spacer
spacer

PDBsum entry 1vzi

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Oxidoreductase PDB id
1vzi

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
125 a.a. *
Ligands
_CL ×4
Metals
FE2 ×4
_CA ×2
Waters ×518
* Residue conservation analysis
PDB id:
1vzi
Name: Oxidoreductase
Title: Structure of superoxide reductase bound to ferrocyanide and active site expansion upon x-ray induced photoreduction
Structure: Desulfoferrodoxin. Chain: a, b. Synonym: superoxide reductase, dfx, sor. Engineered: yes. Mutation: yes
Source: Desulfovibrio baarsii. Organism_taxid: 453230. Expressed in: escherichia coli dh5[alpha]. Expression_system_taxid: 668369.
Biol. unit: Dimer (from PDB file)
Resolution:
1.15Å     R-factor:   0.143    
Authors: V.Adam,A.Royant,V.Niviere,F.P.Molina-Heredia,D.Bourgeois
Key ref:
V.Adam et al. (2004). Structure of superoxide reductase bound to ferrocyanide and active site expansion upon X-ray-induced photo-reduction. Structure, 12, 1729-1740. PubMed id: 15341736 DOI: 10.1016/j.str.2004.07.013
Date:
19-May-04     Release date:   27-Aug-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q46495  (DFX_DESB2) -  Desulfoferrodoxin from Desulfarculus baarsii (strain ATCC 33931 / DSM 2075 / LMG 7858 / VKM B-1802 / 2st14)
Seq:
Struc:
126 a.a.
125 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.1.15.1.2  - superoxide reductase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: reduced [rubredoxin] + superoxide + 2 H+ = oxidized [rubredoxin] + H2O2
reduced [rubredoxin]
+ superoxide
+ 2 × H(+)
= oxidized [rubredoxin]
+ H2O2
      Cofactor: Fe cation
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Key reference    
 
 
DOI no: 10.1016/j.str.2004.07.013 Structure 12:1729-1740 (2004)
PubMed id: 15341736  
 
 
Structure of superoxide reductase bound to ferrocyanide and active site expansion upon X-ray-induced photo-reduction.
V.Adam, A.Royant, V.Nivière, F.P.Molina-Heredia, D.Bourgeois.
 
  ABSTRACT  
 
Some sulfate-reducing and microaerophilic bacteria rely on the enzyme superoxide reductase (SOR) to eliminate the toxic superoxide anion radical (O2*-). SOR catalyses the one-electron reduction of O2*- to hydrogen peroxide at a nonheme ferrous iron center. The structures of Desulfoarculus baarsii SOR (mutant E47A) alone and in complex with ferrocyanide were solved to 1.15 and 1.7 A resolution, respectively. The latter structure, the first ever reported of a complex between ferrocyanide and a protein, reveals that this organo-metallic compound entirely plugs the SOR active site, coordinating the active iron through a bent cyano bridge. The subtle structural differences between the mixed-valence and the fully reduced SOR-ferrocyanide adducts were investigated by taking advantage of the photoelectrons induced by X-rays. The results reveal that photo-reduction from Fe(III) to Fe(II) of the iron center, a very rapid process under a powerful synchrotron beam, induces an expansion of the SOR active site.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. Details of the SOR Active SiteFinal 2F[o] - F[c] electron density map, contoured at 1.0 s, superimposed onto a ball-and-stick representation of the active site. Center II iron and chloride are represented as dark green and lime green spheres, respectively. Iron coordination is shown by purple dotted lines. The chloride anion binds tightly only in monomer A, where Lys48 is highly ordered. In monomer B, a crystalline contact partially disorders Lys48, thus disrupting the water network at this location and leading to alternate positions for the chloride ion, as suggested by an elongated electron density (data not shown). Figures 2, 5B, 5C, 6, and 7 were prepared with Bobscript (Esnouf, 1999) and Raster 3D (Merritt and Bacon, 1997).
 
  The above figure is reprinted by permission from Cell Press: Structure (2004, 12, 1729-1740) copyright 2004.  
  Figure was selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22338689 M.Schmidt, V.Šrajer, N.Purwar, and S.Tripathi (2012).
The kinetic dose limit in room-temperature time-resolved macromolecular crystallography.
  J Synchrotron Radiat, 19, 264-273.  
21525643 A.M.Orville, R.Buono, M.Cowan, A.Héroux, G.Shea-McCarthy, D.K.Schneider, J.M.Skinner, M.J.Skinner, D.Stoner-Ma, and R.M.Sweet (2011).
Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C.
  J Synchrotron Radiat, 18, 358-366.  
21138528 C.Krätzer, C.Welte, K.Dörner, T.Friedrich, and U.Deppenmeier (2011).
Methanoferrodoxin represents a new class of superoxide reductase containing an iron-sulfur cluster.
  FEBS J, 278, 442-451.  
21525640 D.H.Juers, and M.Weik (2011).
Similarities and differences in radiation damage at 100 K versus 160 K in a crystal of thermolysin.
  J Synchrotron Radiat, 18, 329-337.  
20382986 E.F.Garman (2010).
Radiation damage in macromolecular crystallography: what is it and why should we care?
  Acta Crystallogr D Biol Crystallogr, 66, 339-351.  
20000711 F.Namuswe, T.Hayashi, Y.Jiang, G.D.Kasper, A.A.Sarjeant, P.Moënne-Loccoz, and D.P.Goldberg (2010).
Influence of the nitrogen donors on nonheme iron models of superoxide reductase: high-spin Fe(III)-OOR complexes.
  J Am Chem Soc, 132, 157-167.  
20382997 M.Weik, and J.P.Colletier (2010).
Temperature-dependent macromolecular X-ray crystallography.
  Acta Crystallogr D Biol Crystallogr, 66, 437-446.  
21070940 P.Carpentier, A.Royant, M.Weik, and D.Bourgeois (2010).
Raman-assisted crystallography suggests a mechanism of X-ray-induced disulfide radical formation and reparation.
  Structure, 18, 1410-1419.
PDB codes: 2xbr 2xbs
20944241 T.Petrova, S.Ginell, A.Mitschler, Y.Kim, V.Y.Lunin, G.Joachimiak, A.Cousido-Siah, I.Hazemann, A.Podjarny, K.Lazarski, and A.Joachimiak (2010).
X-ray-induced deterioration of disulfide bridges at atomic resolution.
  Acta Crystallogr D Biol Crystallogr, 66, 1075-1091.
PDB codes: 3mnb 3mnc 3mns 3mnx 3mo3 3mo6 3mo9 3moc 3mty 3mu0 3mu1 3mu4 3mu5 3mu8 3odd 3odf
19240329 R.L.Owen, A.R.Pearson, A.Meents, P.Boehler, V.Thominet, and C.Schulze-Briese (2009).
A new on-axis multimode spectrometer for the macromolecular crystallography beamlines of the Swiss Light Source.
  J Synchrotron Radiat, 16, 173-182.  
19598234 S.W.Fan, R.A.George, N.L.Haworth, L.L.Feng, J.Y.Liu, and M.A.Wouters (2009).
Conformational changes in redox pairs of protein structures.
  Protein Sci, 18, 1745-1765.  
18837497 F.Namuswe, G.D.Kasper, A.A.Sarjeant, T.Hayashi, C.M.Krest, M.T.Green, P.Moënne-Loccoz, and D.P.Goldberg (2008).
Rational tuning of the thiolate donor in model complexes of superoxide reductase: direct evidence for a trans influence in Fe(III)-OOR complexes.
  J Am Chem Soc, 130, 14189-14200.  
18719950 I.Moura, S.R.Pauleta, and J.J.Moura (2008).
Enzymatic activity mastered by altering metal coordination spheres.
  J Biol Inorg Chem, 13, 1185-1195.  
17968598 J.V.Rodrigues, B.L.Victor, H.Huber, L.M.Saraiva, C.M.Soares, D.E.Cabelli, and M.Teixeira (2008).
Superoxide reduction by Nanoarchaeum equitans neelaredoxin, an enzyme lacking the highly conserved glutamate iron ligand.
  J Biol Inorg Chem, 13, 219-228.  
17545670 C.Mathé, C.O.Weill, T.A.Mattioli, C.Berthomieu, C.Houée-Levin, E.Tremey, and V.Nivière (2007).
Assessing the role of the active-site cysteine ligand in the superoxide reductase from Desulfoarculus baarsii.
  J Biol Chem, 282, 22207-22216.  
17446401 G.Katona, P.Carpentier, V.Nivière, P.Amara, V.Adam, J.Ohana, N.Tsanov, and D.Bourgeois (2007).
Raman-assisted crystallography reveals end-on peroxide intermediates in a nonheme iron enzyme.
  Science, 316, 449-453.
PDB codes: 2ji1 2ji2 2ji3
17066300 J.V.Rodrigues, L.M.Saraiva, I.A.Abreu, M.Teixeira, and D.E.Cabelli (2007).
Superoxide reduction by Archaeoglobus fulgidus desulfoferrodoxin: comparison with neelaredoxin.
  J Biol Inorg Chem, 12, 248-256.  
17704563 M.C.Corbett, M.J.Latimer, T.L.Poulos, I.F.Sevrioukova, K.O.Hodgson, and B.Hedman (2007).
Photoreduction of the active site of the metalloprotein putidaredoxin by synchrotron radiation.
  Acta Crystallogr D Biol Crystallogr, 63, 951-960.  
16421442 H.K.Leiros, J.Timmins, R.B.Ravelli, and S.M.McSweeney (2006).
Is radiation damage dependent on the dose rate used during macromolecular crystallography data collection?
  Acta Crystallogr D Biol Crystallogr, 62, 125-132.
PDB codes: 2bxy 2bxz 2by0 2by1 2by2 2by3 2by5 2by6 2by7 2by8 2by9 2bya
16791639 T.Santos-Silva, J.Trincão, A.L.Carvalho, C.Bonifácio, F.Auchère, P.Raleiras, I.Moura, J.J.Moura, and M.J.Romão (2006).
The first crystal structure of class III superoxide reductase from Treponema pallidum.
  J Biol Inorg Chem, 11, 548-558.
PDB code: 1y07
15883191 A.P.Dubnovitsky, R.B.Ravelli, A.N.Popov, and A.C.Papageorgiou (2005).
Strain relief at the active site of phosphoserine aminotransferase induced by radiation damage.
  Protein Sci, 14, 1498-1507.
PDB codes: 2bhx 2bi1 2bi2 2bi3 2bi5 2bi9 2bia 2bie 2big
16129597 D.Bourgeois, and A.Royant (2005).
Advances in kinetic protein crystallography.
  Curr Opin Struct Biol, 15, 538-547.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer