 |
PDBsum entry 1vhb
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Oxygen transport
|
PDB id
|
|
|
|
1vhb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Structure
5:497-507
(1997)
|
|
PubMed id:
|
|
|
|
|
| |
|
Unusual structure of the oxygen-binding site in the dimeric bacterial hemoglobin from Vitreoscilla sp.
|
|
C.Tarricone,
A.Galizzi,
A.Coda,
P.Ascenzi,
M.Bolognesi.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
BACKGROUND: The first hemoglobin identified in bacteria was isolated from
Vitreoscilla stercoraria (VtHb) as a homodimeric species. The wild-type protein
has been reported to display medium oxygen affinity and cooperative
ligand-binding properties. Moreover, VtHb can support aerobic growth in
Escherichia coli with impaired terminal oxidase function. This ability of VtHb
to improve the growth properties of E. coli has important applications in
fermentation technology, assisting the overexpression of recombinant proteins
and antibiotics. Oxygen binding heme domains have been identified in chimeric
proteins from bacteria and yeast, where they are covalently linked to FAD- and
NAD(P)H-binding domains. We investigate here the fold, the distal heme site
structure and the quaternary assembly of a bacterial hemoglobin which does not
bear the typical flavohemoglobin domain organization. RESULTS: The VtHb
three-dimensional structure conforms to the well known globin fold.
Nevertheless, the polypeptide segment connecting helices C and E is disordered,
and residues E7-E10 (defined according to the standard globin fold nomenclature)
do not adopt the usual alpha-helical conformation, thus locating Gln53(E7) out
of the heme pocket. Binding of azide to the heme iron introduces substantial
structural perturbations in the heme distal site residues, particularly
Tyr29(B10) and Pro54(E8). The quaternary assembly of homodimeric VtHb, not
observed before within the globin family, is based on a molecular interface
defined by helices F and H of both subunits, the two heme iron atoms being 34 A
apart. CONCLUSIONS: The unusual heme distal site structure observed shows that
previously undescribed molecular mechanisms of ligand stabilization are
operative in VtHb. The polypeptide chain disorder observed in the CE region
indicates a potential site of interaction with the FAD/NADH reductase partner,
in analogy with observations in the chimeric flavohemoglobin from Alcaligenes
eutrophus.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
Figure 5.
Figure 5. A structural overlay of one VtHb subunit (red)
onto the 1-272 region of Alcaligenes flavoHb, comprising the
heme domain (green) and the FAD-binding region in the C-terminal
domain (dark green). For clarity, only the heme group of VtHb is
shown, and the NADP-binding region of flavoHb (residues 273-403)
is not shown. The adenine portion of FAD (yellow) in the upper
part of the picture, points towards the CE regions of flavoHb
(yellow) and towards the 9-residue disordered CE segment of
VtHb. (The figure was drawn using the program MOLSCRIPT [68].)
|
 |
|
|
|
| |
The above figure is
reprinted
by permission from Cell Press:
Structure
(1997,
5,
497-507)
copyright 1997.
|
|
| |
Figure was
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
T.Kuwada,
T.Hasegawa,
T.Takagi,
T.Sakae,
I.Sato,
and
F.Shishikura
(2011).
Involvement of the distal Arg residue in Cl⁻ binding of midge larval haemoglobin.
|
| |
Acta Crystallogr D Biol Crystallogr,
67,
488-495.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Anand,
B.T.Duk,
S.Singh,
M.Y.Akbas,
D.A.Webster,
B.C.Stark,
and
K.L.Dikshit
(2010).
Redox-mediated interactions of VHb (Vitreoscilla haemoglobin) with OxyR: novel regulation of VHb biosynthesis under oxidative stress.
|
| |
Biochem J,
426,
271-280.
|
 |
|
|
|
|
 |
E.Parrilli,
M.Giuliani,
G.Marino,
and
M.L.Tutino
(2010).
Influence of production process design on inclusion bodies protein: the case of an Antarctic flavohemoglobin.
|
| |
Microb Cell Fact,
9,
19.
|
 |
|
|
|
|
 |
T.Kuwada,
T.Hasegawa,
T.Takagi,
I.Sato,
and
F.Shishikura
(2010).
pH-dependent structural changes in haemoglobin component V from the midge larva Propsilocerus akamusi (Orthocladiinae, Diptera).
|
| |
Acta Crystallogr D Biol Crystallogr,
66,
258-267.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Jokipii-Lukkari,
A.D.Frey,
P.T.Kallio,
and
H.Häggman
(2009).
Intrinsic non-symbiotic and truncated haemoglobins and heterologous Vitreoscilla haemoglobin expression in plants.
|
| |
J Exp Bot,
60,
409-422.
|
 |
|
|
|
|
 |
L.Sael,
D.La,
B.Li,
R.Rustamov,
and
D.Kihara
(2008).
Rapid comparison of properties on protein surface.
|
| |
Proteins,
73,
1.
|
 |
|
|
|
|
 |
A.Bozzi,
C.Coccia,
A.Di Giulio,
A.C.Rinaldi,
A.Amadei,
G.Mignogna,
A.Bonamore,
A.Fais,
and
M.Aschi
(2007).
Folding propensity and biological activity of peptides: New insights from conformational properties of a novel peptide derived from Vitreoscilla haemoglobin.
|
| |
Biopolymers,
87,
85-92.
|
 |
|
|
|
|
 |
C.Lu,
M.Mukai,
Y.Lin,
G.Wu,
R.K.Poole,
and
S.R.Yeh
(2007).
Structural and functional properties of a single domain hemoglobin from the food-borne pathogen Campylobactor jejuni.
|
| |
J Biol Chem,
282,
25917-25928.
|
 |
|
|
|
|
 |
C.Lu,
T.Egawa,
L.M.Wainwright,
R.K.Poole,
and
S.R.Yeh
(2007).
Structural and functional properties of a truncated hemoglobin from a food-borne pathogen Campylobacter jejuni.
|
| |
J Biol Chem,
282,
13627-13636.
|
 |
|
|
|
|
 |
M.Kvist,
E.S.Ryabova,
E.Nordlander,
and
L.Bülow
(2007).
An investigation of the peroxidase activity of Vitreoscilla hemoglobin.
|
| |
J Biol Inorg Chem,
12,
324-334.
|
 |
|
|
|
|
 |
S.N.Vinogradov,
D.Hoogewijs,
X.Bailly,
R.Arredondo-Peter,
J.Gough,
S.Dewilde,
L.Moens,
and
J.R.Vanfleteren
(2006).
A phylogenomic profile of globins.
|
| |
BMC Evol Biol,
6,
31.
|
 |
|
|
|
|
 |
A.Pesce,
M.Nardini,
S.Dewilde,
D.Hoogewijs,
P.Ascenzi,
L.Moens,
and
M.Bolognesi
(2005).
Modulation of oxygen binding to insect hemoglobins: the structure of hemoglobin from the botfly Gasterophilus intestinalis.
|
| |
Protein Sci,
14,
3057-3063.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.J.Miranda,
D.H.Maillett,
J.Soman,
and
J.S.Olson
(2005).
Thermoglobin, oxygen-avid hemoglobin in a bacterial hyperthermophile.
|
| |
J Biol Chem,
280,
36754-36761.
|
 |
|
|
|
|
 |
J.W.Murray,
O.Delumeau,
and
R.J.Lewis
(2005).
Structure of a nonheme globin in environmental stress signaling.
|
| |
Proc Natl Acad Sci U S A,
102,
17320-17325.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Kim,
D.A.Webster,
and
B.C.Stark
(2005).
Improvement of bioremediation by Pseudomonas and Burkholderia by mutants of the Vitreoscilla hemoglobin gene (vgb) integrated into their chromosomes.
|
| |
J Ind Microbiol Biotechnol,
32,
148-154.
|
 |
|
|
|
|
 |
A.D.Frey,
B.T.Oberle,
J.Farrés,
and
P.T.Kallio
(2004).
Expression of Vitreoscilla haemoglobin in tobacco cell cultures relieves nitrosative stress in vivo and protects from NO in vitro.
|
| |
Plant Biotechnol J,
2,
221-231.
|
 |
|
|
|
|
 |
A.Pesce,
M.Nardini,
P.Ascenzi,
E.Geuens,
S.Dewilde,
L.Moens,
M.Bolognesi,
A.F.Riggs,
A.Hale,
P.Deng,
G.U.Nienhaus,
J.S.Olson,
and
K.Nienhaus
(2004).
Thr-E11 regulates O2 affinity in Cerebratulus lacteus mini-hemoglobin.
|
| |
J Biol Chem,
279,
33662-33672.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.A.Freitas,
S.Hou,
E.M.Dioum,
J.A.Saito,
J.Newhouse,
G.Gonzalez,
M.A.Gilles-Gonzalez,
and
M.Alam
(2004).
Ancestral hemoglobins in Archaea.
|
| |
Proc Natl Acad Sci U S A,
101,
6675-6680.
|
 |
|
|
|
|
 |
A.D.Frey,
and
P.T.Kallio
(2003).
Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology.
|
| |
FEMS Microbiol Rev,
27,
525-545.
|
 |
|
|
|
|
 |
E.Geuens,
I.Brouns,
D.Flamez,
S.Dewilde,
J.P.Timmermans,
and
L.Moens
(2003).
A globin in the nucleus!
|
| |
J Biol Chem,
278,
30417-30420.
|
 |
|
|
|
|
 |
M.Milani,
P.Y.Savard,
H.Ouellet,
P.Ascenzi,
M.Guertin,
and
M.Bolognesi
(2003).
A TyrCD1/TrpG8 hydrogen bond network and a TyrB10TyrCD1 covalent link shape the heme distal site of Mycobacterium tuberculosis hemoglobin O.
|
| |
Proc Natl Acad Sci U S A,
100,
5766-5771.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
W.Zhang,
and
G.N.Phillips
(2003).
Structure of the oxygen sensor in Bacillus subtilis: signal transduction of chemotaxis by control of symmetry.
|
| |
Structure,
11,
1097-1110.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Pesce,
M.Nardini,
S.Dewilde,
E.Geuens,
K.Yamauchi,
P.Ascenzi,
A.F.Riggs,
L.Moens,
and
M.Bolognesi
(2002).
The 109 residue nerve tissue minihemoglobin from Cerebratulus lacteus highlights striking structural plasticity of the alpha-helical globin fold.
|
| |
Structure,
10,
725-735.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Ouellet,
Y.Ouellet,
C.Richard,
M.Labarre,
B.Wittenberg,
J.Wittenberg,
and
M.Guertin
(2002).
Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide.
|
| |
Proc Natl Acad Sci U S A,
99,
5902-5907.
|
 |
|
|
|
|
 |
K.W.Park,
K.J.Kim,
A.J.Howard,
B.C.Stark,
and
D.A.Webster
(2002).
Vitreoscilla hemoglobin binds to subunit I of cytochrome bo ubiquinol oxidases.
|
| |
J Biol Chem,
277,
33334-33337.
|
 |
|
|
|
|
 |
M.Mukai,
P.Y.Savard,
H.Ouellet,
M.Guertin,
and
S.R.Yeh
(2002).
Unique ligand-protein interactions in a new truncated hemoglobin from Mycobacterium tuberculosis.
|
| |
Biochemistry,
41,
3897-3905.
|
 |
|
|
|
|
 |
T.M.Stevanin,
R.K.Poole,
E.A.Demoncheaux,
and
R.C.Read
(2002).
Flavohemoglobin Hmp protects Salmonella enterica serovar typhimurium from nitric oxide-related killing by human macrophages.
|
| |
Infect Immun,
70,
4399-4405.
|
 |
|
|
|
|
 |
M.Milani,
A.Pesce,
Y.Ouellet,
P.Ascenzi,
M.Guertin,
and
M.Bolognesi
(2001).
Mycobacterium tuberculosis hemoglobin N displays a protein tunnel suited for O2 diffusion to the heme.
|
| |
EMBO J,
20,
3902-3909.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
W.E.Royer,
J.E.Knapp,
K.Strand,
and
H.A.Heaslet
(2001).
Cooperative hemoglobins: conserved fold, diverse quaternary assemblies and allosteric mechanisms.
|
| |
Trends Biochem Sci,
26,
297-304.
|
 |
|
|
|
|
 |
A.M.Gardner,
L.A.Martin,
P.R.Gardner,
Y.Dou,
and
J.S.Olson
(2000).
Steady-state and transient kinetics of Escherichia coli nitric-oxide dioxygenase (flavohemoglobin). The B10 tyrosine hydroxyl is essential for dioxygen binding and catalysis.
|
| |
J Biol Chem,
275,
12581-12589.
|
 |
|
|
|
|
 |
A.Pesce,
M.Couture,
S.Dewilde,
M.Guertin,
K.Yamauchi,
P.Ascenzi,
L.Moens,
and
M.Bolognesi
(2000).
A novel two-over-two alpha-helical sandwich fold is characteristic of the truncated hemoglobin family.
|
| |
EMBO J,
19,
2424-2434.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.I.Andersson,
N.Holmberg,
J.Farrés,
J.E.Bailey,
L.Bülow,
and
P.T.Kallio
(2000).
Error-prone PCR of Vitreoscilla hemoglobin (VHb) to support the growth of microaerobic Escherichia coli.
|
| |
Biotechnol Bioeng,
70,
446-455.
|
 |
|
|
|
|
 |
M.S.Hargrove,
E.A.Brucker,
B.Stec,
G.Sarath,
R.Arredondo-Peter,
R.V.Klucas,
J.S.Olson,
and
G.N.Phillips
(2000).
Crystal structure of a nonsymbiotic plant hemoglobin.
|
| |
Structure,
8,
1005-1014.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.R.Yeh,
M.Couture,
Y.Ouellet,
M.Guertin,
and
D.L.Rousseau
(2000).
A cooperative oxygen binding hemoglobin from Mycobacterium tuberculosis. Stabilization of heme ligands by a distal tyrosine residue.
|
| |
J Biol Chem,
275,
1679-1684.
|
 |
|
|
|
|
 |
Y.Xia,
J.Wu,
S.Guang,
H.Zhang,
S.Liang,
and
Y.Shi
(2000).
Proton NMR investigation of heme and surrounding proton in low-spin cyanide-ligated bacterial hemoglobin fromVitreoscilla.
|
| |
Sci China C Life Sci,
43,
57-67.
|
 |
|
|
|
|
 |
G.Ollesch,
A.Kaunzinger,
D.Juchelka,
M.Schubert-Zsilavecz,
and
U.Ermler
(1999).
Phospholipid bound to the flavohemoprotein from Alcaligenes eutrophus.
|
| |
Eur J Biochem,
262,
396-405.
|
 |
|
|
|
|
 |
H.A.Heaslet,
and
W.E.Royer
(1999).
The 2.7 A crystal structure of deoxygenated hemoglobin from the sea lamprey (Petromyzon marinus): structural basis for a lowered oxygen affinity and Bohr effect.
|
| |
Structure,
7,
517-526.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Couture,
S.R.Yeh,
B.A.Wittenberg,
J.B.Wittenberg,
Y.Ouellet,
D.L.Rousseau,
and
M.Guertin
(1999).
A cooperative oxygen-binding hemoglobin from Mycobacterium tuberculosis.
|
| |
Proc Natl Acad Sci U S A,
96,
11223-11228.
|
 |
|
|
|
|
 |
C.Tari,
S.J.Parulekar,
B.C.Stark,
and
D.A.Webster
(1998).
Synthesis and excretion of alpha-amylase in vgb+ and vgb- recombinant Escherichia coli: a comparative study.
|
| |
Biotechnol Bioeng,
59,
673-678.
|
 |
|
|
|
|
 |
M.Joshi,
S.Mande,
and
K.L.Dikshit
(1998).
Hemoglobin biosynthesis in Vitreoscilla stercoraria DW: cloning, expression, and characterization of a new homolog of a bacterial globin gene.
|
| |
Appl Environ Microbiol,
64,
2220-2228.
|
 |
|
|
|
|
 |
T.L.Vandergon,
C.K.Riggs,
T.A.Gorr,
J.M.Colacino,
and
A.F.Riggs
(1998).
The mini-hemoglobins in neural and body wall tissue of the nemertean worm, Cerebratulus lacteus.
|
| |
J Biol Chem,
273,
16998-17011.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |