spacer
spacer

PDBsum entry 1chk

Go to PDB code: 
protein Protein-protein interface(s) links
Hydrolase (o-glycosyl) PDB id
1chk

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
238 a.a. *
Waters ×51
* Residue conservation analysis
PDB id:
1chk
Name: Hydrolase (o-glycosyl)
Title: Streptomyces n174 chitosanase ph5.5 298k
Structure: Chitosanase. Chain: a, b. Synonym: endochitosanase. Engineered: yes
Source: Streptomyces sp.. Organism_taxid: 69019. Strain: n174. Gene: csn. Expressed in: streptomyces lividans. Expression_system_taxid: 1916. Other_details: secreted (mature peptide)
Resolution:
2.40Å     R-factor:   0.181     R-free:   0.175
Authors: E.M.Marcotte,J.D.Robertus
Key ref: E.M.Marcotte et al. (1996). X-ray structure of an anti-fungal chitosanase from streptomyces N174. Nat Struct Biol, 3, 155-162. PubMed id: 8564542
Date:
12-Jun-95     Release date:   11-Jul-96    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P33665  (CHIS_STRSN) -  Chitosanase from Streptomyces sp. (strain N174)
Seq:
Struc:
278 a.a.
238 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.3.2.1.132  - chitosanase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Endohydrolysis of beta-1,4-linkages between N-acetyl-D-glucosamine and D-glucosamine residues in a partly acetylated chitosan.

 

 
Nat Struct Biol 3:155-162 (1996)
PubMed id: 8564542  
 
 
X-ray structure of an anti-fungal chitosanase from streptomyces N174.
E.M.Marcotte, A.F.Monzingo, S.R.Ernst, R.Brzezinski, J.D.Robertus.
 
  ABSTRACT  
 
We report the 2.4 A X-ray crystal structure of a protein with chitosan endo-hydrolase activity isolated from Streptomyces N174. The structure was solved using phases acquired by SIRAS from a two-site methyl mercury derivative combined with solvent flattening and non-crystallographic two-fold symmetry averaging, and refined to an R-factor of 18.5%. The mostly alpha-helical fold reveals a structural core shared with several classes of lysozyme and barley endochitinase, in spite of a lack of shared sequence. Based on this structural similarity we postulate a putative active site, mechanism of action and mode of substrate recognition. It appears that Glu 22 acts as an acid and Asp 40 serves as a general base to activate a water molecule for an SN2 attack on the glycosidic bond. A series of amino-acid side chains and backbone carbonyl groups may bind the polycationic chitosan substrate in a deep electronegative binding cleft.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20559485 B.B.Aam, E.B.Heggset, A.L.Norberg, M.Sørlie, K.M.Vårum, and V.G.Eijsink (2010).
Production of chitooligosaccharides and their potential applications in medicine.
  Mar Drugs, 8, 1482-1517.  
20096097 M.G.Johnsen, O.C.Hansen, and P.Stougaard (2010).
Isolation, characterization and heterologous expression of a novel chitosanase from Janthinobacterium sp. strain 4239.
  Microb Cell Fact, 9, 5.  
20228117 V.Gupta, R.Prasanna, C.Natarajan, A.K.Srivastava, and J.Sharma (2010).
Identification, characterization, and regulation of a novel antifungal chitosanase gene (cho) in Anabaena spp.
  Appl Environ Microbiol, 76, 2769-2777.  
19759917 J.Song, H.Tan, K.Mahmood, R.H.Law, A.M.Buckle, G.I.Webb, T.Akutsu, and J.C.Whisstock (2009).
Prodepth: predict residue depth by support vector regression approach from protein sequences only.
  PLoS One, 4, e7072.  
19143844 M.E.Lacombe-Harvey, T.Fukamizo, J.Gagnon, M.G.Ghinet, N.Dennhart, T.Letzel, and R.Brzezinski (2009).
Accessory active site residues of Streptomyces sp. N174 chitosanase: variations on a common theme in the lysozyme superfamily.
  FEBS J, 276, 857-869.  
18685218 A.Ando, A.Saito, S.Arai, S.Usuda, M.Furuno, N.Kaneko, O.Shida, and Y.Nagata (2008).
Molecular characterization of a novel family-46 chitosanase from Pseudomonas sp. A-01.
  Biosci Biotechnol Biochem, 72, 2074-2081.  
18845568 H.Hirakawa, A.Ochi, Y.Kawahara, S.Kawamura, T.Torikata, and S.Kuhara (2008).
Catalytic Reaction Mechanism of Goose Egg-white Lysozyme by Molecular Modelling of Enzyme-Substrate Complex.
  J Biochem, 144, 753-761.  
18430025 S.Kawamura, M.Ohkuma, Y.Chijiiwa, D.Kohno, H.Nakagawa, H.Hirakawa, S.Kuhara, and T.Torikata (2008).
Role of disulfide bonds in goose-type lysozyme.
  FEBS J, 275, 2818-2830.  
18031332 H.S.Lee, J.S.Jang, S.K.Choi, D.W.Lee, E.J.Kim, H.C.Jung, and J.G.Pan (2007).
Identification and expression of GH-8 family chitosanases from several Bacillus thuringiensis subspecies.
  FEMS Microbiol Lett, 277, 133-141.  
17631496 T.Goto, Y.Abe, Y.Kakuta, K.Takeshita, T.Imoto, and T.Ueda (2007).
Crystal structure of Tapes japonica Lysozyme with substrate analogue: structural basis of the catalytic mechanism and manifestation of its chitinase activity accompanied by quaternary structural change.
  J Biol Chem, 282, 27459-27467.
PDB code: 2dqa
16151097 C.Yun, D.Amakata, Y.Matsuo, H.Matsuda, and M.Kawamukai (2005).
New chitosan-degrading strains that produce chitosanases similar to ChoA of Mitsuaria chitosanitabida.
  Appl Environ Microbiol, 71, 5138-5144.  
14978301 C.Blouin, D.Butt, and A.J.Roger (2004).
Rapid evolution in conformational space: a study of loop regions in a ubiquitous GTP binding domain.
  Protein Sci, 13, 608-616.  
15502334 Y.Sakihama, W.Adachi, S.Shimizu, T.Sunami, T.Fukazawa, M.Suzuki, R.Yatsunami, S.Nakamura, and A.Takénaka (2004).
Crystallization and preliminary X-ray analyses of the active and the inactive forms of family GH-8 chitosanase with subclass II specificity from Bacillus sp. strain K17.
  Acta Crystallogr D Biol Crystallogr, 60, 2081-2083.  
12728998 T.Tanabe, K.Morinaga, T.Fukamizo, and M.Mitsutomi (2003).
Novel chitosanase from Streptomyces griseus HUT 6037 with transglycosylation activity.
  Biosci Biotechnol Biochem, 67, 354-364.  
12092850 H.G.Yoon, K.H.Lee, H.Y.Kim, H.K.Kim, D.H.Shin, B.S.Hong, and H.Y.Cho (2002).
Gene cloning and biochemical analysis of thermostable chitosanase (TCH-2) from Bacillus coagulans CK108.
  Biosci Biotechnol Biochem, 66, 986-995.  
11854270 H.Kimoto, H.Kusaoke, I.Yamamoto, Y.Fujii, T.Onodera, and A.Taketo (2002).
Biochemical and genetic properties of Paenibacillus glycosyl hydrolase having chitosanase activity and discoidin domain.
  J Biol Chem, 277, 14695-14702.  
11425698 C.P.Selitrennikoff (2001).
Antifungal proteins.
  Appl Environ Microbiol, 67, 2883-2894.  
11330672 S.Thammasirirak, T.Torikata, K.Takami, K.Murata, and T.Araki (2001).
Purification and characterization of goose type lysozyme from cassowary (Casuarius casuarius) egg white.
  Biosci Biotechnol Biochem, 65, 584-592.  
10872458 H.D.Ly, and S.G.Withers (1999).
Mutagenesis of glycosidases.
  Annu Rev Biochem, 68, 487-522.  
  10542164 J.K.Park, K.Shimono, N.Ochiai, K.Shigeru, M.Kurita, Y.Ohta, K.Tanaka, H.Matsuda, and M.Kawamukai (1999).
Purification, characterization, and gene analysis of a chitosanase (ChoA) from Matsuebacter chitosanotabidus 3001.
  J Bacteriol, 181, 6642-6649.  
10521473 J.Saito, A.Kita, Y.Higuchi, Y.Nagata, A.Ando, and K.Miki (1999).
Crystal structure of chitosanase from Bacillus circulans MH-K1 at 1.6-A resolution and its substrate recognition mechanism.
  J Biol Chem, 274, 30818-30825.
PDB code: 1qgi
10409645 V.Nardi-Dei, T.Kurihara, C.Park, M.Miyagi, S.Tsunasawa, K.Soda, and N.Esaki (1999).
DL-2-Haloacid dehalogenase from Pseudomonas sp. 113 is a new class of dehalogenase catalyzing hydrolytic dehalogenation not involving enzyme-substrate ester intermediate.
  J Biol Chem, 274, 20977-20981.  
9989221 Y.Honda, T.Fukamizo, T.Okajima, S.Goto, I.Boucher, and R.Brzezinski (1999).
Thermal unfolding of chitosanase from Streptomyces sp. N174: role of tryptophan residues in the protein structure stabilization.
  Biochim Biophys Acta, 1429, 365-376.  
9345621 B.Henrissat, and G.Davies (1997).
Structural and sequence-based classification of glycoside hydrolases.
  Curr Opin Struct Biol, 7, 637-644.  
8564531 A.J.Kirby (1996).
Illuminating the ancient retainer.
  Nat Struct Biol, 3, 107-108.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer