|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
(+ 5 more)
237 a.a.
|
 |
|
|
|
|
|
|
|
252 a.a.
|
 |
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Membrane protein
|
 |
|
Title:
|
 |
Crystal structure of the membrane fusion protein, mexa of the multidrug transporter
|
|
Structure:
|
 |
Multidrug resistance protein mexa. Chain: a, b, c, d, e, f, g, h, i, j, k, l, m. Synonym: membrane fusion protein mexa. Engineered: yes
|
|
Source:
|
 |
Pseudomonas aeruginosa. Organism_taxid: 287. Expressed in: pseudomonas aeruginosa. Expression_system_taxid: 287.
|
|
Biol. unit:
|
 |
30mer (from
)
|
|
Resolution:
|
 |
|
2.40Å
|
R-factor:
|
0.259
|
R-free:
|
0.282
|
|
|
Authors:
|
 |
H.Akama,T.Matsuura,S.Kashiwagi,H.Yoneyama,T.Tsukihara,A.Nakagawa, T.Nakae
|
Key ref:
|
 |
H.Akama
et al.
(2004).
Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa.
J Biol Chem,
279,
25939-25942.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
09-Apr-04
|
Release date:
|
25-May-04
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
J Biol Chem
279:25939-25942
(2004)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa.
|
|
H.Akama,
T.Matsuura,
S.Kashiwagi,
H.Yoneyama,
S.Narita,
T.Tsukihara,
A.Nakagawa,
T.Nakae.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The MexAB-OprM efflux pump of Pseudomonas aeruginosa is central to multidrug
resistance of this organism, which infects immunocompromised hospital patients.
The MexA, MexB, and OprM subunits were assumed to function as the membrane
fusion protein, the body of the transporter, and the outer membrane channel
protein, respectively. For better understanding of this important xenobiotic
transporter, we show the x-ray crystallographic structure of MexA at a
resolution of 2.40 A. The global MexA structure showed unforeseen new features
with a spiral assembly of six and seven protomers that were joined together at
one end by a pseudo 2-fold image. The protomer showed a new protein structure
with a tandem arrangement consisting of at least three domains and presumably
one more. The rod domain had a long hairpin of twisted coiled-coil that extended
to one end. The second domain adjacent to the rod alpha-helical domain was
globular and constructed by a cluster of eight short beta-sheets. The third
domain located distal to the alpha-helical rod was globular and composed of
seven short beta-sheets and one short alpha-helix. The 13-mer was shaped like a
woven rattan cylinder with a large internal tubular space and widely opened
flared ends. The 6-mer and 7-mer had a funnel-like structure consisting of a
tubular rod at one side and a widely opened flared funnel top at the other side.
Based on these results, we constructed a model of the MexAB-OprM pump assembly.
The three pairs of MexA dimers interacted with the periplasmic alpha-barrel
domain of OprM via the alpha-helical hairpin, the second domain interacted with
both MexB and OprM at their contact site, and the third and disordered domains
probably interacted with the distal domain of MexB. In this fashion, the MexA
subunit connected MexB and OprM, indicating that MexA is the membrane bridge
protein.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
FIG. 2. Stereo view of the MexA monomer. Ribbon model of
the MexA monomer: gradient rainbow color of blue to red
indicates N- to C-terminal.
|
 |
Figure 3.
FIG. 3. Ribbon diagrams of a representative MexA structure.
A, stereo side view of the structure of the tridecamer. Heptamer
and hexamer are colored red and blue, respectively. B, bottom
view of Fig. 1A (hexamer). Each monomer is distinguished by
alternatively changing the color to blue and gray, respectively.
C, top view of Fig. 1A (heptamer). Each monomer is distinguished
by alternatively changing the color to red and gray,
respectively. The figures were drawn by MolScript version 2.1.2
(40) and Raster 3D version 2.7b (41).
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from the ASBMB:
J Biol Chem
(2004,
279,
25939-25942)
copyright 2004.
|
|
| |
Figures were
selected
by the author.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
C.C.Su,
F.Long,
and
E.W.Yu
(2011).
The Cus efflux system removes toxic ions via a methionine shuttle.
|
| |
Protein Sci,
20,
6.
|
 |
|
|
|
|
 |
C.C.Su,
F.Long,
M.T.Zimmermann,
K.R.Rajashankar,
R.L.Jernigan,
and
E.W.Yu
(2011).
Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli.
|
| |
Nature,
470,
558-562.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Welch,
C.U.Awah,
S.Jing,
H.W.van Veen,
and
H.Venter
(2010).
Promiscuous partnering and independent activity of MexB, the multidrug transporter protein from Pseudomonas aeruginosa.
|
| |
Biochem J,
430,
355-364.
|
 |
|
|
|
|
 |
E.Perrin,
M.Fondi,
M.C.Papaleo,
I.Maida,
S.Buroni,
M.R.Pasca,
G.Riccardi,
and
R.Fani
(2010).
Exploring the HME and HAE1 efflux systems in the genus Burkholderia.
|
| |
BMC Evol Biol,
10,
164.
|
 |
|
|
|
|
 |
F.De Angelis,
J.K.Lee,
J.D.O'Connell,
L.J.Miercke,
K.H.Verschueren,
V.Srinivasan,
C.Bauvois,
C.Govaerts,
R.A.Robbins,
J.M.Ruysschaert,
R.M.Stroud,
and
G.Vandenbussche
(2010).
Metal-induced conformational changes in ZneB suggest an active role of membrane fusion proteins in efflux resistance systems.
|
| |
Proc Natl Acad Sci U S A,
107,
11038-11043.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Long,
C.C.Su,
M.T.Zimmermann,
S.E.Boyken,
K.R.Rajashankar,
R.L.Jernigan,
and
E.W.Yu
(2010).
Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport.
|
| |
Nature,
467,
484-488.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.M.Kim,
Y.Xu,
M.Lee,
S.Piao,
S.H.Sim,
N.C.Ha,
and
K.Lee
(2010).
Functional relationships between the AcrA hairpin tip region and the TolC aperture tip region for the formation of the bacterial tripartite efflux pump AcrAB-TolC.
|
| |
J Bacteriol,
192,
4498-4503.
|
 |
|
|
|
|
 |
H.Yoneyama,
K.Akiba,
H.Hori,
T.Ando,
and
T.Nakae
(2010).
Tat pathway-mediated translocation of the sec pathway substrate protein MexA, an inner membrane component of the MexAB-OprM xenobiotic extrusion pump in Pseudomonas aeruginosa.
|
| |
Antimicrob Agents Chemother,
54,
1492-1497.
|
 |
|
|
|
|
 |
A.Mikolay,
and
D.H.Nies
(2009).
The ABC-transporter AtmA is involved in nickel and cobalt resistance of Cupriavidus metallidurans strain CH34.
|
| |
Antonie Van Leeuwenhoek,
96,
183-191.
|
 |
|
|
|
|
 |
C.C.Su,
F.Yang,
F.Long,
D.Reyon,
M.D.Routh,
D.W.Kuo,
A.K.Mokhtari,
J.D.Van Ornam,
K.L.Rabe,
J.A.Hoy,
Y.J.Lee,
K.R.Rajashankar,
and
E.W.Yu
(2009).
Crystal structure of the membrane fusion protein CusB from Escherichia coli.
|
| |
J Mol Biol,
393,
342-355.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.B.Tikhonova,
V.Dastidar,
V.V.Rybenkov,
and
H.I.Zgurskaya
(2009).
Kinetic control of TolC recruitment by multidrug efflux complexes.
|
| |
Proc Natl Acad Sci U S A,
106,
16416-16421.
|
 |
|
|
|
|
 |
F.A.Martin,
D.M.Posadas,
M.C.Carrica,
S.L.Cravero,
D.O'Callaghan,
and
A.Zorreguieta
(2009).
Interplay between two RND systems mediating antimicrobial resistance in Brucella suis.
|
| |
J Bacteriol,
191,
2530-2540.
|
 |
|
|
|
|
 |
H.I.Zgurskaya
(2009).
Multicomponent drug efflux complexes: architecture and mechanism of assembly.
|
| |
Future Microbiol,
4,
919-932.
|
 |
|
|
|
|
 |
H.Nikaido,
and
Y.Takatsuka
(2009).
Mechanisms of RND multidrug efflux pumps.
|
| |
Biochim Biophys Acta,
1794,
769-781.
|
 |
|
|
|
|
 |
H.Nikaido
(2009).
Multidrug resistance in bacteria.
|
| |
Annu Rev Biochem,
78,
119-146.
|
 |
|
|
|
|
 |
J.L.Martinez,
M.B.Sánchez,
L.Martínez-Solano,
A.Hernandez,
L.Garmendia,
A.Fajardo,
and
C.Alvarez-Ortega
(2009).
Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems.
|
| |
FEMS Microbiol Rev,
33,
430-449.
|
 |
|
|
|
|
 |
K.Larue,
M.S.Kimber,
R.Ford,
and
C.Whitfield
(2009).
Biochemical and structural analysis of bacterial O-antigen chain length regulator proteins reveals a conserved quaternary structure.
|
| |
J Biol Chem,
284,
7395-7403.
|
 |
|
|
|
|
 |
K.M.Pos
(2009).
Trinity revealed: Stoichiometric complex assembly of a bacterial multidrug efflux pump.
|
| |
Proc Natl Acad Sci U S A,
106,
6893-6894.
|
 |
|
|
|
|
 |
L.Cuthbertson,
I.L.Mainprize,
J.H.Naismith,
and
C.Whitfield
(2009).
Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria.
|
| |
Microbiol Mol Biol Rev,
73,
155-177.
|
 |
|
|
|
|
 |
M.F.Symmons,
E.Bokma,
E.Koronakis,
C.Hughes,
and
V.Koronakis
(2009).
The assembled structure of a complete tripartite bacterial multidrug efflux pump.
|
| |
Proc Natl Acad Sci U S A,
106,
7173-7178.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Reffay,
Y.Gambin,
H.Benabdelhak,
G.Phan,
N.Taulier,
A.Ducruix,
R.S.Hodges,
and
W.Urbach
(2009).
Tracking membrane protein association in model membranes.
|
| |
PLoS ONE,
4,
e5035.
|
 |
|
|
|
|
 |
Q.Ge,
Y.Yamada,
and
H.Zgurskaya
(2009).
The C-terminal domain of AcrA is essential for the assembly and function of the multidrug efflux pump AcrAB-TolC.
|
| |
J Bacteriol,
191,
4365-4371.
|
 |
|
|
|
|
 |
R.Misra,
and
V.N.Bavro
(2009).
Assembly and transport mechanism of tripartite drug efflux systems.
|
| |
Biochim Biophys Acta,
1794,
817-825.
|
 |
|
|
|
|
 |
S.Buroni,
M.R.Pasca,
R.S.Flannagan,
S.Bazzini,
A.Milano,
I.Bertani,
V.Venturi,
M.A.Valvano,
and
G.Riccardi
(2009).
Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance.
|
| |
BMC Microbiol,
9,
200.
|
 |
|
|
|
|
 |
T.Mima,
N.Kohira,
Y.Li,
H.Sekiya,
W.Ogawa,
T.Kuroda,
and
T.Tsuchiya
(2009).
Gene cloning and characteristics of the RND-type multidrug efflux pump MuxABC-OpmB possessing two RND components in Pseudomonas aeruginosa.
|
| |
Microbiology,
155,
3509-3517.
|
 |
|
|
|
|
 |
T.von Rozycki,
and
D.H.Nies
(2009).
Cupriavidus metallidurans: evolution of a metal-resistant bacterium.
|
| |
Antonie Van Leeuwenhoek,
96,
115-139.
|
 |
|
|
|
|
 |
X.Z.Li,
and
H.Nikaido
(2009).
Efflux-mediated drug resistance in bacteria: an update.
|
| |
Drugs,
69,
1555-1623.
|
 |
|
|
|
|
 |
Y.S.Liu,
Y.Q.Zhang,
L.X.Yang,
T.J.Yao,
and
C.L.Xiao
(2009).
Gene-specific silencing induced by parallel complementary RNA in Pseudomonas aeruginosa.
|
| |
Biotechnol Lett,
31,
1571-1575.
|
 |
|
|
|
|
 |
A.L.Davidson,
E.Dassa,
C.Orelle,
and
J.Chen
(2008).
Structure, function, and evolution of bacterial ATP-binding cassette systems.
|
| |
Microbiol Mol Biol Rev,
72,
317.
|
 |
|
|
|
|
 |
G.Krishnamoorthy,
E.B.Tikhonova,
and
H.I.Zgurskaya
(2008).
Fitting periplasmic membrane fusion proteins to inner membrane transporters: mutations that enable Escherichia coli AcrA to function with Pseudomonas aeruginosa MexB.
|
| |
J Bacteriol,
190,
691-698.
|
 |
|
|
|
|
 |
M.Sugimura,
H.Maseda,
H.Hanaki,
and
T.Nakae
(2008).
Macrolide antibiotic-mediated downregulation of MexAB-OprM efflux pump expression in Pseudomonas aeruginosa.
|
| |
Antimicrob Agents Chemother,
52,
4141-4144.
|
 |
|
|
|
|
 |
S.Piao,
Y.Xu,
and
N.C.Ha
(2008).
Crystallization and preliminary X-ray crystallographic analysis of MacA from Actinobacillus actinomycetemcomitans.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
64,
391-393.
|
 |
|
|
|
|
 |
T.Gristwood,
P.C.Fineran,
L.Everson,
and
G.P.Salmond
(2008).
PigZ, a TetR/AcrR family repressor, modulates secondary metabolism via the expression of a putative four-component resistance-nodulation-cell-division efflux pump, ZrpADBC, in Serratia sp. ATCC 39006.
|
| |
Mol Microbiol,
69,
418-435.
|
 |
|
|
|
|
 |
V.N.Bavro,
Z.Pietras,
N.Furnham,
L.Pérez-Cano,
J.Fernández-Recio,
X.Y.Pei,
R.Misra,
and
B.Luisi
(2008).
Assembly and channel opening in a bacterial drug efflux machine.
|
| |
Mol Cell,
30,
114-121.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
X.R.Bina,
D.Provenzano,
N.Nguyen,
and
J.E.Bina
(2008).
Vibrio cholerae RND family efflux systems are required for antimicrobial resistance, optimal virulence factor production, and colonization of the infant mouse small intestine.
|
| |
Infect Immun,
76,
3595-3605.
|
 |
|
|
|
|
 |
D.Das,
Q.S.Xu,
J.Y.Lee,
I.Ankoudinova,
C.Huang,
Y.Lou,
A.DeGiovanni,
R.Kim,
and
S.H.Kim
(2007).
Crystal structure of the multidrug efflux transporter AcrB at 3.1A resolution reveals the N-terminal region with conserved amino acids.
|
| |
J Struct Biol,
158,
494-502.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Nehme,
and
K.Poole
(2007).
Assembly of the MexAB-OprM multidrug pump of Pseudomonas aeruginosa: component interactions defined by the study of pump mutant suppressors.
|
| |
J Bacteriol,
189,
6118-6127.
|
 |
|
|
|
|
 |
O.Lomovskaya,
H.I.Zgurskaya,
M.Totrov,
and
W.J.Watkins
(2007).
Waltzing transporters and 'the dance macabre' between humans and bacteria.
|
| |
Nat Rev Drug Discov,
6,
56-65.
|
 |
|
|
|
|
 |
S.Lobedanz,
E.Bokma,
M.F.Symmons,
E.Koronakis,
C.Hughes,
and
V.Koronakis
(2007).
A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps.
|
| |
Proc Natl Acad Sci U S A,
104,
4612-4617.
|
 |
|
|
|
|
 |
S.Trépout,
J.C.Taveau,
S.Mornet,
H.Benabdelhak,
A.Ducruix,
and
O.Lambert
(2007).
Organization of reconstituted lipoprotein MexA onto supported lipid membrane.
|
| |
Eur Biophys J,
36,
1029-1037.
|
 |
|
|
|
|
 |
T.Mima,
S.Joshi,
M.Gomez-Escalada,
and
H.P.Schweizer
(2007).
Identification and characterization of TriABC-OpmH, a triclosan efflux pump of Pseudomonas aeruginosa requiring two membrane fusion proteins.
|
| |
J Bacteriol,
189,
7600-7609.
|
 |
|
|
|
|
 |
H.Yoneyama,
and
R.Katsumata
(2006).
Antibiotic resistance in bacteria and its future for novel antibiotic development.
|
| |
Biosci Biotechnol Biochem,
70,
1060-1075.
|
 |
|
|
|
|
 |
J.Mikolosko,
K.Bobyk,
H.I.Zgurskaya,
and
P.Ghosh
(2006).
Conformational flexibility in the multidrug efflux system protein AcrA.
|
| |
Structure,
14,
577-587.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.J.Piddock
(2006).
Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria.
|
| |
Clin Microbiol Rev,
19,
382-402.
|
 |
|
|
|
|
 |
L.Vaccaro,
V.Koronakis,
and
M.S.Sansom
(2006).
Flexibility in a drug transport accessory protein: molecular dynamics simulations of MexA.
|
| |
Biophys J,
91,
558-564.
|
 |
|
|
|
|
 |
M.Iwashita,
J.Nishi,
N.Wakimoto,
R.Fujiyama,
K.Yamamoto,
K.Tokuda,
K.Manago,
and
Y.Kawano
(2006).
Role of the carboxy-terminal region of the outer membrane protein AatA in the export of dispersin from enteroaggregative Escherichia coli.
|
| |
FEMS Microbiol Lett,
256,
266-272.
|
 |
|
|
|
|
 |
M.Kowarik,
N.M.Young,
S.Numao,
B.L.Schulz,
I.Hug,
N.Callewaert,
D.C.Mills,
D.C.Watson,
M.Hernandez,
J.F.Kelly,
M.Wacker,
and
M.Aebi
(2006).
Definition of the bacterial N-glycosylation site consensus sequence.
|
| |
EMBO J,
25,
1957-1966.
|
 |
|
|
|
|
 |
P.Grossi,
and
D.Dalla Gasperina
(2006).
Treatment of Pseudomonas aeruginosa infection in critically ill patients.
|
| |
Expert Rev Anti Infect Ther,
4,
639-662.
|
 |
|
|
|
|
 |
P.Guglierame,
M.R.Pasca,
E.De Rossi,
S.Buroni,
P.Arrigo,
G.Manina,
and
G.Riccardi
(2006).
Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome.
|
| |
BMC Microbiol,
6,
66.
|
 |
|
|
|
|
 |
S.Eda,
H.Maseda,
E.Yoshihara,
and
T.Nakae
(2006).
Assignment of the outer-membrane-subunit-selective domain of the membrane fusion protein in the tripartite xenobiotic efflux pump of Pseudomonas aeruginosa.
|
| |
FEMS Microbiol Lett,
254,
101-107.
|
 |
|
|
|
|
 |
S.Murakami,
R.Nakashima,
E.Yamashita,
T.Matsumoto,
and
A.Yamaguchi
(2006).
Crystal structures of a multidrug transporter reveal a functionally rotating mechanism.
|
| |
Nature,
443,
173-179.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
U.Remminghorst,
and
B.H.Rehm
(2006).
Bacterial alginates: from biosynthesis to applications.
|
| |
Biotechnol Lett,
28,
1701-1712.
|
 |
|
|
|
|
 |
A.L.Pimenta,
K.Racher,
L.Jamieson,
M.A.Blight,
and
I.B.Holland
(2005).
Mutations in HlyD, part of the type 1 translocator for hemolysin secretion, affect the folding of the secreted toxin.
|
| |
J Bacteriol,
187,
7471-7480.
|
 |
|
|
|
|
 |
D.Nehme,
and
K.Poole
(2005).
Interaction of the MexA and MexB components of the MexAB-OprM multidrug efflux system of Pseudomonas aeruginosa: identification of MexA extragenic suppressors of a T578I mutation in MexB.
|
| |
Antimicrob Agents Chemother,
49,
4375-4378.
|
 |
|
|
|
|
 |
E.W.Yu,
J.R.Aires,
G.McDermott,
and
H.Nikaido
(2005).
A periplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study.
|
| |
J Bacteriol,
187,
6804-6815.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Grass,
B.Fricke,
and
D.H.Nies
(2005).
Control of expression of a periplasmic nickel efflux pump by periplasmic nickel concentrations.
|
| |
Biometals,
18,
437-448.
|
 |
|
|
|
|
 |
H.Akama,
M.Kanemaki,
T.Tsukihara,
A.Nakagawa,
and
T.Nakae
(2005).
Preliminary crystallographic analysis of the antibiotic discharge outer membrane lipoprotein OprM of Pseudomonas aeruginosa with an exceptionally long unit cell and complex lattice structure.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
61,
131-133.
|
 |
|
|
|
|
 |
J.M.Pagès,
M.Masi,
and
J.Barbe
(2005).
Inhibitors of efflux pumps in Gram-negative bacteria.
|
| |
Trends Mol Med,
11,
382-389.
|
 |
|
|
|
|
 |
J.R.Aires,
and
H.Nikaido
(2005).
Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli.
|
| |
J Bacteriol,
187,
1923-1929.
|
 |
|
|
|
|
 |
K.G.Wooldridge,
M.Kizil,
D.B.Wells,
and
D.A.Ala'aldeen
(2005).
Unusual genetic organization of a functional type I protein secretion system in Neisseria meningitidis.
|
| |
Infect Immun,
73,
5554-5567.
|
 |
|
|
|
|
 |
O.Lomovskaya,
and
M.Totrov
(2005).
Vacuuming the periplasm.
|
| |
J Bacteriol,
187,
1879-1883.
|
 |
|
|
|
|
 |
R.Chuanchuen,
T.Murata,
N.Gotoh,
and
H.P.Schweizer
(2005).
Substrate-dependent utilization of OprM or OpmH by the Pseudomonas aeruginosa MexJK efflux pump.
|
| |
Antimicrob Agents Chemother,
49,
2133-2136.
|
 |
|
|
|
|
 |
F.Husain,
M.Humbard,
and
R.Misra
(2004).
Interaction between the TolC and AcrA proteins of a multidrug efflux system of Escherichia coli.
|
| |
J Bacteriol,
186,
8533-8536.
|
 |
|
|
|
|
 |
H.Gerken,
and
R.Misra
(2004).
Genetic evidence for functional interactions between TolC and AcrA proteins of a major antibiotic efflux pump of Escherichia coli.
|
| |
Mol Microbiol,
54,
620-631.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |