spacer
spacer

PDBsum entry 2oug

Go to PDB code: 
protein Protein-protein interface(s) links
Transcription PDB id
2oug

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
141 a.a. *
Waters ×477
* Residue conservation analysis
PDB id:
2oug
Name: Transcription
Title: Crystal structure of the rfah transcription factor at 2.1a resolution
Structure: Transcriptional activator rfah. Chain: a, b, c, d. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Gene: rfah, hlyt, sfrb. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
2.10Å     R-factor:   0.238     R-free:   0.273
Authors: D.G.Vassylyev,M.N.Vassylyeva,V.Svetlov,I.Artsimovitch
Key ref:
G.A.Belogurov et al. (2007). Structural basis for converting a general transcription factor into an operon-specific virulence regulator. Mol Cell, 26, 117-129. PubMed id: 17434131 DOI: 10.1016/j.molcel.2007.02.021
Date:
10-Feb-07     Release date:   01-May-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P0AFW0  (RFAH_ECOLI) -  Transcription antitermination protein RfaH from Escherichia coli (strain K12)
Seq:
Struc:
162 a.a.
141 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1016/j.molcel.2007.02.021 Mol Cell 26:117-129 (2007)
PubMed id: 17434131  
 
 
Structural basis for converting a general transcription factor into an operon-specific virulence regulator.
G.A.Belogurov, M.N.Vassylyeva, V.Svetlov, S.Klyuyev, N.V.Grishin, D.G.Vassylyev, I.Artsimovitch.
 
  ABSTRACT  
 
RfaH, a paralog of the general transcription factor NusG, is recruited to elongating RNA polymerase at specific regulatory sites. The X-ray structure of Escherichia coli RfaH reported here reveals two domains. The N-terminal domain displays high similarity to that of NusG. In contrast, the alpha-helical coiled-coil C domain, while retaining sequence similarity, is strikingly different from the beta barrel of NusG. To our knowledge, such an all-beta to all-alpha transition of the entire domain is the most extreme example of protein fold evolution known to date. Both N domains possess a vast hydrophobic cavity that is buried by the C domain in RfaH but is exposed in NusG. We propose that this cavity constitutes the RNA polymerase-binding site, which becomes unmasked in RfaH only upon sequence-specific binding to the nontemplate DNA strand that triggers domain dissociation. Finally, we argue that RfaH binds to the beta' subunit coiled coil, the major target site for the initiation sigma factors.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Structure of the RfaH Protein
(A) The overall structure.
(B) Stereo view of the RfaH interdomain interface. All structural figures were prepared using the programs MOLSCRIPT, BOBSCRIPT, and Raster3D (Esnouf, 1999, Kraulis, 1991 and Merrit and Bacon, 1997).
Figure 6.
Figure 6. The Model of RfaH Recruited to the TEC
(A) Overall model is presented in two distinct orientations. The RNAP is shown in gray with the β′CC (the RfaH-binding site) highlighted in magenta. The color scheme for the RfaH N and C domains is the same as in Figure 1. The RNAP active site is marked by the Mg^2+ ion (magenta sphere). The template DNA, the nontemplate DNA, and the RNA transcript are colored in red, green, and yellow, respectively.
(B) The close-up stereo view of RfaH bound to the β′CC. The side chains forming the intermolecular hydrophobic core are represented by the balls-and-sticks model (blue and magenta for the RfaH and β′CC, respectively). The nontemplate strand nucleotides adjacent to RfaH in the TEC model are shown in green and are numbered with respect to the position of the acceptor template base (register n). The cluster of the RfaH residues that confer defects in the ops DNA binding is colored in red.
(C) Transcript elongation on pIA349 template (Figure 4C) by RNAPs containing I290R or I291R substitutions at the tip of the β′CC in the absence (left panels) or in the presence (right panels) of full-length RfaH. Quantification is presented in Figure S6.
 
  The above figures are reprinted by permission from Cell Press: Mol Cell (2007, 26, 117-129) copyright 2007.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21187417 B.J.Klein, D.Bose, K.J.Baker, Z.M.Yusoff, X.Zhang, and K.S.Murakami (2011).
RNA polymerase and transcription elongation factor Spt4/5 complex structure.
  Proc Natl Acad Sci U S A, 108, 546-550.
PDB code: 3p8b
21345171 B.M.Burmann, U.Scheckenhofer, K.Schweimer, and P.Rösch (2011).
Domain interactions of the transcription-translation coupling factor Escherichia coli NusG are intermolecular and transient.
  Biochem J, 435, 783-789.  
21233849 F.Werner, and D.Grohmann (2011).
Evolution of multisubunit RNA polymerases in the three domains of life.
  Nat Rev Microbiol, 9, 85-98.  
  21435034 G.Swapna, A.Chakraborty, V.Kumari, R.Sen, and V.Nagaraja (2011).
Mutations in β' subunit of Escherichia coli RNA polymerase perturb the activator polymerase functional interaction required for promoter clearance.
  Mol Microbiol, 80, 1169-1185.  
21478900 T.J.Santangelo, and I.Artsimovitch (2011).
Termination and antitermination: RNA polymerase runs a stop sign.
  Nat Rev Microbiol, 9, 319-329.  
20197319 A.Hirtreiter, G.E.Damsma, A.C.Cheung, D.Klose, D.Grohmann, E.Vojnic, A.C.Martin, P.Cramer, and F.Werner (2010).
Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif.
  Nucleic Acids Res, 38, 4040-4051.
PDB code: 3lpe
20639538 A.Sevostyanova, and I.Artsimovitch (2010).
Functional analysis of Thermus thermophilus transcription factor NusG.
  Nucleic Acids Res, 38, 7432-7445.  
  20384694 A.V.Yakhnin, and P.Babitzke (2010).
Mechanism of NusG-stimulated pausing, hairpin-dependent pause site selection and intrinsic termination at overlapping pause and termination sites in the Bacillus subtilis trp leader.
  Mol Microbiol, 76, 690-705.  
  20473037 D.Grohmann, and F.Werner (2010).
Hold on!: RNA polymerase interactions with the nascent RNA modulate transcription elongation and termination.
  RNA Biol, 7, 310-315.  
20457751 D.Pupov, N.Miropolskaya, A.Sevostyanova, I.Bass, I.Artsimovitch, and A.Kulbachinskiy (2010).
Multiple roles of the RNA polymerase {beta}' SW2 region in transcription initiation, promoter escape, and RNA elongation.
  Nucleic Acids Res, 38, 5784-5796.  
20132437 G.A.Belogurov, A.Sevostyanova, V.Svetlov, and I.Artsimovitch (2010).
Functional regions of the N-terminal domain of the antiterminator RfaH.
  Mol Microbiol, 76, 286-301.  
20660769 L.Cardarelli, L.G.Pell, P.Neudecker, N.Pirani, A.Liu, L.A.Baker, J.L.Rubinstein, K.L.Maxwell, and A.R.Davidson (2010).
Phages have adapted the same protein fold to fulfill multiple functions in virion assembly.
  Proc Natl Acad Sci U S A, 107, 14384-14389.
PDB code: 2kx4
20591649 P.N.Bryan, and J.Orban (2010).
Proteins that switch folds.
  Curr Opin Struct Biol, 20, 482-488.  
19860741 S.Wenzel, B.M.Martins, P.Rösch, and B.M.Wöhrl (2010).
Crystal structure of the human transcription elongation factor DSIF hSpt4 subunit in complex with the hSpt5 dimerization interface.
  Biochem J, 425, 373-380.
PDB code: 3h7h
19895816 W.J.Lane, and S.A.Darst (2010).
Molecular evolution of multisubunit RNA polymerases: structural analysis.
  J Mol Biol, 395, 686-704.  
18946472 G.A.Belogurov, M.N.Vassylyeva, A.Sevostyanova, J.R.Appleman, A.X.Xiang, R.Lira, S.E.Webber, S.Klyuyev, E.Nudler, I.Artsimovitch, and D.G.Vassylyev (2009).
Transcription inactivation through local refolding of the RNA polymerase structure.
  Nature, 457, 332-335.
PDB code: 3eql
19096362 G.A.Belogurov, R.A.Mooney, V.Svetlov, R.Landick, and I.Artsimovitch (2009).
Functional specialization of transcription elongation factors.
  EMBO J, 28, 112-122.  
19801412 M.Chatzidaki-Livanis, M.J.Coyne, and L.E.Comstock (2009).
A family of transcriptional antitermination factors necessary for synthesis of the capsular polysaccharides of Bacteroides fragilis.
  J Bacteriol, 191, 7288-7295.  
19500594 R.A.Mooney, K.Schweimer, P.Rösch, M.Gottesman, and R.Landick (2009).
Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators.
  J Mol Biol, 391, 341-358.
PDB codes: 2jvv 2k06
19150431 R.A.Mooney, S.E.Davis, J.M.Peters, J.L.Rowland, A.Z.Ansari, and R.Landick (2009).
Regulator trafficking on bacterial transcription units in vivo.
  Mol Cell, 33, 97.  
19482467 R.I.Sadreyev, B.H.Kim, and N.V.Grishin (2009).
Discrete-continuous duality of protein structure space.
  Curr Opin Struct Biol, 19, 321-328.  
18287054 A.R.Davidson (2008).
A folding space odyssey.
  Proc Natl Acad Sci U S A, 105, 2759-2760.  
18195372 A.Sevostyanova, V.Svetlov, D.G.Vassylyev, and I.Artsimovitch (2008).
The elongation factor RfaH and the initiation factor {sigma} bind to the same site on the transcription elongation complex.
  Proc Natl Acad Sci U S A, 105, 865-870.  
18852477 A.V.Yakhnin, H.Yakhnin, and P.Babitzke (2008).
Function of the Bacillus subtilis transcription elongation factor NusG in hairpin-dependent RNA polymerase pausing in the trp leader.
  Proc Natl Acad Sci U S A, 105, 16131-16136.  
18227506 C.G.Roessler, B.M.Hall, W.J.Anderson, W.M.Ingram, S.A.Roberts, W.R.Montfort, and M.H.Cordes (2008).
Transitive homology-guided structural studies lead to discovery of Cro proteins with 40% sequence identity but different folds.
  Proc Natl Acad Sci U S A, 105, 2343-2348.
PDB codes: 2pij 3bd1
18995832 D.Bose, T.Pape, P.C.Burrows, M.Rappas, S.R.Wigneshweraraj, M.Buck, and X.Zhang (2008).
Organization of an activator-bound RNA polymerase holoenzyme.
  Mol Cell, 32, 337-346.  
18621891 J.R.Frederick, E.A.Rogers, and R.T.Marconi (2008).
Analysis of a growth-phase-regulated two-component regulatory system in the periodontal pathogen Treponema denticola.
  J Bacteriol, 190, 6162-6169.  
18729732 J.W.Roberts, S.Shankar, and J.J.Filter (2008).
RNA polymerase elongation factors.
  Annu Rev Microbiol, 62, 211-233.  
19000817 M.Guo, F.Xu, J.Yamada, T.Egelhofer, Y.Gao, G.A.Hartzog, M.Teng, and L.Niu (2008).
Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation.
  Structure, 16, 1649-1658.  
19111659 X.Luo, H.H.Hsiao, M.Bubunenko, G.Weber, D.L.Court, M.E.Gottesman, H.Urlaub, and M.C.Wahl (2008).
Structural and functional analysis of the E. coli NusB-S10 transcription antitermination complex.
  Mol Cell, 32, 791-802.
PDB codes: 3d3b 3d3c
17697097 F.Werner (2007).
Structure and function of archaeal RNA polymerases.
  Mol Microbiol, 65, 1395-1404.  
17711918 V.Svetlov, G.A.Belogurov, E.Shabrova, D.G.Vassylyev, and I.Artsimovitch (2007).
Allosteric control of the RNA polymerase by the elongation factor RfaH.
  Nucleic Acids Res, 35, 5694-5705.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer