 |
PDBsum entry 1vrw
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Oxidoreductase
|
PDB id
|
|
|
|
1vrw
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Oxidoreductase
|
 |
|
Title:
|
 |
Crystal structure analysis of plasmodium falciparum enoyl-acyl- carrier-protein reductase with nadh
|
|
Structure:
|
 |
Enoyl-acyl carrier reductase. Chain: a, b. Synonym: enoyl-acp-reductase. Engineered: yes
|
|
Source:
|
 |
Plasmodium falciparum. Malaria parasite p. Falciparum. Organism_taxid: 5833. Expressed in: escherichia coli. Expression_system_taxid: 562.
|
|
Biol. unit:
|
 |
Tetramer (from
)
|
|
Resolution:
|
 |
|
2.40Å
|
R-factor:
|
0.176
|
R-free:
|
0.224
|
|
|
Authors:
|
 |
R.Perozzo,M.Kuo,A.S.Sidhu,J.T.Valiyaveettil,R.Bittman,W.R.Jacobs Jr., D.A.Fidock,J.C.Sacchettini
|
Key ref:
|
 |
R.Perozzo
et al.
(2002).
Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase.
J Biol Chem,
277,
13106-13114.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
30-Jun-05
|
Release date:
|
05-Jul-05
|
|
|
Supersedes:
|
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
Q9BH77
(Q9BH77_PLAFA) -
Enoyl-ACP reductase from Plasmodium falciparum
|
|
|
|
Seq: Struc:
|
 |
 |
 |
432 a.a.
289 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
PfamA domain |
 |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.1.3.1.9
- enoyl-[acyl-carrier-protein] reductase (NADH).
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
a 2,3-saturated acyl-[ACP] + NAD+ = a (2E)-enoyl-[ACP] + NADH + H+
|
 |
 |
 |
 |
 |
2,3-saturated acyl-[ACP]
|
+
|
NAD(+)
Bound ligand (Het Group name = )
corresponds exactly
|
=
|
(2E)-enoyl-[ACP]
|
+
|
NADH
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
J Biol Chem
277:13106-13114
(2002)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase.
|
|
R.Perozzo,
M.Kuo,
A.S.Sidhu,
J.T.Valiyaveettil,
R.Bittman,
W.R.Jacobs,
D.A.Fidock,
J.C.Sacchettini.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The human malaria parasite Plasmodium falciparum synthesizes fatty acids using a
type II pathway that is absent in humans. The final step in fatty acid
elongation is catalyzed by enoyl acyl carrier protein reductase, a validated
antimicrobial drug target. Here, we report the cloning and expression of the P.
falciparum enoyl acyl carrier protein reductase gene, which encodes a 50-kDa
protein (PfENR) predicted to target to the unique parasite apicoplast. Purified
PfENR was crystallized, and its structure resolved as a binary complex with
NADH, a ternary complex with triclosan and NAD(+), and as ternary complexes
bound to the triclosan analogs 1 and 2 with NADH. Novel structural features were
identified in the PfENR binding loop region that most closely resembled
bacterial homologs; elsewhere the protein was similar to ENR from the plant
Brassica napus (root mean square for Calphas, 0.30 A). Triclosan and its analogs
1 and 2 killed multidrug-resistant strains of intra-erythrocytic P. falciparum
parasites at sub to low micromolar concentrations in vitro. These data define
the structural basis of triclosan binding to PfENR and will facilitate
structure-based optimization of PfENR inhibitors.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Fig. 2. Tertiary structure of PfENR. a, representation of
subunit B of the PfENR tetramer with the cofactor NADH and
inhibitor triclosan bound to their active sites. Helices are
shown in gold, the -strands in
green, NADH and triclosan are colored by atom type. The tertiary
structure shows the Rossmann fold typical of
dinucleotide-binding enzymes (43). The chain break visible at
the top of the inhibitor binding site is due to the PfENR
substrate binding loop that was not resolved in the crystal
structures. b, front view of the PfENR tetramer, in which each
subunit is represented as a differently colored tube. The bound
NADH is colored by atom type. Three perpendicular 2-fold
symmetry axes intersect in the center, creating a molecule of
internal 222 symmetry.
|
 |
Figure 4.
Fig. 4. Structural details of the substrate/inhibitor
binding site. a, stereo view of the 2F[o] F[c]
electron density map contoured at 1 for bound
analog 2 and NADH cofactor. Shown are residues 277 and 216-221.
b, stereo view of the three superimposed PfENR·inhibitor
complexes. Residues involved in the formation of the binding
pocket are shown. The most important amino acids for
interactions are labeled. Triclosan is shown in red, 1 in blue,
and 2 in green. The corresponding cofactor of each inhibitor
complex is colored accordingly. Hydrogen bonds with Tyr277 and
the 2'-hydroxyl group of the nicotinamide ribose, as well as
three additional hydrogen bonds mediated through the hydroxyl
group of the naphthalene ring of 2 are shown as yellow dotted
lines. The binding mode of triclosan, 1, and 2 showed the same
stacking interactions to the nicotinamide ring of the cofactor
with respect to ring A. Inhibitor 2 also exhibited three
additional hydrogen bonds mediated through the hydroxyl group of
the naphthalene ring that could interact with the side-chain
nitrogen of Asn218 and the main-chain oxygen and nitrogen of
Ala^219.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from the ASBMB:
J Biol Chem
(2002,
277,
13106-13114)
copyright 2002.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
K.Maity,
T.Banerjee,
N.Prabakaran,
N.Surolia,
A.Surolia,
and
K.Suguna
(2011).
Effect of substrate binding loop mutations on the structure, kinetics, and inhibition of enoyl acyl carrier protein reductase from plasmodium falciparum.
|
| |
IUBMB Life,
63,
30-41.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Ben Mamoun,
S.T.Prigge,
and
H.Vial
(2010).
Targeting the Lipid Metabolic Pathways for the Treatment of Malaria.
|
| |
Drug Dev Res,
71,
44-55.
|
 |
|
|
|
|
 |
G.Kumar,
T.Banerjee,
N.Kapoor,
N.Surolia,
and
A.Surolia
(2010).
SAR and pharmacophore models for the rhodanine inhibitors of Plasmodium falciparum enoyl-acyl carrier protein reductase.
|
| |
IUBMB Life,
62,
204-213.
|
 |
|
|
|
|
 |
H.Lu,
and
P.J.Tonge
(2010).
Mechanism and inhibition of the FabV enoyl-ACP reductase from Burkholderia mallei.
|
| |
Biochemistry,
49,
1281-1289.
|
 |
|
|
|
|
 |
J.Lyndall,
P.Fuchsman,
M.Bock,
T.Barber,
D.Lauren,
K.Leigh,
E.Perruchon,
and
M.Capdevielle
(2010).
Probabilistic risk evaluation for triclosan in surface water, sediments, and aquatic biota tissues.
|
| |
Integr Environ Assess Manag,
6,
419-440.
|
 |
|
|
|
|
 |
P.Fuchsman,
J.Lyndall,
M.Bock,
D.Lauren,
T.Barber,
K.Leigh,
E.Perruchon,
and
M.Capdevielle
(2010).
Terrestrial ecological risk evaluation for triclosan in land-applied biosolids.
|
| |
Integr Environ Assess Manag,
6,
405-418.
|
 |
|
|
|
|
 |
A.P.Singh,
N.Surolia,
and
A.Surolia
(2009).
Triclosan inhibit the growth of the late liver-stage of Plasmodium.
|
| |
IUBMB Life,
61,
923-928.
|
 |
|
|
|
|
 |
H.Lu,
K.England,
C.am Ende,
J.J.Truglio,
S.Luckner,
B.G.Reddy,
N.L.Marlenee,
S.E.Knudson,
D.L.Knudson,
R.A.Bowen,
C.Kisker,
R.A.Slayden,
and
P.J.Tonge
(2009).
Slow-onset inhibition of the FabI enoyl reductase from francisella tularensis: residence time and in vivo activity.
|
| |
ACS Chem Biol,
4,
221-231.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.S.Freundlich,
F.Wang,
C.Vilchèze,
G.Gulten,
R.Langley,
G.A.Schiehser,
D.P.Jacobus,
W.R.Jacobs,
and
J.C.Sacchettini
(2009).
Triclosan derivatives: towards potent inhibitors of drug-sensitive and drug-resistant Mycobacterium tuberculosis.
|
| |
ChemMedChem,
4,
241-248.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Gademann,
and
J.Kobylinska
(2009).
Antimalarial natural products of marine and freshwater origin.
|
| |
Chem Rec,
9,
187-198.
|
 |
|
|
|
|
 |
N.Kapoor,
T.Banerjee,
P.Babu,
K.Maity,
N.Surolia,
and
A.Surolia
(2009).
Design, development, synthesis, and docking analysis of 2'-substituted triclosan analogs as inhibitors for Plasmodium falciparum Enoyl-ACP reductase.
|
| |
IUBMB Life,
61,
1083-1091.
|
 |
|
|
|
|
 |
V.A.Morde,
M.S.Shaikh,
R.R.Pissurlenkar,
and
E.C.Coutinho
(2009).
Molecular modeling studies, synthesis, and biological evaluation of Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR) inhibitors.
|
| |
Mol Divers,
13,
501-517.
|
 |
|
|
|
|
 |
C.W.am Ende,
S.E.Knudson,
N.Liu,
J.Childs,
T.J.Sullivan,
M.Boyne,
H.Xu,
Y.Gegina,
D.L.Knudson,
F.Johnson,
C.A.Peloquin,
R.A.Slayden,
and
P.J.Tonge
(2008).
Synthesis and in vitro antimycobacterial activity of B-ring modified diaryl ether InhA inhibitors.
|
| |
Bioorg Med Chem Lett,
18,
3029-3033.
|
 |
|
|
|
|
 |
M.Yu,
T.R.Kumar,
L.J.Nkrumah,
A.Coppi,
S.Retzlaff,
C.D.Li,
B.J.Kelly,
P.A.Moura,
V.Lakshmanan,
J.S.Freundlich,
J.C.Valderramos,
C.Vilcheze,
M.Siedner,
J.H.Tsai,
B.Falkard,
A.B.Sidhu,
L.A.Purcell,
P.Gratraud,
L.Kremer,
A.P.Waters,
G.Schiehser,
D.P.Jacobus,
C.J.Janse,
A.Ager,
W.R.Jacobs,
J.C.Sacchettini,
V.Heussler,
P.Sinnis,
and
D.A.Fidock
(2008).
The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites.
|
| |
Cell Host Microbe,
4,
567-578.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.M.Carballeira
(2008).
New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents.
|
| |
Prog Lipid Res,
47,
50-61.
|
 |
|
|
|
|
 |
S.K.Tipparaju,
D.C.Mulhearn,
G.M.Klein,
Y.Chen,
S.Tapadar,
M.H.Bishop,
S.Yang,
J.Chen,
M.Ghassemi,
B.D.Santarsiero,
J.L.Cook,
M.Johlfs,
A.D.Mesecar,
M.E.Johnson,
and
A.P.Kozikowski
(2008).
Design and synthesis of aryl ether inhibitors of the Bacillus anthracis enoyl-ACP reductase.
|
| |
ChemMedChem,
3,
1250-1268.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Nicola,
C.A.Smith,
E.Lucumi,
M.R.Kuo,
L.Karagyozov,
D.A.Fidock,
J.C.Sacchettini,
and
R.Abagyan
(2007).
Discovery of novel inhibitors targeting enoyl-acyl carrier protein reductase in Plasmodium falciparum by structure-based virtual screening.
|
| |
Biochem Biophys Res Commun,
358,
686-691.
|
 |
|
|
|
|
 |
H.H.Lee,
J.Moon,
and
S.W.Suh
(2007).
Crystal structure of the Helicobacter pylori enoyl-acyl carrier protein reductase in complex with hydroxydiphenyl ether compounds, triclosan and diclosan.
|
| |
Proteins,
69,
691-694.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Mazumdar,
and
B.Striepen
(2007).
Make it or take it: fatty acid metabolism of apicomplexan parasites.
|
| |
Eukaryot Cell,
6,
1727-1735.
|
 |
|
|
|
|
 |
J.Z.Lu,
S.P.Muench,
M.Allary,
S.Campbell,
C.W.Roberts,
E.Mui,
R.L.McLeod,
D.W.Rice,
and
S.T.Prigge
(2007).
Type I and type II fatty acid biosynthesis in Eimeria tenella: enoyl reductase activity and structure.
|
| |
Parasitology,
134,
1949-1962.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Gayathri,
H.Balaram,
and
M.R.Murthy
(2007).
Structural biology of plasmodial proteins.
|
| |
Curr Opin Struct Biol,
17,
744-754.
|
 |
|
|
|
|
 |
S.P.Muench,
S.T.Prigge,
R.McLeod,
J.B.Rafferty,
M.J.Kirisits,
C.W.Roberts,
E.J.Mui,
and
D.W.Rice
(2007).
Studies of Toxoplasma gondii and Plasmodium falciparum enoyl acyl carrier protein reductase and implications for the development of antiparasitic agents.
|
| |
Acta Crystallogr D Biol Crystallogr,
63,
328-338.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
X.Cai,
A.Lorraine Fuller,
L.R.McDougald,
X.Tan,
J.Cai,
F.Wang,
J.C.Sacchettini,
and
G.Zhu
(2007).
Biochemical characterization of enoyl reductase involved in Type II fatty acid synthesis in the intestinal coccidium Eimeria tenella (Phylum Apicomplexa).
|
| |
FEMS Microbiol Lett,
272,
238-244.
|
 |
|
|
|
|
 |
D.Kostrewa,
F.K.Winkler,
G.Folkers,
L.Scapozza,
and
R.Perozzo
(2005).
The crystal structure of PfFabZ, the unique beta-hydroxyacyl-ACP dehydratase involved in fatty acid biosynthesis of Plasmodium falciparum.
|
| |
Protein Sci,
14,
1570-1580.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Tasdemir,
R.Brun,
R.Perozzo,
and
A.A.Dönmez
(2005).
Evaluation of antiprotozoal and plasmodial enoyl-ACP reductase inhibition potential of turkish medicinal plants.
|
| |
Phytother Res,
19,
162-166.
|
 |
|
|
|
|
 |
J.Wiesner,
and
F.Seeber
(2005).
The plastid-derived organelle of protozoan human parasites as a target of established and emerging drugs.
|
| |
Expert Opin Ther Targets,
9,
23-44.
|
 |
|
|
|
|
 |
R.J.Wilson
(2005).
Parasite plastids: approaching the endgame.
|
| |
Biol Rev Camb Philos Soc,
80,
129-153.
|
 |
|
|
|
|
 |
S.Köhler
(2005).
Multi-membrane-bound structures of Apicomplexa: I. the architecture of the Toxoplasma gondii apicoplast.
|
| |
Parasitol Res,
96,
258-272.
|
 |
|
|
|
|
 |
S.W.White,
J.Zheng,
Y.M.Zhang,
and
Rock
(2005).
The structural biology of type II fatty acid biosynthesis.
|
| |
Annu Rev Biochem,
74,
791-831.
|
 |
|
|
|
|
 |
D.A.Fidock,
P.J.Rosenthal,
S.L.Croft,
R.Brun,
and
S.Nwaka
(2004).
Antimalarial drug discovery: efficacy models for compound screening.
|
| |
Nat Rev Drug Discov,
3,
509-520.
|
 |
|
|
|
|
 |
K.S.Paul,
C.J.Bacchi,
and
P.T.Englund
(2004).
Multiple triclosan targets in Trypanosoma brucei.
|
| |
Eukaryot Cell,
3,
855-861.
|
 |
|
|
|
|
 |
Y.M.Zhang,
Y.J.Lu,
and
C.O.Rock
(2004).
The reductase steps of the type II fatty acid synthase as antimicrobial targets.
|
| |
Lipids,
39,
1055-1060.
|
 |
|
|
|
|
 |
B.U.Samuel,
B.Hearn,
D.Mack,
P.Wender,
J.Rothbard,
M.J.Kirisits,
E.Mui,
S.Wernimont,
C.W.Roberts,
S.P.Muench,
D.W.Rice,
S.T.Prigge,
A.B.Law,
and
R.McLeod
(2003).
Delivery of antimicrobials into parasites.
|
| |
Proc Natl Acad Sci U S A,
100,
14281-14286.
|
 |
|
|
|
|
 |
P.Gilbert,
and
A.J.McBain
(2003).
Potential impact of increased use of biocides in consumer products on prevalence of antibiotic resistance.
|
| |
Clin Microbiol Rev,
16,
189-208.
|
 |
|
|
|
|
 |
R.F.Waller,
S.A.Ralph,
M.B.Reed,
V.Su,
J.D.Douglas,
D.E.Minnikin,
A.F.Cowman,
G.S.Besra,
and
G.I.McFadden
(2003).
A type II pathway for fatty acid biosynthesis presents drug targets in Plasmodium falciparum.
|
| |
Antimicrob Agents Chemother,
47,
297-301.
|
 |
|
|
|
|
 |
S.P.Muench,
J.B.Rafferty,
R.McLeod,
D.W.Rice,
and
S.T.Prigge
(2003).
Expression, purification and crystallization of the Plasmodium falciparum enoyl reductase.
|
| |
Acta Crystallogr D Biol Crystallogr,
59,
1246-1248.
|
 |
|
|
|
|
 |
H.H.Lee,
J.Yun,
J.Moon,
B.W.Han,
B.I.Lee,
J.Y.Lee,
and
S.W.Suh
(2002).
Crystallization and preliminary X-ray crystallographic analysis of enoyl-acyl carrier protein reductase from Helicobacter pylori.
|
| |
Acta Crystallogr D Biol Crystallogr,
58,
1071-1073.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |