spacer
spacer

PDBsum entry 2baa

Go to PDB code: 
protein links
Hydrolase (o-glycosyl) PDB id
2baa

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
243 a.a. *
Waters ×128
* Residue conservation analysis
PDB id:
2baa
Name: Hydrolase (o-glycosyl)
Title: The refined crystal structure of an endochitinase from hordeum vulgare l. Seeds to 1.8 angstroms resolution
Structure: Endochitinase (26 kd). Chain: a. Other_details: 26 kd
Source: Hordeum vulgare. Organism_taxid: 4513. Organ: seed
Resolution:
1.80Å     R-factor:   0.180    
Authors: P.J.Hart,H.D.Pfluger,A.F.Monzingo,M.P.Ready,S.R.Ernst,T.Hollis, J.D.Robertus
Key ref: P.J.Hart et al. (1995). The refined crystal structure of an endochitinase from Hordeum vulgare L. seeds at 1.8 A resolution. J Mol Biol, 248, 402-413. PubMed id: 7739049
Date:
26-Jan-95     Release date:   15-Jan-96    
Supersedes: 1baa
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P23951  (CHI2_HORVU) -  26 kDa endochitinase 2 from Hordeum vulgare
Seq:
Struc:
266 a.a.
243 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.2.1.14  - chitinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Hydrolysis of the 1,4-beta-linkages of N-acetyl-D-glucosamine polymers of chitin.

 

 
J Mol Biol 248:402-413 (1995)
PubMed id: 7739049  
 
 
The refined crystal structure of an endochitinase from Hordeum vulgare L. seeds at 1.8 A resolution.
P.J.Hart, H.D.Pfluger, A.F.Monzingo, T.Hollis, J.D.Robertus.
 
  ABSTRACT  
 
Class II chitinases (EC 3.2.1.14) are plant defense proteins. They hydrolyze chitin, an insoluble beta-1,4-linked polymer of N-acetylglucosamine (NAG), which is a major cell-wall component of many fungal hyphae. We previously reported the three-dimensional structure of the 26 kDa class II endochitinase from barley seeds at 2.8 A resolution, determined using multiple isomorphous replacement (MIR) methods. Here, we report the crystallographic refinement of this chitinase structure against data to 1.8 A resolution using rounds of hand rebuilding coupled with molecular dynamics (X-PLOR). The final model has an R-value of 18.1% for the 5.0 to 1.8 A data shell and 19.8% for the 10.0 to 1.8 A shell, and root-mean-square deviations from standard bond lengths and angles of 0.017 A and 2.88 degrees, respectively. The 243 residue molecule has one beta-sheet, ten alpha-helices and three disulfide bonds; 129 water molecules are included in the final model. We show structural comparisons confirming that chitinase secondary structure resembles lysozyme at the active site region. Based on substrate binding to lysozyme, we have built a hypothetical model for the binding of a hexasaccharide into the pronounced active site cleft of chitinase. This provides the first view of likely substrate interactions from this family of enzymes; the model is consistent with a lysozyme-like mechanism of action in which Glu67 acts as proton donor and Glu89 is likely to stabilize the transition state oxycarbonium ion. These binding site residues, and many hydrophobic residues are conserved in a range of plant chitinases. This endochitinase structure will serve as a model for other plant chitinases, and that catalytic models based on this structure will be applicable to the entire enzyme family.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21264466 M.J.Lai, N.T.Lin, A.Hu, P.C.Soo, L.K.Chen, L.H.Chen, and K.C.Chang (2011).
Antibacterial activity of Acinetobacter baumannii phage ϕAB2 endolysin (LysAB2) against both gram-positive and gram-negative bacteria.
  Appl Microbiol Biotechnol, 90, 529-539.  
21367878 T.Taira, Y.Mahoe, N.Kawamoto, S.Onaga, H.Iwasaki, T.Ohnuma, and T.Fukamizo (2011).
Cloning and characterization of a small family 19 chitinase from moss (Bryum coronatum).
  Glycobiology, 21, 644-654.  
20572789 C.Neeraja, K.Anil, P.Purushotham, K.Suma, P.Sarma, B.M.Moerschbacher, and A.R.Podile (2010).
Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants.
  Crit Rev Biotechnol, 30, 231-241.  
20553502 H.Tsuji, S.Nishimura, T.Inui, Y.Kado, K.Ishikawa, T.Nakamura, and K.Uegaki (2010).
Kinetic and crystallographic analyses of the catalytic domain of chitinase from Pyrococcus furiosus- the role of conserved residues in the active site.
  FEBS J, 277, 2683-2695.
PDB codes: 3a4w 3a4x 3afb
20544965 Y.Kezuka, M.Kojima, R.Mizuno, K.Suzuki, T.Watanabe, and T.Nonaka (2010).
Structure of full-length class I chitinase from rice revealed by X-ray crystallography and small-angle X-ray scattering.
  Proteins, 78, 2295-2305.
PDB code: 3iwr
  19342775 D.N.Patil, M.Datta, A.Chaudhary, S.Tomar, A.K.Sharma, and P.Kumar (2009).
Isolation, purification, crystallization and preliminary crystallographic studies of chitinase from tamarind (Tamarindus indica) seeds.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 65, 343-345.  
19143844 M.E.Lacombe-Harvey, T.Fukamizo, J.Gagnon, M.G.Ghinet, N.Dennhart, T.Letzel, and R.Brzezinski (2009).
Accessory active site residues of Streptomyces sp. N174 chitosanase: variations on a common theme in the lysozyme superfamily.
  FEBS J, 276, 857-869.  
19629717 W.Ubhayasekera, R.Rawat, S.W.Ho, M.Wiweger, S.Von Arnold, M.L.Chye, and S.L.Mowbray (2009).
The first crystal structures of a family 19 class IV chitinase: the enzyme from Norway spruce.
  Plant Mol Biol, 71, 277-289.
PDB codes: 3hbd 3hbe 3hbh
18397326 H.H.Chuang, H.Y.Lin, and F.P.Lin (2008).
Biochemical characteristics of C-terminal region of recombinant chitinase from Bacillus licheniformis: implication of necessity for enzyme properties.
  FEBS J, 275, 2240-2254.  
  18453704 J.Huet, M.Azarkan, Y.Looze, V.Villeret, and R.Wintjens (2008).
Crystallization and preliminary X-ray analysis of a family 19 glycosyl hydrolase from Carica papaya latex.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 371-374.  
18205958 S.Pantoom, C.Songsiriritthigul, and W.Suginta (2008).
The effects of the surface-exposed residues on the binding and hydrolytic activities of Vibrio carchariae chitinase A.
  BMC Biochem, 9, 2.  
17608716 W.Ubhayasekera, C.M.Tang, S.W.Ho, G.Berglund, T.Bergfors, M.L.Chye, and S.L.Mowbray (2007).
Crystal structures of a family 19 chitinase from Brassica juncea show flexibility of binding cleft loops.
  FEBS J, 274, 3695-3703.
PDB codes: 2z37 2z38 2z39
17156413 Y.Kwon, S.H.Kim, M.S.Jung, M.S.Kim, J.E.Oh, H.W.Ju, K.I.Kim, E.Vierling, H.Lee, and S.W.Hong (2007).
Arabidopsis hot2 encodes an endochitinase-like protein that is essential for tolerance to heat, salt and drought stresses.
  Plant J, 49, 184-193.  
17010167 I.A.Hoell, B.Dalhus, E.B.Heggset, S.I.Aspmo, and V.G.Eijsink (2006).
Crystal structure and enzymatic properties of a bacterial family 19 chitinase reveal differences from plant enzymes.
  FEBS J, 273, 4889-4900.
PDB code: 2cjl
16428844 K.E.Kabir, D.Hirowatari, K.Watanabe, and D.Koga (2006).
Purification and characterization of a novel isozyme of chitinase from Bombyx mori.
  Biosci Biotechnol Biochem, 70, 252-262.  
16249876 N.Dahiya, R.Tewari, and G.S.Hoondal (2006).
Biotechnological aspects of chitinolytic enzymes: a review.
  Appl Microbiol Biotechnol, 71, 773-782.  
16636468 T.Kawase, S.Yokokawa, A.Saito, T.Fujii, N.Nikaidou, K.Miyashita, and T.Watanabe (2006).
Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3(2).
  Biosci Biotechnol Biochem, 70, 988-998.  
16155206 J.Pei, and N.V.Grishin (2005).
COG3926 and COG5526: a tale of two new lysozyme-like protein families.
  Protein Sci, 14, 2574-2581.  
16279955 V.Seidl, B.Huemer, B.Seiboth, and C.P.Kubicek (2005).
A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases.
  FEBS J, 272, 5923-5939.  
15604744 C.M.Tang, M.L.Chye, S.Ramalingam, S.W.Ouyang, K.J.Zhao, W.Ubhayasekera, and S.L.Mowbray (2004).
Functional analyses of the chitin-binding domains and the catalytic domain of Brassica juncea chitinase BjCHI1.
  Plant Mol Biol, 56, 285-298.  
15280246 P.Tiffin (2004).
Comparative evolutionary histories of chitinase genes in the Genus zea and Family poaceae.
  Genetics, 167, 1331-1340.  
14766598 T.Kawase, A.Saito, T.Sato, R.Kanai, T.Fujii, N.Nikaidou, K.Miyashita, and T.Watanabe (2004).
Distribution and phylogenetic analysis of family 19 chitinases in Actinobacteria.
  Appl Environ Microbiol, 70, 1135-1144.  
15277755 T.Mitsunaga, M.Iwase, W.Ubhayasekera, S.L.Mowbray, and D.Koga (2004).
Molecular cloning of a genomic DNA encoding yam class IV chitinase.
  Biosci Biotechnol Biochem, 68, 1508-1517.  
12755707 M.Ueda, M.Kojima, T.Yoshikawa, N.Mitsuda, K.Araki, T.Kawaguchi, K.Miyatake, M.Arai, and T.Fukamizo (2003).
A novel type of family 19 chitinase from Aeromonas sp. No.10S-24. Cloning, sequence, expression, and the enzymatic properties.
  Eur J Biochem, 270, 2513-2520.  
12834284 N.H.Truong, S.M.Park, Y.Nishizawa, T.Watanabe, T.Sasaki, and Y.Itoh (2003).
Structure, heterologous expression, and properties of rice (Oryza sativa L.) family 19 chitinases.
  Biosci Biotechnol Biochem, 67, 1063-1070.  
12784627 Y.Itoh, K.Takahashi, H.Takizawa, N.Nikaidou, H.Tanaka, H.Nishihashi, T.Watanabe, and Y.Nishizawa (2003).
Family 19 chitinase of Streptomyces griseus HUT6037 increases plant resistance to the fungal disease.
  Biosci Biotechnol Biochem, 67, 847-855.  
12092819 Y.Itoh, T.Kawase, N.Nikaidou, H.Fukada, M.Mitsutomi, T.Watanabe, and Y.Itoh (2002).
Functional analysis of the chitin-binding domain of a family 19 chitinase from Streptomyces griseus HUT6037: substrate-binding affinity and cis-dominant increase of antifungal function.
  Biosci Biotechnol Biochem, 66, 1084-1092.  
10805791 J.G.Bishop, A.M.Dean, and T.Mitchell-Olds (2000).
Rapid evolution in plant chitinases: molecular targets of selection in plant-pathogen coevolution.
  Proc Natl Acad Sci U S A, 97, 5322-5327.  
10957628 M.Hahn, M.Hennig, B.Schlesier, and W.Höhne (2000).
Structure of jack bean chitinase.
  Acta Crystallogr D Biol Crystallogr, 56, 1096-1099.
PDB code: 1dxj
10951219 S.Cottaz, B.Brasme, and H.Driguez (2000).
A fluorescence-quenched chitopentaose for the study of endo-chitinases and chitobiosidases.
  Eur J Biochem, 267, 5593-5600.  
  10752616 T.Hollis, A.F.Monzingo, K.Bortone, S.Ernst, R.Cox, and J.D.Robertus (2000).
The X-ray structure of a chitinase from the pathogenic fungus Coccidioides immitis.
  Protein Sci, 9, 544-551.
PDB code: 1d2k
10788483 T.Ikegami, T.Okada, M.Hashimoto, S.Seino, T.Watanabe, and M.Shirakawa (2000).
Solution structure of the chitin-binding domain of Bacillus circulans WL-12 chitinase A1.
  J Biol Chem, 275, 13654-13661.
PDB code: 1ed7
11030424 Y.Ponath, H.Vollberg, K.Hahlbrock, and E.Kombrink (2000).
Two differentially regulated class II chitinases from parsley.
  Biol Chem, 381, 667-678.  
10521473 J.Saito, A.Kita, Y.Higuchi, Y.Nagata, A.Ando, and K.Miki (1999).
Crystal structure of chitosanase from Bacillus circulans MH-K1 at 1.6-A resolution and its substrate recognition mechanism.
  J Biol Chem, 274, 30818-30825.
PDB code: 1qgi
9723170 J.D.Robertus, A.F.Monzingo, E.M.Marcotte, and P.J.Hart (1998).
Structural analysis shows five glycohydrolase families diverged from a common ancestor.
  J Exp Zool, 282, 127-132.  
9539727 K.A.Brameld, and W.A.Goddard (1998).
The role of enzyme distortion in the single displacement mechanism of family 19 chitinases.
  Proc Natl Acad Sci U S A, 95, 4276-4281.  
9532801 T.Yamagami, and G.Funatsu (1998).
Identification of the aspartic acid residue located at or near substrate-binding site of rye seed chitinase-c.
  Biosci Biotechnol Biochem, 62, 383-385.  
9188741 A.V.Efimov (1997).
Structural trees for protein superfamilies.
  Proteins, 28, 241-260.  
9345621 B.Henrissat, and G.Davies (1997).
Structural and sequence-based classification of glycoside hydrolases.
  Curr Opin Struct Biol, 7, 637-644.  
8564539 A.F.Monzingo, E.M.Marcotte, P.J.Hart, and J.D.Robertus (1996).
Chitinases, chitosanases, and lysozymes can be divided into procaryotic and eucaryotic families sharing a conserved core.
  Nat Struct Biol, 3, 133-140.  
8564542 E.M.Marcotte, A.F.Monzingo, S.R.Ernst, R.Brzezinski, and J.D.Robertus (1996).
X-ray structure of an anti-fungal chitosanase from streptomyces N174.
  Nat Struct Biol, 3, 155-162.
PDB code: 1chk
8673609 I.Tews, A.Perrakis, A.Oppenheim, Z.Dauter, K.S.Wilson, and C.E.Vorgias (1996).
Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay-Sachs disease.
  Nat Struct Biol, 3, 638-648.
PDB codes: 1qba 1qbb 1qbc 1qbd
  8752320 T.Ohno, S.Armand, T.Hata, N.Nikaidou, B.Henrissat, M.Mitsutomi, and T.Watanabe (1996).
A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037.
  J Bacteriol, 178, 5065-5070.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer