored yellow. (B) Topology diagram of L/F-transferase. The rimmed elements in the COOH-terminal domain ( 3– 5) and ( 5– 12) are common to the GNAT superfamily fold. The -helices and -strands in the COOH-terminal domains are colored red and yellow, respectively. (C) Comparison of the structures of E. coli L/F-transferase (left), W. viridescens FemX (wvFemX; middle, PDB accession number 1P4N; Biarrotte-Sorin et al, 2004) and S. aureus FemA (saFemA; PDB accession number 1LRZ; Benson et al, 2002). The COOH-terminal domain of L/F-transferase is topologically similar to the domain 2's of wvFemX and saFemA. The conserved -helices and -strands in L/F-transferase, wvFemX and saFemA, are colored red and yellow, respectively.
Figure 3.
Figure 3 Recognition of the puromycin by E. coli L/F-transferase. (A) Chemical structure of puromycin (left) and that of the 3'-ends of Leu-tRNA^Leu and Phe-tRNA^Phe (middle and right, respectively). The amino-acid moiety and the base moiety are colored pink and blue, respectively. (B) |Fo-Fc| omit map of puromycin (contour level 3.0 ). (C) Recognition of the p-methoxybenzyl group and the puromycin base by the hydrophobic pocket, as shown by a surface model. (D) Ribbon model of (C). The hydrophobic amino acid involved in the recognition of the p-methoxybenzyl group and the base moiety of puromycin are colored green and blue, respectively. (E) The C-shaped edge of the hydrophobic pocket is composed of continuous amino-acid residues (Gly155-Glu156-Ser157-Met158; colored yellow and highlighted). The -, - and -carbons of puromycin are also shown.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: EMBO J (2006, 25, 5942-5950) copyright 2006.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
19903480 R.Banerjee, S.Chen, K.Dare, M.Gilreath, M.Praetorius-Ibba, M.Raina, N.M.Reynolds, T.Rogers, H.Roy, S.S.Yadavalli, and M.Ibba (2010).
tRNAs: cellular barcodes for amino acids.
  FEBS Lett, 584, 387-395.  
19448602 H.von Döhren (2009).
Charged tRNAs charge into secondary metabolism.
  Nat Chem Biol, 5, 374-375.  
19151092 M.Fonvielle, M.Chemama, R.Villet, M.Lecerf, A.Bouhss, J.M.Valéry, M.Ethève-Quelquejeu, and M.Arthur (2009).
Aminoacyl-tRNA recognition by the FemXWv transferase for bacterial cell wall synthesis.
  Nucleic Acids Res, 37, 1589-1601.  
19440203 R.L.Ninnis, S.K.Spall, G.H.Talbo, K.N.Truscott, and D.A.Dougan (2009).
Modification of PATase by L/F-transferase generates a ClpS-dependent N-end rule substrate in Escherichia coli.
  EMBO J, 28, 1732-1744.  
18266857 J.L.Mainardi, R.Villet, T.D.Bugg, C.Mayer, and M.Arthur (2008).
Evolution of peptidoglycan biosynthesis under the selective pressure of antibiotics in Gram-positive bacteria.
  FEMS Microbiol Rev, 32, 386-408.  
18980670 L.M.Iyer, A.M.Burroughs, and L.Aravind (2008).
Unraveling the biochemistry and provenance of pupylation: a prokaryotic analog of ubiquitination.
  Biol Direct, 3, 45.  
18266307 M.Taki, H.Kuroiwa, and M.Sisido (2008).
Chemoenzymatic transfer of fluorescent non-natural amino acids to the N terminus of a protein/peptide.
  Chembiochem, 9, 719-722.  
18566452 Z.Xia, A.Webster, F.Du, K.Piatkov, M.Ghislain, and A.Varshavsky (2008).
Substrate-binding Sites of UBR1, the Ubiquitin Ligase of the N-end Rule Pathway.
  J Biol Chem, 283, 24011-24028.  
17306546 A.Mogk, R.Schmidt, and B.Bukau (2007).
The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies.
  Trends Cell Biol, 17, 165-172.  
17891155 K.Watanabe, Y.Toh, K.Suto, Y.Shimizu, N.Oka, T.Wada, and K.Tomita (2007).
Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase.
  Nature, 449, 867-871.
PDB codes: 2z3k 2z3l 2z3m 2z3n 2z3o 2z3p
17932062 R.Villet, M.Fonvielle, P.Busca, M.Chemama, A.P.Maillard, J.E.Hugonnet, L.Dubost, A.Marie, N.Josseaume, S.Mesnage, C.Mayer, J.M.Valéry, M.Ethève-Quelquejeu, and M.Arthur (2007).
Idiosyncratic features in tRNAs participating in bacterial cell wall synthesis.
  Nucleic Acids Res, 35, 6870-6883.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer