spacer
spacer

PDBsum entry 1vyh

Go to PDB code: 
protein Protein-protein interface(s) links
Hydrolase PDB id
1vyh

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
(+ 4 more) 218 a.a. *
(+ 4 more) 310 a.a. *
* Residue conservation analysis
PDB id:
1vyh
Name: Hydrolase
Title: Paf-ah holoenzyme: lis1/alfa2
Structure: Platelet-activating factor acetylhydrolase ib beta subunit. Chain: a, b, e, f, i, j, m, n, q, r. Synonym: platelet-activating factor acetylhydrolase, paf acetylhydrolase 30 kda subunit, paf-ah 30 kda subunit, paf-ah beta subunit, pafah beta subunit. Engineered: yes. Platelet-activating factor acetylhydrolase ib alpha subunit. Chain: c, d, g, h, k, l, o, p, s, t.
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 469008. Mus musculus. Mouse. Organism_taxid: 10090. Organ: brain.
Biol. unit: Tetramer (from PDB file)
Resolution:
3.40Å     R-factor:   0.265     R-free:   0.307
Authors: C.Tarricone,F.Perrina,S.Monzani,L.Massimiliano,S.Knapp,L.-H.Tsai, Z.S.Derewenda,A.Musacchio
Key ref:
C.Tarricone et al. (2004). Coupling PAF signaling to dynein regulation: structure of LIS1 in complex with PAF-acetylhydrolase. Neuron, 44, 809-821. PubMed id: 15572112 DOI: 10.1016/j.neuron.2004.11.019
Date:
30-Apr-04     Release date:   26-May-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P68402  (PA1B2_HUMAN) -  Platelet-activating factor acetylhydrolase IB subunit alpha2 from Homo sapiens
Seq:
Struc:
229 a.a.
218 a.a.
Protein chains
Pfam   ArchSchema ?
P63005  (LIS1_MOUSE) -  Platelet-activating factor acetylhydrolase IB subunit beta from Mus musculus
Seq:
Struc:
410 a.a.
310 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 1: Chains A, B, E, F, I, J, M, N, Q, R: E.C.3.1.1.47  - 1-alkyl-2-acetylglycerophosphocholine esterase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine + H2O = a 1-O-alkyl- sn-glycero-3-phosphocholine + acetate + H+
1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine
+ H2O
= 1-O-alkyl- sn-glycero-3-phosphocholine
+ acetate
+ H(+)
   Enzyme class 2: Chains C, D, G, H, K, L, O, P, S, T: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Key reference    
 
 
DOI no: 10.1016/j.neuron.2004.11.019 Neuron 44:809-821 (2004)
PubMed id: 15572112  
 
 
Coupling PAF signaling to dynein regulation: structure of LIS1 in complex with PAF-acetylhydrolase.
C.Tarricone, F.Perrina, S.Monzani, L.Massimiliano, M.H.Kim, Z.S.Derewenda, S.Knapp, L.H.Tsai, A.Musacchio.
 
  ABSTRACT  
 
Mutations in the LIS1 gene cause lissencephaly, a human neuronal migration disorder. LIS1 binds dynein and the dynein-associated proteins Nde1 (formerly known as NudE), Ndel1 (formerly known as NUDEL), and CLIP-170, as well as the catalytic alpha dimers of brain cytosolic platelet activating factor acetylhydrolase (PAF-AH). The mechanism coupling the two diverse regulatory pathways remains unknown. We report the structure of LIS1 in complex with the alpha2/alpha2 PAF-AH homodimer. One LIS1 homodimer binds symmetrically to one alpha2/alpha2 homodimer via the highly conserved top faces of the LIS1 beta propellers. The same surface of LIS1 contains sites of mutations causing lissencephaly and overlaps with a putative dynein binding surface. Ndel1 competes with the alpha2/alpha2 homodimer for LIS1, but the interaction is complex and requires both the N- and C-terminal domains of LIS1. Our data suggest that the LIS1 molecule undergoes major conformational rearrangement when switching from a complex with the acetylhydrolase to the one with Ndel1.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Comparison of LIS1/PAF-AH and G[αβγ](A) Ribbon diagram of the G[αβγ] trimer based on PDB coordinates 1GP2 (Wall et al., 1995). G[α] is yellow and is subdivided in the Ras-like domain (light yellow) and in the helical domain (dark yellow). G[β] is cyan and G[γ] is green. The G[α]-G[βγ] interaction involves the N-terminal helix and the switch I and switch II regions of G[α] (red). The G[β] subunit uses the top surface of the β propeller, where the outer βD strand connects to the inner βA strand of the next blade to bind G[α]. The top surface is preferentially used for ligand recognition by propeller-like structures (Smith et al., 1999).(B) A LIS1/PAF-AH hemitetramer is shown. The α[2] subunit has the same orientation of the G[α] subunit shown in (A). The orientation of the β subunits is unrelated, although also in this case the top surface of the propeller is used for binding.
Figure 7.
Figure 7. A Model for LIS1/Ndel1 and Its Interacton with DyneinTo reconcile the two-fold symmetry of LIS1 with that of Ndel1, we postulated that Ndel1 forms an antiparallel coiled coil. The α4 helices of N-LIS1 interact with Ndel1, and so does the β propeller region. The two β propellers of LIS1 bind dynein at distinct sites in the first AAA module and in the stem (Tai et al., 2002). Because the dynein heavy chain that contributes a sizable fraction of the stem is a dimer (Holzbaur and Vallee, 1994), the overall assembly may be duplicated (represented by the gray, dashed drawing).
 
  The above figures are reprinted by permission from Cell Press: Neuron (2004, 44, 809-821) copyright 2004.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21282465 E.Zyłkiewicz, M.Kijańska, W.C.Choi, U.Derewenda, Z.S.Derewenda, and P.T.Stukenberg (2011).
The N-terminal coiled-coil of Ndel1 is a regulated scaffold that recruits LIS1 to dynein.
  J Cell Biol, 192, 433-445.  
  21294277 S.M.Markus, K.M.Plevock, B.J.St Germain, J.J.Punch, C.W.Meaden, and W.L.Lee (2011).
Quantitative analysis of Pac1/LIS1-mediated dynein targeting: Implications for regulation of dynein activity in budding yeast.
  Cytoskeleton (Hoboken), 68, 157-174.  
20624900 M.E.Bechler, A.M.Doody, E.Racoosin, L.Lin, K.H.Lee, and W.J.Brown (2010).
The phospholipase complex PAFAH Ib regulates the functional organization of the Golgi complex.
  J Cell Biol, 190, 45-53.  
20403325 R.J.McKenney, M.Vershinin, A.Kunwar, R.B.Vallee, and S.P.Gross (2010).
LIS1 and NudE induce a persistent dynein force-producing state.
  Cell, 141, 304-314.  
20133715 Y.Yang, X.Yan, Y.Cai, Y.Lu, J.Si, and T.Zhou (2010).
NudC-like protein 2 regulates the LIS1/dynein pathway by stabilizing LIS1 with Hsp90.
  Proc Natl Acad Sci U S A, 107, 3499-3504.  
19272360 G.Zhang, A.H.Assadi, M.Roceri, G.D.Clark, and G.D'Arcangelo (2009).
Differential interaction of the Pafah1b alpha subunits with the Reelin transducer Dab1.
  Brain Res, 1267, 1-8.  
19935668 J.R.Kardon, and R.D.Vale (2009).
Regulators of the cytoplasmic dynein motor.
  Nat Rev Mol Cell Biol, 10, 854-865.  
19524440 R.B.Vallee, G.E.Seale, and J.W.Tsai (2009).
Emerging roles for myosin II and cytoplasmic dynein in migrating neurons and growth cones.
  Trends Cell Biol, 19, 347-355.  
19271773 T.M.Epstein, U.Samanta, S.D.Kirby, D.M.Cerasoli, and B.J.Bahnson (2009).
Crystal structures of brain group-VIII phospholipase A2 in nonaged complexes with the organophosphorus nerve agents soman and sarin.
  Biochemistry, 48, 3425-3435.
PDB codes: 3dt6 3dt8 3dt9
18322465 A.Akhmanova, and M.O.Steinmetz (2008).
Tracking the ends: a dynamic protein network controls the fate of microtubule tips.
  Nat Rev Mol Cell Biol, 9, 309-322.  
18715992 H.Ullah, E.L.Scappini, A.F.Moon, L.V.Williams, D.L.Armstrong, and L.C.Pedersen (2008).
Structure of a signal transduction regulator, RACK1, from Arabidopsis thaliana.
  Protein Sci, 17, 1771-1780.
PDB code: 3dm0
18390647 K.Helmstaedt, K.Laubinger, K.Vosskuhl, O.Bayram, S.Busch, M.Hoppert, O.Valerius, S.Seiler, and G.H.Braus (2008).
The nuclear migration protein NUDF/LIS1 forms a complex with NUDC and BNFA at spindle pole bodies.
  Eukaryot Cell, 7, 1041-1052.  
18809722 S.Hebbar, M.T.Mesngon, A.M.Guillotte, B.Desai, R.Ayala, and D.S.Smith (2008).
Lis1 and Ndel1 influence the timing of nuclear envelope breakdown in neural stem cells.
  J Cell Biol, 182, 1063-1071.  
18303022 S.Y.Shim, B.A.Samuels, J.Wang, G.Neumayer, C.Belzil, R.Ayala, Y.Shi, Y.Shi, L.H.Tsai, and M.D.Nguyen (2008).
Ndel1 controls the dynein-mediated transport of vimentin during neurite outgrowth.
  J Biol Chem, 283, 12232-12240.  
18784071 U.Samanta, and B.J.Bahnson (2008).
Crystal Structure of Human Plasma Platelet-activating Factor Acetylhydrolase: STRUCTURAL IMPLICATION TO LIPOPROTEIN BINDING AND CATALYSIS.
  J Biol Chem, 283, 31617-31624.
PDB codes: 3d59 3d5e
17903175 N.Yamaguchi, H.Koizumi, J.Aoki, Y.Natori, K.Nishikawa, Y.Natori, Y.Takanezawa, and H.Arai (2007).
Type I platelet-activating factor acetylhydrolase catalytic subunits over-expression induces pleiomorphic nuclei and centrosome amplification.
  Genes Cells, 12, 1153-1161.  
16449660 A.Pramatarova, P.G.Ochalski, C.H.Lee, and B.W.Howell (2006).
Mouse disabled 1 regulates the nuclear position of neurons in a Drosophila eye model.
  Mol Cell Biol, 26, 1510-1517.  
16946699 A.Schuetz, A.Allali-Hassani, F.Martín, P.Loppnau, M.Vedadi, A.Bochkarev, A.N.Plotnikov, C.H.Arrowsmith, and J.Min (2006).
Structural basis for molecular recognition and presentation of histone H3 by WDR5.
  EMBO J, 25, 4245-4252.
PDB codes: 2gnq 2h9l 2h9m 2h9n 2h9o 2h9p 2o9k
16538086 P.Gressens (2006).
Pathogenesis of migration disorders.
  Curr Opin Neurol, 19, 135-140.  
16299498 A.Kamiya, K.Kubo, T.Tomoda, M.Takaki, R.Youn, Y.Ozeki, N.Sawamura, U.Park, C.Kudo, M.Okawa, C.A.Ross, M.E.Hatten, K.Nakajima, and A.Sawa (2005).
A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development.
  Nat Cell Biol, 7, 1167-1178.  
15965467 J.Li, W.L.Lee, and J.A.Cooper (2005).
NudEL targets dynein to microtubule ends through LIS1.
  Nat Cell Biol, 7, 686-690.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer