|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Peptide binding protein
|
 |
|
Title:
|
 |
Tandem chromodomains of human chd1 complexed with histone h3 tail containing trimethyllysine 4 and dimethylarginine 2
|
|
Structure:
|
 |
Chromodomain-helicase-DNA-binding protein 1. Chain: a, b. Fragment: residues 268-443. Synonym: chd-1. Engineered: yes. Chromodomain-helicase-DNA-binding protein 1. Chain: c. Fragment: residues 268-373. Synonym: chd-1.
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Gene: chd1. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Synthetic: yes. Other_details: this sequence occurs naturally in homo sapiens (humans).
|
|
Biol. unit:
|
 |
Tetramer (from
)
|
|
Resolution:
|
 |
|
2.95Å
|
R-factor:
|
0.238
|
R-free:
|
0.290
|
|
|
Authors:
|
 |
J.F.Flanagan Iv,L.-Z.Mi,M.Chruszcz,M.Cymborowski,K.L.Clines,Y.Kim, W.Minor,F.Rastinejad,S.Khorasanizadeh
|
Key ref:
|
 |
J.F.Flanagan
et al.
(2005).
Double chromodomains cooperate to recognize the methylated histone H3 tail.
Nature,
438,
1181-1185.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
19-Sep-05
|
Release date:
|
27-Dec-05
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chains A, B, C:
E.C.3.6.4.12
- Dna helicase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
ATP + H2O = ADP + phosphate + H+
|
 |
 |
 |
 |
 |
ATP
|
+
|
H2O
|
=
|
ADP
|
+
|
phosphate
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Nature
438:1181-1185
(2005)
|
|
PubMed id:
|
|
|
|
|
| |
|
Double chromodomains cooperate to recognize the methylated histone H3 tail.
|
|
J.F.Flanagan,
L.Z.Mi,
M.Chruszcz,
M.Cymborowski,
K.L.Clines,
Y.Kim,
W.Minor,
F.Rastinejad,
S.Khorasanizadeh.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Chromodomains are modules implicated in the recognition of lysine-methylated
histone tails and nucleic acids. CHD (for chromo-ATPase/helicase-DNA-binding)
proteins regulate ATP-dependent nucleosome assembly and mobilization through
their conserved double chromodomains and SWI2/SNF2 helicase/ATPase domain. The
Drosophila CHD1 localizes to the interbands and puffs of the polytene
chromosomes, which are classic sites of transcriptional activity. Other CHD
isoforms (CHD3/4 or Mi-2) are important for nucleosome remodelling in histone
deacetylase complexes. Deletion of chromodomains impairs nucleosome binding and
remodelling by CHD proteins. Here we describe the structure of the tandem
arrangement of the human CHD1 chromodomains, and its interactions with histone
tails. Unlike HP1 and Polycomb proteins that use single chromodomains to bind to
their respective methylated histone H3 tails, the two chromodomains of CHD1
cooperate to interact with one methylated H3 tail. We show that the human CHD1
double chromodomains target the lysine 4-methylated histone H3 tail (H3K4me), a
hallmark of active chromatin. Methylammonium recognition involves two aromatic
residues, not the three-residue aromatic cage used by chromodomains of HP1 and
Polycomb proteins. Furthermore, unique inserts within chromodomain 1 of CHD1
block the expected site of H3 tail binding seen in HP1 and Polycomb, instead
directing H3 binding to a groove at the inter-chromodomain junction.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Figure 3: Methyllysine binding by human CHD1. a, The
bound-peptide structure of H3K4me3 (green), H3K4me1 (yellow),
H3K4me3R2me2a (cyan) and H3K4me3T3ph (red). b, The aromatic
cages from HP1 (blue) and Polycomb (cyan) with methyllysines 9
and 27. c, Fluorescence polarization peptide binding assays
using human or yeast CHD1. Using H3K4me3 peptide, human CHD1
(black) binds with a K[d] of 5 M,
W67L-human CHD1 (cyan) does not bind, W64L-human CHD1 (yellow)
binds with a K[d] of 290 M,
and budding yeast CHD1 (red) does not bind. W64L and W67L-human
CHD1 do not allow binding to H3K4me1 or the unmodified peptide.
d, Effect of adjacent peptide modifications. Black, H3K4me3;
cyan, H3K4me3R2me2a; red, H3K4me3T3ph.
|
 |
Figure 4.
Figure 4: Comparison of CHD1 with HP1 and Polycomb. a, HP1
chromodomain (blue) in complex with H3K9me3 (brown) superimposed
on CHD1 chromodomain 1 (cyan and yellow) in complex with H3K4me3
(green). b, Polycomb chromodomain (blue) in complex with
H3K27me3 (brown) superimposed on CHD1 chromodomain 1 (cyan and
yellow) in complex with H3K4me3 (green).
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2005,
438,
1181-1185)
copyright 2005.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
C.A.Musselman,
M.E.Lalonde,
J.Côté,
and
T.G.Kutateladze
(2012).
Perceiving the epigenetic landscape through histone readers.
|
| |
Nat Struct Mol Biol,
19,
1218-1227.
|
 |
|
|
|
|
 |
C.Ballaré,
M.Lange,
A.Lapinaite,
G.M.Martin,
L.Morey,
G.Pascual,
R.Liefke,
B.Simon,
Y.Shi,
O.Gozani,
T.Carlomagno,
S.A.Benitah,
and
L.Di Croce
(2012).
Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity.
|
| |
Nat Struct Mol Biol,
19,
1257-1265.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.L.Greer,
and
Y.Shi
(2012).
Histone methylation: a dynamic mark in health, disease and inheritance.
|
| |
Nat Rev Genet,
13,
343-357.
|
 |
|
|
|
|
 |
B.Schuettengruber,
A.M.Martinez,
N.Iovino,
and
G.Cavalli
(2011).
Trithorax group proteins: switching genes on and keeping them active.
|
| |
Nat Rev Mol Cell Biol,
12,
799-814.
|
 |
|
|
|
|
 |
D.C.Hargreaves,
and
G.R.Crabtree
(2011).
ATP-dependent chromatin remodeling: genetics, genomics and mechanisms.
|
| |
Cell Res,
21,
396-420.
|
 |
|
|
|
|
 |
K.W.Jeong,
K.Kim,
A.J.Situ,
T.S.Ulmer,
W.An,
and
M.R.Stallcup
(2011).
Recognition of enhancer element-specific histone methylation by TIP60 in transcriptional activation.
|
| |
Nat Struct Mol Biol,
18,
1358-1365.
|
 |
|
|
|
|
 |
L.Pasqualucci,
V.Trifonov,
G.Fabbri,
J.Ma,
D.Rossi,
A.Chiarenza,
V.A.Wells,
A.Grunn,
M.Messina,
O.Elliot,
J.Chan,
G.Bhagat,
A.Chadburn,
G.Gaidano,
C.G.Mullighan,
R.Rabadan,
and
R.Dalla-Favera
(2011).
Analysis of the coding genome of diffuse large B-cell lymphoma.
|
| |
Nat Genet,
43,
830-837.
|
 |
|
|
|
|
 |
P.Voigt,
and
D.Reinberg
(2011).
Histone tails: ideal motifs for probing epigenetics through chemical biology approaches.
|
| |
Chembiochem,
12,
236-252.
|
 |
|
|
|
|
 |
S.M.Fuchs,
K.Krajewski,
R.W.Baker,
V.L.Miller,
and
B.D.Strahl
(2011).
Influence of combinatorial histone modifications on antibody and effector protein recognition.
|
| |
Curr Biol,
21,
53-58.
|
 |
|
|
|
|
 |
S.Morettini,
M.Tribus,
A.Zeilner,
J.Sebald,
B.Campo-Fernandez,
G.Scheran,
H.Wörle,
V.Podhraski,
D.V.Fyodorov,
and
A.Lusser
(2011).
The chromodomains of CHD1 are critical for enzymatic activity but less important for chromatin localization.
|
| |
Nucleic Acids Res,
39,
3103-3115.
|
 |
|
|
|
|
 |
S.S.Oliver,
and
J.M.Denu
(2011).
Dynamic interplay between histone H3 modifications and protein interpreters: emerging evidence for a "histone language".
|
| |
Chembiochem,
12,
299-307.
|
 |
|
|
|
|
 |
A.L.Garske,
S.S.Oliver,
E.K.Wagner,
C.A.Musselman,
G.LeRoy,
B.A.Garcia,
T.G.Kutateladze,
and
J.M.Denu
(2010).
Combinatorial profiling of chromatin binding modules reveals multisite discrimination.
|
| |
Nat Chem Biol,
6,
283-290.
|
 |
|
|
|
|
 |
A.M.Quinn,
M.T.Bedford,
A.Espejo,
A.Spannhoff,
C.P.Austin,
U.Oppermann,
and
A.Simeonov
(2010).
A homogeneous method for investigation of methylation-dependent protein-protein interactions in epigenetics.
|
| |
Nucleic Acids Res,
38,
e11.
|
 |
|
|
|
|
 |
A.Majdalawieh,
and
H.S.Ro
(2010).
PPARgamma1 and LXRalpha face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1.
|
| |
Nucl Recept Signal,
8,
e004.
|
 |
|
|
|
|
 |
A.T.Thiel,
P.Blessington,
T.Zou,
D.Feather,
X.Wu,
J.Yan,
H.Zhang,
Z.Liu,
P.Ernst,
G.A.Koretzky,
and
X.Hua
(2010).
MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele.
|
| |
Cancer Cell,
17,
148-159.
|
 |
|
|
|
|
 |
C.M.Santiveri,
and
M.A.Jiménez
(2010).
Tryptophan residues: Scarce in proteins but strong stabilizers of β-hairpin peptides.
|
| |
Biopolymers,
94,
779-790.
|
 |
|
|
|
|
 |
D.Kim,
B.J.Blus,
V.Chandra,
P.Huang,
F.Rastinejad,
and
S.Khorasanizadeh
(2010).
Corecognition of DNA and a methylated histone tail by the MSL3 chromodomain.
|
| |
Nat Struct Mol Biol,
17,
1027-1029.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
F.He,
T.Umehara,
K.Saito,
T.Harada,
S.Watanabe,
T.Yabuki,
T.Kigawa,
M.Takahashi,
K.Kuwasako,
K.Tsuda,
T.Matsuda,
M.Aoki,
E.Seki,
N.Kobayashi,
P.Güntert,
S.Yokoyama,
and
Y.Muto
(2010).
Structural insight into the zinc finger CW domain as a histone modification reader.
|
| |
Structure,
18,
1127-1139.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.E.Zentner,
W.S.Layman,
D.M.Martin,
and
P.C.Scacheri
(2010).
Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome.
|
| |
Am J Med Genet A,
152,
674-686.
|
 |
|
|
|
|
 |
G.Hauk,
J.N.McKnight,
I.M.Nodelman,
and
G.D.Bowman
(2010).
The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor.
|
| |
Mol Cell,
39,
711-723.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.M.Higgins
(2010).
Haspin: a newly discovered regulator of mitotic chromosome behavior.
|
| |
Chromosoma,
119,
137-147.
|
 |
|
|
|
|
 |
K.L.Yap,
and
M.M.Zhou
(2010).
Keeping it in the family: diverse histone recognition by conserved structural folds.
|
| |
Crit Rev Biochem Mol Biol,
45,
488-505.
|
 |
|
|
|
|
 |
L.Ho,
and
G.R.Crabtree
(2010).
Chromatin remodelling during development.
|
| |
Nature,
463,
474-484.
|
 |
|
|
|
|
 |
L.Zeng,
Q.Zhang,
S.Li,
A.N.Plotnikov,
M.J.Walsh,
and
M.M.Zhou
(2010).
Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b.
|
| |
Nature,
466,
258-262.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.N.Cruickshank,
P.Besant,
and
D.Ulgiati
(2010).
The impact of histone post-translational modifications on developmental gene regulation.
|
| |
Amino Acids,
39,
1087-1105.
|
 |
|
|
|
|
 |
M.P.Schnetz,
L.Handoko,
B.Akhtar-Zaidi,
C.F.Bartels,
C.F.Pereira,
A.G.Fisher,
D.J.Adams,
P.Flicek,
G.E.Crawford,
T.Laframboise,
P.Tesar,
C.L.Wei,
and
P.C.Scacheri
(2010).
CHD7 targets active gene enhancer elements to modulate ES cell-specific gene expression.
|
| |
PLoS Genet,
6,
e1001023.
|
 |
|
|
|
|
 |
R.A.Varier,
N.S.Outchkourov,
P.de Graaf,
F.M.van Schaik,
H.J.Ensing,
F.Wang,
J.M.Higgins,
G.J.Kops,
and
H.T.Timmers
(2010).
A phospho/methyl switch at histone H3 regulates TFIID association with mitotic chromosomes.
|
| |
EMBO J,
29,
3967-3978.
|
 |
|
|
|
|
 |
S.Desiderio
(2010).
Temporal and spatial regulatory functions of the V(D)J recombinase.
|
| |
Semin Immunol,
22,
362-369.
|
 |
|
|
|
|
 |
S.V.Saladi,
and
I.L.de la Serna
(2010).
ATP dependent chromatin remodeling enzymes in embryonic stem cells.
|
| |
Stem Cell Rev,
6,
62-73.
|
 |
|
|
|
|
 |
S.Yoshimura,
A.Harada,
J.Odawara,
M.Azuma,
S.Okada,
M.Nakamura,
Y.Ohkawa,
and
T.Tachibana
(2010).
Rat monoclonal antibody specific for the chromatin remodeling factor, CHD1.
|
| |
Hybridoma (Larchmt),
29,
237-240.
|
 |
|
|
|
|
 |
T.K.Quan,
and
G.A.Hartzog
(2010).
Histone H3K4 and K36 methylation, Chd1 and Rpd3S oppose the functions of Saccharomyces cerevisiae Spt4-Spt5 in transcription.
|
| |
Genetics,
184,
321-334.
|
 |
|
|
|
|
 |
B.J.Venters,
and
B.F.Pugh
(2009).
How eukaryotic genes are transcribed.
|
| |
Crit Rev Biochem Mol Biol,
44,
117-141.
|
 |
|
|
|
|
 |
C.R.Clapier,
and
B.R.Cairns
(2009).
The biology of chromatin remodeling complexes.
|
| |
Annu Rev Biochem,
78,
273-304.
|
 |
|
|
|
|
 |
D.J.Bua,
A.J.Kuo,
P.Cheung,
C.L.Liu,
V.Migliori,
A.Espejo,
F.Casadio,
C.Bassi,
B.Amati,
M.T.Bedford,
E.Guccione,
and
O.Gozani
(2009).
Epigenome microarray platform for proteome-wide dissection of chromatin-signaling networks.
|
| |
PLoS One,
4,
e6789.
|
 |
|
|
|
|
 |
D.W.Chan,
Y.Wang,
M.Wu,
J.Wong,
J.Qin,
and
Y.Zhao
(2009).
Unbiased proteomic screen for binding proteins to modified lysines on histone H3.
|
| |
Proteomics,
9,
2343-2354.
|
 |
|
|
|
|
 |
E.I.Campos,
and
D.Reinberg
(2009).
Histones: annotating chromatin.
|
| |
Annu Rev Genet,
43,
559-599.
|
 |
|
|
|
|
 |
G.Reid,
R.Gallais,
and
R.Métivier
(2009).
Marking time: the dynamic role of chromatin and covalent modification in transcription.
|
| |
Int J Biochem Cell Biol,
41,
155-163.
|
 |
|
|
|
|
 |
J.J.van Vugt,
M.de Jager,
M.Murawska,
A.Brehm,
J.van Noort,
and
C.Logie
(2009).
Multiple aspects of ATP-dependent nucleosome translocation by RSC and Mi-2 are directed by the underlying DNA sequence.
|
| |
PLoS One,
4,
e6345.
|
 |
|
|
|
|
 |
K.S.Sandhu
(2009).
Intrinsic disorder explains diverse nuclear roles of chromatin remodeling proteins.
|
| |
J Mol Recognit,
22,
1-8.
|
 |
|
|
|
|
 |
M.A.Adams-Cioaba,
and
J.Min
(2009).
Structure and function of histone methylation binding proteins.
|
| |
Biochem Cell Biol,
87,
93.
|
 |
|
|
|
|
 |
M.Hirst,
and
M.A.Marra
(2009).
Epigenetics and human disease.
|
| |
Int J Biochem Cell Biol,
41,
136-146.
|
 |
|
|
|
|
 |
M.Lupien,
J.Eeckhoute,
C.A.Meyer,
S.A.Krum,
D.R.Rhodes,
X.S.Liu,
and
M.Brown
(2009).
Coactivator function defines the active estrogen receptor alpha cistrome.
|
| |
Mol Cell Biol,
29,
3413-3423.
|
 |
|
|
|
|
 |
M.Nishiyama,
K.Oshikawa,
Y.Tsukada,
T.Nakagawa,
S.Iemura,
T.Natsume,
Y.Fan,
A.Kikuchi,
A.I.Skoultchi,
and
K.I.Nakayama
(2009).
CHD8 suppresses p53-mediated apoptosis through histone H1 recruitment during early embryogenesis.
|
| |
Nat Cell Biol,
11,
172-182.
|
 |
|
|
|
|
 |
M.P.Schnetz,
C.F.Bartels,
K.Shastri,
D.Balasubramanian,
G.E.Zentner,
R.Balaji,
X.Zhang,
L.Song,
Z.Wang,
T.Laframboise,
G.E.Crawford,
and
P.C.Scacheri
(2009).
Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns.
|
| |
Genome Res,
19,
590-601.
|
 |
|
|
|
|
 |
M.Pinskaya,
A.Nair,
D.Clynes,
A.Morillon,
and
J.Mellor
(2009).
Nucleosome remodeling and transcriptional repression are distinct functions of Isw1 in Saccharomyces cerevisiae.
|
| |
Mol Cell Biol,
29,
2419-2430.
|
 |
|
|
|
|
 |
M.Pinskaya,
S.Gourvennec,
and
A.Morillon
(2009).
H3 lysine 4 di- and tri-methylation deposited by cryptic transcription attenuates promoter activation.
|
| |
EMBO J,
28,
1697-1707.
|
 |
|
|
|
|
 |
M.Rodríguez-Paredes,
M.Ceballos-Chávez,
M.Esteller,
M.García-Domínguez,
and
J.C.Reyes
(2009).
The chromatin remodeling factor CHD8 interacts with elongating RNA polymerase II and controls expression of the cyclin E2 gene.
|
| |
Nucleic Acids Res,
37,
2449-2460.
|
 |
|
|
|
|
 |
M.T.Bedford,
and
S.G.Clarke
(2009).
Protein arginine methylation in mammals: who, what, and why.
|
| |
Mol Cell,
33,
1.
|
 |
|
|
|
|
 |
O.Novikova
(2009).
Chromodomains and LTR retrotransposons in plants.
|
| |
Commun Integr Biol,
2,
158-162.
|
 |
|
|
|
|
 |
P.Akan,
M.Sahlén,
and
P.Deloukas
(2009).
A histone map of human chromosome 20q13.12.
|
| |
PLoS ONE,
4,
e4479.
|
 |
|
|
|
|
 |
P.Nagarajan,
T.M.Onami,
S.Rajagopalan,
S.Kania,
R.Donnell,
and
S.Venkatachalam
(2009).
Role of chromodomain helicase DNA-binding protein 2 in DNA damage response signaling and tumorigenesis.
|
| |
Oncogene,
28,
1053-1062.
|
 |
|
|
|
|
 |
P.V.Peña,
C.A.Musselman,
A.J.Kuo,
O.Gozani,
and
T.G.Kutateladze
(2009).
NMR assignments and histone specificity of the ING2 PHD finger.
|
| |
Magn Reson Chem,
47,
352-358.
|
 |
|
|
|
|
 |
R.J.Sims,
and
D.Reinberg
(2009).
Stem cells: Escaping fates with open states.
|
| |
Nature,
460,
802-803.
|
 |
|
|
|
|
 |
S.Chakravarty,
L.Zeng,
and
M.M.Zhou
(2009).
Structure and site-specific recognition of histone H3 by the PHD finger of human autoimmune regulator.
|
| |
Structure,
17,
670-679.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
X.Zhang,
Y.V.Bernatavichute,
S.Cokus,
M.Pellegrini,
and
S.E.Jacobsen
(2009).
Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana.
|
| |
Genome Biol,
10,
R62.
|
 |
|
|
|
|
 |
Y.Guo,
N.Nady,
C.Qi,
A.Allali-Hassani,
H.Zhu,
P.Pan,
M.A.Adams-Cioaba,
M.F.Amaya,
A.Dong,
M.Vedadi,
M.Schapira,
R.J.Read,
C.H.Arrowsmith,
and
J.Min
(2009).
Methylation-state-specific recognition of histones by the MBT repeat protein L3MBTL2.
|
| |
Nucleic Acids Res,
37,
2204-2210.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Hayashi,
T.Senda,
N.Sano,
and
M.Horikoshi
(2009).
Theoretical framework for the histone modification network: modifications in the unstructured histone tails form a robust scale-free network.
|
| |
Genes Cells,
14,
789-806.
|
 |
|
|
|
|
 |
Y.Liu,
L.Zhang,
and
S.Desiderio
(2009).
Temporal and spatial regulation of V(D)J recombination: interactions of extrinsic factors with the RAG complex.
|
| |
Adv Exp Med Biol,
650,
157-165.
|
 |
|
|
|
|
 |
Z.Lu,
J.Lai,
and
Y.Zhang
(2009).
Importance of charge independent effects in readout of the trimethyllysine mark by HP1 chromodomain.
|
| |
J Am Chem Soc,
131,
14928-14931.
|
 |
|
|
|
|
 |
A.Eberlin,
C.Grauffel,
M.Oulad-Abdelghani,
F.Robert,
M.E.Torres-Padilla,
R.Lambrot,
D.Spehner,
L.Ponce-Perez,
J.M.Würtz,
R.H.Stote,
S.Kimmins,
P.Schultz,
A.Dejaegere,
and
L.Tora
(2008).
Histone H3 tails containing dimethylated lysine and adjacent phosphorylated serine modifications adopt a specific conformation during mitosis and meiosis.
|
| |
Mol Cell Biol,
28,
1739-1754.
|
 |
|
|
|
|
 |
A.Palacios,
I.G.Muñoz,
D.Pantoja-Uceda,
M.J.Marcaida,
D.Torres,
J.M.Martín-García,
I.Luque,
G.Montoya,
and
F.J.Blanco
(2008).
Molecular basis of histone H3K4me3 recognition by ING4.
|
| |
J Biol Chem,
283,
15956-15964.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.Sun,
J.Hong,
P.Zhang,
X.Dong,
X.Shen,
D.Lin,
and
J.Ding
(2008).
Molecular basis of the interaction of Saccharomyces cerevisiae Eaf3 chromo domain with methylated H3K36.
|
| |
J Biol Chem,
283,
36504-36512.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Xu,
G.Cui,
M.V.Botuyan,
and
G.Mer
(2008).
Structural basis for the recognition of methylated histone H3K36 by the Eaf3 subunit of histone deacetylase complex Rpd3S.
|
| |
Structure,
16,
1740-1750.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.G.Kim,
I.Kurth,
F.Lan,
I.Meliciani,
W.Wenzel,
S.H.Eom,
G.B.Kang,
G.Rosenberger,
M.Tekin,
M.Ozata,
D.P.Bick,
R.J.Sherins,
S.L.Walker,
Y.Shi,
J.F.Gusella,
and
L.C.Layman
(2008).
Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome.
|
| |
Am J Hum Genet,
83,
511-519.
|
 |
|
|
|
|
 |
H.van Ingen,
F.M.van Schaik,
H.Wienk,
J.Ballering,
H.Rehmann,
A.C.Dechesne,
J.A.Kruijzer,
R.M.Liskamp,
H.T.Timmers,
and
R.Boelens
(2008).
Structural insight into the recognition of the H3K4me3 mark by the TFIID subunit TAF3.
|
| |
Structure,
16,
1245-1256.
|
 |
|
|
|
|
 |
J.Lee,
J.R.Thompson,
M.V.Botuyan,
and
G.Mer
(2008).
Distinct binding modes specify the recognition of methylated histones H3K4 and H4K20 by JMJD2A-tudor.
|
| |
Nat Struct Mol Biol,
15,
109-111.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.A.Gelato,
and
W.Fischle
(2008).
Role of histone modifications in defining chromatin structure and function.
|
| |
Biol Chem,
389,
353-363.
|
 |
|
|
|
|
 |
L.Zeng,
K.L.Yap,
A.V.Ivanov,
X.Wang,
S.Mujtaba,
O.Plotnikova,
F.J.Rauscher,
and
M.M.Zhou
(2008).
Structural insights into human KAP1 PHD finger-bromodomain and its role in gene silencing.
|
| |
Nat Struct Mol Biol,
15,
626-633.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Murawska,
N.Kunert,
J.van Vugt,
G.Längst,
E.Kremmer,
C.Logie,
and
A.Brehm
(2008).
dCHD3, a novel ATP-dependent chromatin remodeler associated with sites of active transcription.
|
| |
Mol Cell Biol,
28,
2745-2757.
|
 |
|
|
|
|
 |
N.Kalakonda,
W.Fischle,
P.Boccuni,
N.Gurvich,
R.Hoya-Arias,
X.Zhao,
Y.Miyata,
D.Macgrogan,
J.Zhang,
J.K.Sims,
J.C.Rice,
and
S.D.Nimer
(2008).
Histone H4 lysine 20 monomethylation promotes transcriptional repression by L3MBTL1.
|
| |
Oncogene,
27,
4293-4304.
|
 |
|
|
|
|
 |
P.Karagianni,
L.Amazit,
J.Qin,
and
J.Wong
(2008).
ICBP90, a novel methyl K9 H3 binding protein linking protein ubiquitination with heterochromatin formation.
|
| |
Mol Cell Biol,
28,
705-717.
|
 |
|
|
|
|
 |
P.V.Peña,
R.A.Hom,
T.Hung,
H.Lin,
A.J.Kuo,
R.P.Wong,
O.M.Subach,
K.S.Champagne,
R.Zhao,
V.V.Verkhusha,
G.Li,
O.Gozani,
and
T.G.Kutateladze
(2008).
Histone H3K4me3 binding is required for the DNA repair and apoptotic activities of ING1 tumor suppressor.
|
| |
J Mol Biol,
380,
303-312.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Gamsjaeger,
M.K.Swanton,
F.J.Kobus,
E.Lehtomaki,
J.A.Lowry,
A.H.Kwan,
J.M.Matthews,
and
J.P.Mackay
(2008).
Structural and biophysical analysis of the DNA binding properties of myelin transcription factor 1.
|
| |
J Biol Chem,
283,
5158-5167.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Srinivasan,
K.M.Dorighi,
and
J.W.Tamkun
(2008).
Drosophila Kismet regulates histone H3 lysine 27 methylation and early elongation by RNA polymerase II.
|
| |
PLoS Genet,
4,
e1000217.
|
 |
|
|
|
|
 |
T.Suganuma,
S.G.Pattenden,
and
J.L.Workman
(2008).
Diverse functions of WD40 repeat proteins in histone recognition.
|
| |
Genes Dev,
22,
1265-1268.
|
 |
|
|
|
|
 |
X.Gao,
Y.Hou,
H.Ebina,
H.L.Levin,
and
D.F.Voytas
(2008).
Chromodomains direct integration of retrotransposons to heterochromatin.
|
| |
Genome Res,
18,
359-369.
|
 |
|
|
|
|
 |
X.Wu,
and
X.Hua
(2008).
Menin, histone h3 methyltransferases, and regulation of cell proliferation: current knowledge and perspective.
|
| |
Curr Mol Med,
8,
805-815.
|
 |
|
|
|
|
 |
A.Bagchi,
C.Papazoglu,
Y.Wu,
D.Capurso,
M.Brodt,
D.Francis,
M.Bredel,
H.Vogel,
and
A.A.Mills
(2007).
CHD5 is a tumor suppressor at human 1p36.
|
| |
Cell,
128,
459-475.
|
 |
|
|
|
|
 |
A.J.Ruthenburg,
C.D.Allis,
and
J.Wysocka
(2007).
Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark.
|
| |
Mol Cell,
25,
15-30.
|
 |
|
|
|
|
 |
B.Alberter,
and
A.Ensser
(2007).
Histone modification pattern of the T-cellular Herpesvirus saimiri genome in latency.
|
| |
J Virol,
81,
2524-2530.
|
 |
|
|
|
|
 |
C.C.Yuan,
X.Zhao,
L.Florens,
S.K.Swanson,
M.P.Washburn,
and
N.Hernandez
(2007).
CHD8 associates with human Staf and contributes to efficient U6 RNA polymerase III transcription.
|
| |
Mol Cell Biol,
27,
8729-8738.
|
 |
|
|
|
|
 |
C.G.Marfella,
and
A.N.Imbalzano
(2007).
The Chd family of chromatin remodelers.
|
| |
Mutat Res,
618,
30-40.
|
 |
|
|
|
|
 |
D.Biswas,
R.Dutta-Biswas,
and
D.J.Stillman
(2007).
Chd1 and yFACT act in opposition in regulating transcription.
|
| |
Mol Cell Biol,
27,
6279-6287.
|
 |
|
|
|
|
 |
F.Lan,
R.E.Collins,
R.De Cegli,
R.Alpatov,
J.R.Horton,
X.Shi,
O.Gozani,
X.Cheng,
and
Y.Shi
(2007).
Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression.
|
| |
Nature,
448,
718-722.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.G.Wang,
C.D.Allis,
and
P.Chi
(2007).
Chromatin remodeling and cancer, Part II: ATP-dependent chromatin remodeling.
|
| |
Trends Mol Med,
13,
373-380.
|
 |
|
|
|
|
 |
H.K.Kinyamu,
and
T.K.Archer
(2007).
Proteasome activity modulates chromatin modifications and RNA polymerase II phosphorylation to enhance glucocorticoid receptor-mediated transcription.
|
| |
Mol Cell Biol,
27,
4891-4904.
|
 |
|
|
|
|
 |
H.Li,
W.Fischle,
W.Wang,
E.M.Duncan,
L.Liang,
S.Murakami-Ishibe,
C.D.Allis,
and
D.J.Patel
(2007).
Structural basis for lower lysine methylation state-specific readout by MBT repeats of L3MBTL1 and an engineered PHD finger.
|
| |
Mol Cell,
28,
677-691.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.Garcia-Bassets,
Y.S.Kwon,
F.Telese,
G.G.Prefontaine,
K.R.Hutt,
C.S.Cheng,
B.G.Ju,
K.A.Ohgi,
J.Wang,
L.Escoubet-Lozach,
D.W.Rose,
C.K.Glass,
X.D.Fu,
and
M.G.Rosenfeld
(2007).
Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors.
|
| |
Cell,
128,
505-518.
|
 |
|
|
|
|
 |
J.A.Daniel,
and
P.A.Grant
(2007).
Multi-tasking on chromatin with the SAGA coactivator complexes.
|
| |
Mutat Res,
618,
135-148.
|
 |
|
|
|
|
 |
J.A.Hall,
and
P.T.Georgel
(2007).
CHD proteins: a diverse family with strong ties.
|
| |
Biochem Cell Biol,
85,
463-476.
|
 |
|
|
|
|
 |
J.C.Eissenberg,
A.Shilatifard,
N.Dorokhov,
and
D.E.Michener
(2007).
Cdk9 is an essential kinase in Drosophila that is required for heat shock gene expression, histone methylation and elongation factor recruitment.
|
| |
Mol Genet Genomics,
277,
101-114.
|
 |
|
|
|
|
 |
J.C.Eissenberg,
M.G.Lee,
J.Schneider,
A.Ilvarsonn,
R.Shiekhattar,
and
A.Shilatifard
(2007).
The trithorax-group gene in Drosophila little imaginal discs encodes a trimethylated histone H3 Lys4 demethylase.
|
| |
Nat Struct Mol Biol,
14,
344-346.
|
 |
|
|
|
|
 |
J.F.Flanagan,
B.J.Blus,
D.Kim,
K.L.Clines,
F.Rastinejad,
and
S.Khorasanizadeh
(2007).
Molecular implications of evolutionary differences in CHD double chromodomains.
|
| |
J Mol Biol,
369,
334-342.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Min,
A.Allali-Hassani,
N.Nady,
C.Qi,
H.Ouyang,
Y.Liu,
F.MacKenzie,
M.Vedadi,
and
C.H.Arrowsmith
(2007).
L3MBTL1 recognition of mono- and dimethylated histones.
|
| |
Nat Struct Mol Biol,
14,
1229-1230.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Corsini,
and
M.Sattler
(2007).
Tudor hooks up with DNA repair.
|
| |
Nat Struct Mol Biol,
14,
98-99.
|
 |
|
|
|
|
 |
M.A.Soliman,
and
K.Riabowol
(2007).
After a decade of study-ING, a PHD for a versatile family of proteins.
|
| |
Trends Biochem Sci,
32,
509-519.
|
 |
|
|
|
|
 |
M.H.Warner,
K.L.Roinick,
and
K.M.Arndt
(2007).
Rtf1 is a multifunctional component of the Paf1 complex that regulates gene expression by directing cotranscriptional histone modification.
|
| |
Mol Cell Biol,
27,
6103-6115.
|
 |
|
|
|
|
 |
M.Opel,
D.Lando,
C.Bonilla,
S.C.Trewick,
A.Boukaba,
J.Walfridsson,
J.Cauwood,
P.J.Werler,
A.M.Carr,
T.Kouzarides,
N.V.Murzina,
R.C.Allshire,
K.Ekwall,
and
E.D.Laue
(2007).
Genome-wide studies of histone demethylation catalysed by the fission yeast homologues of mammalian LSD1.
|
| |
PLoS ONE,
2,
e386.
|
 |
|
|
|
|
 |
P.Stavropoulos,
and
A.Hoelz
(2007).
Lysine-specific demethylase 1 as a potential therapeutic target.
|
| |
Expert Opin Ther Targets,
11,
809-820.
|
 |
|
|
|
|
 |
P.Trojer,
G.Li,
R.J.Sims,
A.Vaquero,
N.Kalakonda,
P.Boccuni,
D.Lee,
H.Erdjument-Bromage,
P.Tempst,
S.D.Nimer,
Y.H.Wang,
and
D.Reinberg
(2007).
L3MBTL1, a histone-methylation-dependent chromatin lock.
|
| |
Cell,
129,
915-928.
|
 |
|
|
|
|
 |
R.J.Klose,
and
Y.Zhang
(2007).
Histone H3 Arg2 methylation provides alternative directions for COMPASS.
|
| |
Nat Struct Mol Biol,
14,
1058-1060.
|
 |
|
|
|
|
 |
R.J.Sims,
S.Millhouse,
C.F.Chen,
B.A.Lewis,
H.Erdjument-Bromage,
P.Tempst,
J.L.Manley,
and
D.Reinberg
(2007).
Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing.
|
| |
Mol Cell,
28,
665-676.
|
 |
|
|
|
|
 |
R.M.Hughes,
K.R.Wiggins,
S.Khorasanizadeh,
and
M.L.Waters
(2007).
Recognition of trimethyllysine by a chromodomain is not driven by the hydrophobic effect.
|
| |
Proc Natl Acad Sci U S A,
104,
11184-11188.
|
 |
|
|
|
|
 |
S.D.Taverna,
H.Li,
A.J.Ruthenburg,
C.D.Allis,
and
D.J.Patel
(2007).
How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers.
|
| |
Nat Struct Mol Biol,
14,
1025-1040.
|
 |
|
|
|
|
 |
S.K.Williams,
and
J.K.Tyler
(2007).
Transcriptional regulation by chromatin disassembly and reassembly.
|
| |
Curr Opin Genet Dev,
17,
88-93.
|
 |
|
|
|
|
 |
S.Lall
(2007).
Primers on chromatin.
|
| |
Nat Struct Mol Biol,
14,
1110-1115.
|
 |
|
|
|
|
 |
S.Mendjan,
and
A.Akhtar
(2007).
The right dose for every sex.
|
| |
Chromosoma,
116,
95.
|
 |
|
|
|
|
 |
S.P.Baker,
and
P.A.Grant
(2007).
The SAGA continues: expanding the cellular role of a transcriptional co-activator complex.
|
| |
Oncogene,
26,
5329-5340.
|
 |
|
|
|
|
 |
S.Ramón-Maiques,
A.J.Kuo,
D.Carney,
A.G.Matthews,
M.A.Oettinger,
O.Gozani,
and
W.Yang
(2007).
The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2.
|
| |
Proc Natl Acad Sci U S A,
104,
18993-18998.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Pawson
(2007).
Dynamic control of signaling by modular adaptor proteins.
|
| |
Curr Opin Cell Biol,
19,
112-116.
|
 |
|
|
|
|
 |
T.Xiao,
Y.Shibata,
B.Rao,
R.N.Laribee,
R.O'Rourke,
M.J.Buck,
J.F.Greenblatt,
N.J.Krogan,
J.D.Lieb,
and
B.D.Strahl
(2007).
The RNA polymerase II kinase Ctk1 regulates positioning of a 5' histone methylation boundary along genes.
|
| |
Mol Cell Biol,
27,
721-731.
|
 |
|
|
|
|
 |
X.Cheng,
and
X.Zhang
(2007).
Structural dynamics of protein lysine methylation and demethylation.
|
| |
Mutat Res,
618,
102-115.
|
 |
|
|
|
|
 |
Z.Chen,
J.Zang,
J.Kappler,
X.Hong,
F.Crawford,
Q.Wang,
F.Lan,
C.Jiang,
J.Whetstine,
S.Dai,
K.Hansen,
Y.Shi,
and
G.Zhang
(2007).
Structural basis of the recognition of a methylated histone tail by JMJD2A.
|
| |
Proc Natl Acad Sci U S A,
104,
10818-10823.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.J.Ruthenburg,
W.Wang,
D.M.Graybosch,
H.Li,
C.D.Allis,
D.J.Patel,
and
G.L.Verdine
(2006).
Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex.
|
| |
Nat Struct Mol Biol,
13,
704-712.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Schuetz,
A.Allali-Hassani,
F.Martín,
P.Loppnau,
M.Vedadi,
A.Bochkarev,
A.N.Plotnikov,
C.H.Arrowsmith,
and
J.Min
(2006).
Structural basis for molecular recognition and presentation of histone H3 by WDR5.
|
| |
EMBO J,
25,
4245-4252.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.G.Marfella,
Y.Ohkawa,
A.H.Coles,
D.S.Garlick,
S.N.Jones,
and
A.N.Imbalzano
(2006).
Mutation of the SNF2 family member Chd2 affects mouse development and survival.
|
| |
J Cell Physiol,
209,
162-171.
|
 |
|
|
|
|
 |
D.Reinberg,
and
R.J.Sims
(2006).
de FACTo nucleosome dynamics.
|
| |
J Biol Chem,
281,
23297-23301.
|
 |
|
|
|
|
 |
G.P.Vicent,
C.Ballaré,
R.Zaurin,
P.Saragüeta,
and
M.Beato
(2006).
Chromatin remodeling and control of cell proliferation by progestins via cross talk of progesterone receptor with the estrogen receptors and kinase signaling pathways.
|
| |
Ann N Y Acad Sci,
1089,
59-72.
|
 |
|
|
|
|
 |
H.Li,
S.Ilin,
W.Wang,
E.M.Duncan,
J.Wysocka,
C.D.Allis,
and
D.J.Patel
(2006).
Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF.
|
| |
Nature,
442,
91-95.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.L.de la Serna,
Y.Ohkawa,
and
A.N.Imbalzano
(2006).
Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers.
|
| |
Nat Rev Genet,
7,
461-473.
|
 |
|
|
|
|
 |
J.C.Eissenberg,
and
S.C.Elgin
(2006).
Marking time.
|
| |
Nat Genet,
38,
276-277.
|
 |
|
|
|
|
 |
J.Mellor
(2006).
It takes a PHD to read the histone code.
|
| |
Cell,
126,
22-24.
|
 |
|
|
|
|
 |
K.Bouazoune,
and
A.Brehm
(2006).
ATP-dependent chromatin remodeling complexes in Drosophila.
|
| |
Chromosome Res,
14,
433-449.
|
 |
|
|
|
|
 |
M.S.Cosgrove
(2006).
PHinDing a new histone "effector" domain.
|
| |
Structure,
14,
1096-1098.
|
 |
|
|
|
|
 |
M.V.Botuyan,
J.Lee,
I.M.Ward,
J.E.Kim,
J.R.Thompson,
J.Chen,
and
G.Mer
(2006).
Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair.
|
| |
Cell,
127,
1361-1373.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.B.Becker
(2006).
Gene regulation: a finger on the mark.
|
| |
Nature,
442,
31-32.
|
 |
|
|
|
|
 |
P.V.Peña,
F.Davrazou,
X.Shi,
K.L.Walter,
V.V.Verkhusha,
O.Gozani,
R.Zhao,
and
T.G.Kutateladze
(2006).
Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2.
|
| |
Nature,
442,
100-103.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Zhang,
J.Du,
B.Sun,
X.Dong,
G.Xu,
J.Zhou,
Q.Huang,
Q.Liu,
Q.Hao,
and
J.Ding
(2006).
Structure of human MRG15 chromo domain and its binding to Lys36-methylated histone H3.
|
| |
Nucleic Acids Res,
34,
6621-6628.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.J.Klose,
K.Yamane,
Y.Bae,
D.Zhang,
H.Erdjument-Bromage,
P.Tempst,
J.Wong,
and
Y.Zhang
(2006).
The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36.
|
| |
Nature,
442,
312-316.
|
 |
|
|
|
|
 |
R.Pavri,
B.Zhu,
G.Li,
P.Trojer,
S.Mandal,
A.Shilatifard,
and
D.Reinberg
(2006).
Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II.
|
| |
Cell,
125,
703-717.
|
 |
|
|
|
|
 |
S.Lee,
D.K.Lee,
Y.Dou,
J.Lee,
B.Lee,
E.Kwak,
Y.Y.Kong,
S.K.Lee,
R.G.Roeder,
and
J.W.Lee
(2006).
Coactivator as a target gene specificity determinant for histone H3 lysine 4 methyltransferases.
|
| |
Proc Natl Acad Sci U S A,
103,
15392-15397.
|
 |
|
|
|
|
 |
T.S.Walter,
C.Meier,
R.Assenberg,
K.F.Au,
J.Ren,
A.Verma,
J.E.Nettleship,
R.J.Owens,
D.I.Stuart,
and
J.M.Grimes
(2006).
Lysine methylation as a routine rescue strategy for protein crystallization.
|
| |
Structure,
14,
1617-1622.
|
 |
|
|
|
|
 |
Y.Chu,
A.Sutton,
R.Sternglanz,
and
G.Prelich
(2006).
The BUR1 cyclin-dependent protein kinase is required for the normal pattern of histone methylation by SET2.
|
| |
Mol Cell Biol,
26,
3029-3038.
|
 |
|
|
|
|
 |
Y.Dou,
T.A.Milne,
A.J.Ruthenburg,
S.Lee,
J.W.Lee,
G.L.Verdine,
C.D.Allis,
and
R.G.Roeder
(2006).
Regulation of MLL1 H3K4 methyltransferase activity by its core components.
|
| |
Nat Struct Mol Biol,
13,
713-719.
|
 |
|
|
|
|
 |
Y.Ho,
F.Elefant,
S.A.Liebhaber,
and
N.E.Cooke
(2006).
Locus control region transcription plays an active role in long-range gene activation.
|
| |
Mol Cell,
23,
365-375.
|
 |
|
|
|
|
 |
Y.Huang,
J.Fang,
M.T.Bedford,
Y.Zhang,
and
R.M.Xu
(2006).
Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A.
|
| |
Science,
312,
748-751.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Zhang
(2006).
It takes a PHD to interpret histone methylation.
|
| |
Nat Struct Mol Biol,
13,
572-574.
|
 |
|
|
|
|
 |
Z.Han,
L.Guo,
H.Wang,
Y.Shen,
X.W.Deng,
and
J.Chai
(2006).
Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5.
|
| |
Mol Cell,
22,
137-144.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.C.Eissenberg,
and
S.C.Elgin
(2005).
Molecular biology: antagonizing the neighbours.
|
| |
Nature,
438,
1090-1091.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |