spacer
spacer

PDBsum entry 1vhb

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Oxygen transport PDB id
1vhb

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
135 a.a. *
Ligands
HEM ×2
Waters ×119
* Residue conservation analysis
PDB id:
1vhb
Name: Oxygen transport
Title: Bacterial dimeric hemoglobin from vitreoscilla stercoraria
Structure: Hemoglobin. Chain: a, b. Synonym: soluble cytochrome o. Engineered: yes
Source: Vitreoscilla stercoraria. Organism_taxid: 61. Strain: c1. Atcc: 15218. Gene: vgb. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
1.83Å     R-factor:   0.184     R-free:   0.250
Authors: C.Tarricone,A.Galizzi,A.Coda,P.Ascenzi,M.Bolognesi
Key ref:
C.Tarricone et al. (1997). Unusual structure of the oxygen-binding site in the dimeric bacterial hemoglobin from Vitreoscilla sp. Structure, 5, 497-507. PubMed id: 9115439 DOI: 10.1016/S0969-2126(97)00206-2
Date:
19-Feb-97     Release date:   25-Feb-98    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P04252  (BAHG_VITST) -  Bacterial hemoglobin from Vitreoscilla stercoraria
Seq:
Struc:
146 a.a.
135 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1016/S0969-2126(97)00206-2 Structure 5:497-507 (1997)
PubMed id: 9115439  
 
 
Unusual structure of the oxygen-binding site in the dimeric bacterial hemoglobin from Vitreoscilla sp.
C.Tarricone, A.Galizzi, A.Coda, P.Ascenzi, M.Bolognesi.
 
  ABSTRACT  
 
BACKGROUND: The first hemoglobin identified in bacteria was isolated from Vitreoscilla stercoraria (VtHb) as a homodimeric species. The wild-type protein has been reported to display medium oxygen affinity and cooperative ligand-binding properties. Moreover, VtHb can support aerobic growth in Escherichia coli with impaired terminal oxidase function. This ability of VtHb to improve the growth properties of E. coli has important applications in fermentation technology, assisting the overexpression of recombinant proteins and antibiotics. Oxygen binding heme domains have been identified in chimeric proteins from bacteria and yeast, where they are covalently linked to FAD- and NAD(P)H-binding domains. We investigate here the fold, the distal heme site structure and the quaternary assembly of a bacterial hemoglobin which does not bear the typical flavohemoglobin domain organization. RESULTS: The VtHb three-dimensional structure conforms to the well known globin fold. Nevertheless, the polypeptide segment connecting helices C and E is disordered, and residues E7-E10 (defined according to the standard globin fold nomenclature) do not adopt the usual alpha-helical conformation, thus locating Gln53(E7) out of the heme pocket. Binding of azide to the heme iron introduces substantial structural perturbations in the heme distal site residues, particularly Tyr29(B10) and Pro54(E8). The quaternary assembly of homodimeric VtHb, not observed before within the globin family, is based on a molecular interface defined by helices F and H of both subunits, the two heme iron atoms being 34 A apart. CONCLUSIONS: The unusual heme distal site structure observed shows that previously undescribed molecular mechanisms of ligand stabilization are operative in VtHb. The polypeptide chain disorder observed in the CE region indicates a potential site of interaction with the FAD/NADH reductase partner, in analogy with observations in the chimeric flavohemoglobin from Alcaligenes eutrophus.
 
  Selected figure(s)  
 
Figure 5.
Figure 5. A structural overlay of one VtHb subunit (red) onto the 1-272 region of Alcaligenes flavoHb, comprising the heme domain (green) and the FAD-binding region in the C-terminal domain (dark green). For clarity, only the heme group of VtHb is shown, and the NADP-binding region of flavoHb (residues 273-403) is not shown. The adenine portion of FAD (yellow) in the upper part of the picture, points towards the CE regions of flavoHb (yellow) and towards the 9-residue disordered CE segment of VtHb. (The figure was drawn using the program MOLSCRIPT [68].)
 
  The above figure is reprinted by permission from Cell Press: Structure (1997, 5, 497-507) copyright 1997.  
  Figure was selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21543852 T.Kuwada, T.Hasegawa, T.Takagi, T.Sakae, I.Sato, and F.Shishikura (2011).
Involvement of the distal Arg residue in Cl⁻ binding of midge larval haemoglobin.
  Acta Crystallogr D Biol Crystallogr, 67, 488-495.
PDB codes: 3arj 3ark 3arl
20025616 A.Anand, B.T.Duk, S.Singh, M.Y.Akbas, D.A.Webster, B.C.Stark, and K.L.Dikshit (2010).
Redox-mediated interactions of VHb (Vitreoscilla haemoglobin) with OxyR: novel regulation of VHb biosynthesis under oxidative stress.
  Biochem J, 426, 271-280.  
20334669 E.Parrilli, M.Giuliani, G.Marino, and M.L.Tutino (2010).
Influence of production process design on inclusion bodies protein: the case of an Antarctic flavohemoglobin.
  Microb Cell Fact, 9, 19.  
20179337 T.Kuwada, T.Hasegawa, T.Takagi, I.Sato, and F.Shishikura (2010).
pH-dependent structural changes in haemoglobin component V from the midge larva Propsilocerus akamusi (Orthocladiinae, Diptera).
  Acta Crystallogr D Biol Crystallogr, 66, 258-267.
PDB codes: 2zwj 3a5a 3a5b 3a5g 3a9m
19129158 S.Jokipii-Lukkari, A.D.Frey, P.T.Kallio, and H.Häggman (2009).
Intrinsic non-symbiotic and truncated haemoglobins and heterologous Vitreoscilla haemoglobin expression in plants.
  J Exp Bot, 60, 409-422.  
18618695 L.Sael, D.La, B.Li, R.Rustamov, and D.Kihara (2008).
Rapid comparison of properties on protein surface.
  Proteins, 73, 1.  
17554783 A.Bozzi, C.Coccia, A.Di Giulio, A.C.Rinaldi, A.Amadei, G.Mignogna, A.Bonamore, A.Fais, and M.Aschi (2007).
Folding propensity and biological activity of peptides: New insights from conformational properties of a novel peptide derived from Vitreoscilla haemoglobin.
  Biopolymers, 87, 85-92.  
17606611 C.Lu, M.Mukai, Y.Lin, G.Wu, R.K.Poole, and S.R.Yeh (2007).
Structural and functional properties of a single domain hemoglobin from the food-borne pathogen Campylobactor jejuni.
  J Biol Chem, 282, 25917-25928.  
17339325 C.Lu, T.Egawa, L.M.Wainwright, R.K.Poole, and S.R.Yeh (2007).
Structural and functional properties of a truncated hemoglobin from a food-borne pathogen Campylobacter jejuni.
  J Biol Chem, 282, 13627-13636.  
17219165 M.Kvist, E.S.Ryabova, E.Nordlander, and L.Bülow (2007).
An investigation of the peroxidase activity of Vitreoscilla hemoglobin.
  J Biol Inorg Chem, 12, 324-334.  
16600051 S.N.Vinogradov, D.Hoogewijs, X.Bailly, R.Arredondo-Peter, J.Gough, S.Dewilde, L.Moens, and J.R.Vanfleteren (2006).
A phylogenomic profile of globins.
  BMC Evol Biol, 6, 31.  
16260762 A.Pesce, M.Nardini, S.Dewilde, D.Hoogewijs, P.Ascenzi, L.Moens, and M.Bolognesi (2005).
Modulation of oxygen binding to insect hemoglobins: the structure of hemoglobin from the botfly Gasterophilus intestinalis.
  Protein Sci, 14, 3057-3063.
PDB code: 2c0k
16135523 J.J.Miranda, D.H.Maillett, J.Soman, and J.S.Olson (2005).
Thermoglobin, oxygen-avid hemoglobin in a bacterial hyperthermophile.
  J Biol Chem, 280, 36754-36761.  
16301540 J.W.Murray, O.Delumeau, and R.J.Lewis (2005).
Structure of a nonheme globin in environmental stress signaling.
  Proc Natl Acad Sci U S A, 102, 17320-17325.
PDB code: 2bnl
15806390 Y.Kim, D.A.Webster, and B.C.Stark (2005).
Improvement of bioremediation by Pseudomonas and Burkholderia by mutants of the Vitreoscilla hemoglobin gene (vgb) integrated into their chromosomes.
  J Ind Microbiol Biotechnol, 32, 148-154.  
17147613 A.D.Frey, B.T.Oberle, J.Farrés, and P.T.Kallio (2004).
Expression of Vitreoscilla haemoglobin in tobacco cell cultures relieves nitrosative stress in vivo and protects from NO in vitro.
  Plant Biotechnol J, 2, 221-231.  
15161908 A.Pesce, M.Nardini, P.Ascenzi, E.Geuens, S.Dewilde, L.Moens, M.Bolognesi, A.F.Riggs, A.Hale, P.Deng, G.U.Nienhaus, J.S.Olson, and K.Nienhaus (2004).
Thr-E11 regulates O2 affinity in Cerebratulus lacteus mini-hemoglobin.
  J Biol Chem, 279, 33662-33672.
PDB code: 1v07
15096613 T.A.Freitas, S.Hou, E.M.Dioum, J.A.Saito, J.Newhouse, G.Gonzalez, M.A.Gilles-Gonzalez, and M.Alam (2004).
Ancestral hemoglobins in Archaea.
  Proc Natl Acad Sci U S A, 101, 6675-6680.  
14550944 A.D.Frey, and P.T.Kallio (2003).
Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology.
  FEMS Microbiol Rev, 27, 525-545.  
12796507 E.Geuens, I.Brouns, D.Flamez, S.Dewilde, J.P.Timmermans, and L.Moens (2003).
A globin in the nucleus!
  J Biol Chem, 278, 30417-30420.  
12719529 M.Milani, P.Y.Savard, H.Ouellet, P.Ascenzi, M.Guertin, and M.Bolognesi (2003).
A TyrCD1/TrpG8 hydrogen bond network and a TyrB10TyrCD1 covalent link shape the heme distal site of Mycobacterium tuberculosis hemoglobin O.
  Proc Natl Acad Sci U S A, 100, 5766-5771.
PDB code: 1ngk
12962628 W.Zhang, and G.N.Phillips (2003).
Structure of the oxygen sensor in Bacillus subtilis: signal transduction of chemotaxis by control of symmetry.
  Structure, 11, 1097-1110.
PDB codes: 1or4 1or6
12015154 A.Pesce, M.Nardini, S.Dewilde, E.Geuens, K.Yamauchi, P.Ascenzi, A.F.Riggs, L.Moens, and M.Bolognesi (2002).
The 109 residue nerve tissue minihemoglobin from Cerebratulus lacteus highlights striking structural plasticity of the alpha-helical globin fold.
  Structure, 10, 725-735.
PDB code: 1kr7
11959913 H.Ouellet, Y.Ouellet, C.Richard, M.Labarre, B.Wittenberg, J.Wittenberg, and M.Guertin (2002).
Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide.
  Proc Natl Acad Sci U S A, 99, 5902-5907.  
12080058 K.W.Park, K.J.Kim, A.J.Howard, B.C.Stark, and D.A.Webster (2002).
Vitreoscilla hemoglobin binds to subunit I of cytochrome bo ubiquinol oxidases.
  J Biol Chem, 277, 33334-33337.  
11900532 M.Mukai, P.Y.Savard, H.Ouellet, M.Guertin, and S.R.Yeh (2002).
Unique ligand-protein interactions in a new truncated hemoglobin from Mycobacterium tuberculosis.
  Biochemistry, 41, 3897-3905.  
12117950 T.M.Stevanin, R.K.Poole, E.A.Demoncheaux, and R.C.Read (2002).
Flavohemoglobin Hmp protects Salmonella enterica serovar typhimurium from nitric oxide-related killing by human macrophages.
  Infect Immun, 70, 4399-4405.  
11483493 M.Milani, A.Pesce, Y.Ouellet, P.Ascenzi, M.Guertin, and M.Bolognesi (2001).
Mycobacterium tuberculosis hemoglobin N displays a protein tunnel suited for O2 diffusion to the heme.
  EMBO J, 20, 3902-3909.
PDB code: 1idr
11343922 W.E.Royer, J.E.Knapp, K.Strand, and H.A.Heaslet (2001).
Cooperative hemoglobins: conserved fold, diverse quaternary assemblies and allosteric mechanisms.
  Trends Biochem Sci, 26, 297-304.  
10777548 A.M.Gardner, L.A.Martin, P.R.Gardner, Y.Dou, and J.S.Olson (2000).
Steady-state and transient kinetics of Escherichia coli nitric-oxide dioxygenase (flavohemoglobin). The B10 tyrosine hydroxyl is essential for dioxygen binding and catalysis.
  J Biol Chem, 275, 12581-12589.  
10835341 A.Pesce, M.Couture, S.Dewilde, M.Guertin, K.Yamauchi, P.Ascenzi, L.Moens, and M.Bolognesi (2000).
A novel two-over-two alpha-helical sandwich fold is characteristic of the truncated hemoglobin family.
  EMBO J, 19, 2424-2434.
PDB codes: 1dlw 1dly
11005927 C.I.Andersson, N.Holmberg, J.Farrés, J.E.Bailey, L.Bülow, and P.T.Kallio (2000).
Error-prone PCR of Vitreoscilla hemoglobin (VHb) to support the growth of microaerobic Escherichia coli.
  Biotechnol Bioeng, 70, 446-455.  
10986467 M.S.Hargrove, E.A.Brucker, B.Stec, G.Sarath, R.Arredondo-Peter, R.V.Klucas, J.S.Olson, and G.N.Phillips (2000).
Crystal structure of a nonsymbiotic plant hemoglobin.
  Structure, 8, 1005-1014.
PDB code: 1d8u
10636862 S.R.Yeh, M.Couture, Y.Ouellet, M.Guertin, and D.L.Rousseau (2000).
A cooperative oxygen binding hemoglobin from Mycobacterium tuberculosis. Stabilization of heme ligands by a distal tyrosine residue.
  J Biol Chem, 275, 1679-1684.  
18763116 Y.Xia, J.Wu, S.Guang, H.Zhang, S.Liang, and Y.Shi (2000).
Proton NMR investigation of heme and surrounding proton in low-spin cyanide-ligated bacterial hemoglobin fromVitreoscilla.
  Sci China C Life Sci, 43, 57-67.  
10336624 G.Ollesch, A.Kaunzinger, D.Juchelka, M.Schubert-Zsilavecz, and U.Ermler (1999).
Phospholipid bound to the flavohemoprotein from Alcaligenes eutrophus.
  Eur J Biochem, 262, 396-405.  
10378271 H.A.Heaslet, and W.E.Royer (1999).
The 2.7 A crystal structure of deoxygenated hemoglobin from the sea lamprey (Petromyzon marinus): structural basis for a lowered oxygen affinity and Bohr effect.
  Structure, 7, 517-526.
PDB code: 3lhb
10500158 M.Couture, S.R.Yeh, B.A.Wittenberg, J.B.Wittenberg, Y.Ouellet, D.L.Rousseau, and M.Guertin (1999).
A cooperative oxygen-binding hemoglobin from Mycobacterium tuberculosis.
  Proc Natl Acad Sci U S A, 96, 11223-11228.  
10099387 C.Tari, S.J.Parulekar, B.C.Stark, and D.A.Webster (1998).
Synthesis and excretion of alpha-amylase in vgb+ and vgb- recombinant Escherichia coli: a comparative study.
  Biotechnol Bioeng, 59, 673-678.  
  9603838 M.Joshi, S.Mande, and K.L.Dikshit (1998).
Hemoglobin biosynthesis in Vitreoscilla stercoraria DW: cloning, expression, and characterization of a new homolog of a bacterial globin gene.
  Appl Environ Microbiol, 64, 2220-2228.  
9642264 T.L.Vandergon, C.K.Riggs, T.A.Gorr, J.M.Colacino, and A.F.Riggs (1998).
The mini-hemoglobins in neural and body wall tissue of the nemertean worm, Cerebratulus lacteus.
  J Biol Chem, 273, 16998-17011.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer