 |
PDBsum entry 2dhh
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Membrane protein
|
PDB id
|
|
|
|
2dhh
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nature
443:173-179
(2006)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structures of a multidrug transporter reveal a functionally rotating mechanism.
|
|
S.Murakami,
R.Nakashima,
E.Yamashita,
T.Matsumoto,
A.Yamaguchi.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
AcrB is a principal multidrug efflux transporter in Escherichia coli that
cooperates with an outer-membrane channel, TolC, and a membrane-fusion protein,
AcrA. Here we describe crystal structures of AcrB with and without substrates.
The AcrB-drug complex consists of three protomers, each of which has a different
conformation corresponding to one of the three functional states of the
transport cycle. Bound substrate was found in the periplasmic domain of one of
the three protomers. The voluminous binding pocket is aromatic and allows
multi-site binding. The structures indicate that drugs are exported by a
three-step functionally rotating mechanism in which substrates undergo ordered
binding change.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Figure 3: The novel drug translocation pathway for AcrB.
Figure 3 : The novel drug translocation pathway for
AcrB. Unfortunately we are unable to provide accessible
alternative text for this. If you require assistance to access
this image, or to obtain a text description, please contact
npg@nature.com-
Bound minocycline in the binding protomer is shown in a CPK
representation and coloured as in Fig. 1. a, Stereo-pair of the
inner cavities inside the periplasmic region of AcrB viewed from
the side parallel to the membrane plane as in Fig. 1a. The
chicken-wire representation coloured in magenta is the
solvent-accessible inner cavity of the AcrB molecule created
with the program VOIDOO^42 and MAMA^43 of the Uppsala Software
Factory (http://xray.bmc.uu.se/usf/) with slight modifications
(surface-noise removal, and so on). For clarity, the access
protomer is removed. b, Close-up stereo views of the vestibules
in three different transport states, viewed from slightly
diagonally below to the side of the molecule. Three protomers
are superposed using the least-squares superposition program
LSQKAB, from the CCP4 program suite^33. The flexible region
above TM8 and the PC2 subdomain are represented by solid colours
corresponding to the colours in Fig. 1, and the remaining
main-chain tracings are more transparent. The vestibule is
indicated as a dotted circle.
|
 |
Figure 4.
Figure 4: Structure with a slab ( approx- 23
Å) of the transmembrane domain viewed from the periplasmic
side. The side chains of three functionally essential charged
residues—Asp 407, Asp 408 and Lys 940—and functionally
important residue Thr 978 are shown in a ball-and-stick
representation. Colours of the protomers are as in Fig. 1. Roman
numerals indicate the transmembrane helix numbers^13.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2006,
443,
173-179)
copyright 2006.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
C.C.Su,
F.Long,
and
E.W.Yu
(2011).
The Cus efflux system removes toxic ions via a methionine shuttle.
|
| |
Protein Sci,
20,
6.
|
 |
|
|
|
|
 |
C.C.Su,
F.Long,
M.T.Zimmermann,
K.R.Rajashankar,
R.L.Jernigan,
and
E.W.Yu
(2011).
Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli.
|
| |
Nature,
470,
558-562.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Ebel
(2011).
Sedimentation velocity to characterize surfactants and solubilized membrane proteins.
|
| |
Methods,
54,
56-66.
|
 |
|
|
|
|
 |
C.Oswald,
and
K.M.Pos
(2011).
Drug resistance: a periplasmic ménage à trois.
|
| |
Chem Biol,
18,
405-407.
|
 |
|
|
|
|
 |
E.Nikaido,
I.Shirosaka,
A.Yamaguchi,
and
K.Nishino
(2011).
Regulation of the AcrAB multidrug efflux pump in Salmonella enterica serovar Typhimurium in response to indole and paraquat.
|
| |
Microbiology,
157,
648-655.
|
 |
|
|
|
|
 |
G.D.Wright
(2011).
Molecular mechanisms of antibiotic resistance.
|
| |
Chem Commun (Camb),
47,
4055-4061.
|
 |
|
|
|
|
 |
J.M.Bolla,
S.Alibert-Franco,
J.Handzlik,
J.Chevalier,
A.Mahamoud,
G.Boyer,
K.Kieć-Kononowicz,
and
J.M.Pagès
(2011).
Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria.
|
| |
FEBS Lett,
585,
1682-1690.
|
 |
|
|
|
|
 |
K.M.Peters,
B.E.Brooks,
M.A.Schumacher,
R.A.Skurray,
R.G.Brennan,
and
M.H.Brown
(2011).
A single acidic residue can guide binding site selection but does not govern QacR cationic-drug affinity.
|
| |
PLoS One,
6,
e15974.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Monroe,
G.Sennhauser,
M.A.Seeger,
C.Briand,
and
M.G.Grütter
(2011).
Designed ankyrin repeat protein binders for the crystallization of AcrB: Plasticity of the dominant interface.
|
| |
J Struct Biol,
174,
269-281.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.Kulathila,
R.Kulathila,
M.Indic,
and
B.van den Berg
(2011).
Crystal structure of Escherichia coli CusC, the outer membrane component of a heavy metal efflux pump.
|
| |
PLoS One,
6,
e15610.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Nakashima,
K.Sakurai,
S.Yamasaki,
K.Nishino,
and
A.Yamaguchi
(2011).
Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket.
|
| |
Nature,
480,
565-569.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.K.Janganan,
L.Zhang,
V.N.Bavro,
D.Matak-Vinkovic,
N.P.Barrera,
M.F.Burton,
P.G.Steel,
C.V.Robinson,
M.I.Borges-Walmsley,
and
A.R.Walmsley
(2011).
Opening of the outer membrane protein channel in tripartite efflux pumps is induced by interaction with the membrane fusion partner.
|
| |
J Biol Chem,
286,
5484-5493.
|
 |
|
|
|
|
 |
T.Tsukazaki,
H.Mori,
Y.Echizen,
R.Ishitani,
S.Fukai,
T.Tanaka,
A.Perederina,
D.G.Vassylyev,
T.Kohno,
A.D.Maturana,
K.Ito,
and
O.Nureki
(2011).
Structure and function of a membrane component SecDF that enhances protein export.
|
| |
Nature,
474,
235-238.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
X.Y.Pei,
P.Hinchliffe,
M.F.Symmons,
E.Koronakis,
R.Benz,
C.Hughes,
and
V.Koronakis
(2011).
Structures of sequential open states in a symmetrical opening transition of the TolC exit duct.
|
| |
Proc Natl Acad Sci U S A,
108,
2112-2117.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Karasawa,
K.Mitsui,
M.Matsushita,
and
H.Kanazawa
(2010).
Intermolecular cross-linking of monomers in Helicobacter pylori Na+/H+ antiporter NhaA at the dimer interface inhibits antiporter activity.
|
| |
Biochem J,
426,
99.
|
 |
|
|
|
|
 |
A.Louie,
C.Grasso,
N.Bahniuk,
B.Van Scoy,
D.L.Brown,
R.Kulawy,
and
G.L.Drusano
(2010).
The combination of meropenem and levofloxacin is synergistic with respect to both Pseudomonas aeruginosa kill rate and resistance suppression.
|
| |
Antimicrob Agents Chemother,
54,
2646-2654.
|
 |
|
|
|
|
 |
A.Welch,
C.U.Awah,
S.Jing,
H.W.van Veen,
and
H.Venter
(2010).
Promiscuous partnering and independent activity of MexB, the multidrug transporter protein from Pseudomonas aeruginosa.
|
| |
Biochem J,
430,
355-364.
|
 |
|
|
|
|
 |
B.Y.Yun,
Y.Xu,
S.Piao,
N.Kim,
J.H.Yoon,
H.S.Cho,
K.Lee,
and
N.C.Ha
(2010).
Periplasmic domain of CusA in an Escherichia coli Cu+/Ag+ transporter has metal binding sites.
|
| |
J Microbiol,
48,
829-835.
|
 |
|
|
|
|
 |
E.H.Kim,
C.Rensing,
and
M.M.McEvoy
(2010).
Chaperone-mediated copper handling in the periplasm.
|
| |
Nat Prod Rep,
27,
711-719.
|
 |
|
|
|
|
 |
E.Perrin,
M.Fondi,
M.C.Papaleo,
I.Maida,
S.Buroni,
M.R.Pasca,
G.Riccardi,
and
R.Fani
(2010).
Exploring the HME and HAE1 efflux systems in the genus Burkholderia.
|
| |
BMC Evol Biol,
10,
164.
|
 |
|
|
|
|
 |
F.De Angelis,
J.K.Lee,
J.D.O'Connell,
L.J.Miercke,
K.H.Verschueren,
V.Srinivasan,
C.Bauvois,
C.Govaerts,
R.A.Robbins,
J.M.Ruysschaert,
R.M.Stroud,
and
G.Vandenbussche
(2010).
Metal-induced conformational changes in ZneB suggest an active role of membrane fusion proteins in efflux resistance systems.
|
| |
Proc Natl Acad Sci U S A,
107,
11038-11043.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Husain,
and
H.Nikaido
(2010).
Substrate path in the AcrB multidrug efflux pump of Escherichia coli.
|
| |
Mol Microbiol,
78,
320-330.
|
 |
|
|
|
|
 |
F.Long,
C.C.Su,
M.T.Zimmermann,
S.E.Boyken,
K.R.Rajashankar,
R.L.Jernigan,
and
E.W.Yu
(2010).
Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport.
|
| |
Nature,
467,
484-488.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Phan,
H.Benabdelhak,
M.B.Lascombe,
P.Benas,
S.Rety,
M.Picard,
A.Ducruix,
C.Etchebest,
and
I.Broutin
(2010).
Structural and dynamical insights into the opening mechanism of P. aeruginosa OprM channel.
|
| |
Structure,
18,
507-517.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.S.Kim,
D.Nagore,
and
H.Nikaido
(2010).
Multidrug efflux pump MdtBC of Escherichia coli is active only as a B2C heterotrimer.
|
| |
J Bacteriol,
192,
1377-1386.
|
 |
|
|
|
|
 |
H.W.van Veen
(2010).
Structural biology: Last of the multidrug transporters.
|
| |
Nature,
467,
926-927.
|
 |
|
|
|
|
 |
J.A.Bohnert,
B.Karamian,
and
H.Nikaido
(2010).
Optimized Nile Red efflux assay of AcrAB-TolC multidrug efflux system shows competition between substrates.
|
| |
Antimicrob Agents Chemother,
54,
3770-3775.
|
 |
|
|
|
|
 |
J.A.Lundbaek,
S.A.Collingwood,
H.I.Ingólfsson,
R.Kapoor,
and
O.S.Andersen
(2010).
Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes.
|
| |
J R Soc Interface,
7,
373-395.
|
 |
|
|
|
|
 |
J.W.Weeks,
T.Celaya-Kolb,
S.Pecora,
and
R.Misra
(2010).
AcrA suppressor alterations reverse the drug hypersensitivity phenotype of a TolC mutant by inducing TolC aperture opening.
|
| |
Mol Microbiol,
75,
1468-1483.
|
 |
|
|
|
|
 |
K.McLuskey,
A.W.Roszak,
Y.Zhu,
and
N.W.Isaacs
(2010).
Crystal structures of all-alpha type membrane proteins.
|
| |
Eur Biophys J,
39,
723-755.
|
 |
|
|
|
|
 |
K.R.Vinothkumar,
and
R.Henderson
(2010).
Structures of membrane proteins.
|
| |
Q Rev Biophys,
43,
65.
|
 |
|
|
|
|
 |
N.Kamal,
and
W.M.Shafer
(2010).
Biologic activities of the TolC-like protein of Neisseria meningitidis as assessed by functional complementation in Escherichia coli.
|
| |
Antimicrob Agents Chemother,
54,
506-508.
|
 |
|
|
|
|
 |
R.Schulz,
A.V.Vargiu,
F.Collu,
U.Kleinekathöfer,
and
P.Ruggerone
(2010).
Functional rotation of the transporter AcrB: insights into drug extrusion from simulations.
|
| |
PLoS Comput Biol,
6,
e1000806.
|
 |
|
|
|
|
 |
S.P.Lim,
and
H.Nikaido
(2010).
Kinetic parameters of efflux of penicillins by the multidrug efflux transporter AcrAB-TolC of Escherichia coli.
|
| |
Antimicrob Agents Chemother,
54,
1800-1806.
|
 |
|
|
|
|
 |
T.Horiyama,
A.Yamaguchi,
and
K.Nishino
(2010).
TolC dependency of multidrug efflux systems in Salmonella enterica serovar Typhimurium.
|
| |
J Antimicrob Chemother,
65,
1372-1376.
|
 |
|
|
|
|
 |
T.J.Silhavy,
D.Kahne,
and
S.Walker
(2010).
The bacterial cell envelope.
|
| |
Cold Spring Harb Perspect Biol,
2,
a000414.
|
 |
|
|
|
|
 |
X.Q.Yao,
H.Kenzaki,
S.Murakami,
and
S.Takada
(2010).
Drug export and allosteric coupling in a multidrug transporter revealed by molecular simulations.
|
| |
Nat Commun,
1,
117.
|
 |
|
|
|
|
 |
Y.Takatsuka,
C.Chen,
and
H.Nikaido
(2010).
Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli.
|
| |
Proc Natl Acad Sci U S A,
107,
6559-6565.
|
 |
|
|
|
|
 |
Y.Takatsuka,
and
H.Nikaido
(2010).
Site-directed disulfide cross-linking to probe conformational changes of a transporter during its functional cycle: Escherichia coli AcrB multidrug exporter as an example.
|
| |
Methods Mol Biol,
634,
343-354.
|
 |
|
|
|
|
 |
C.C.Su,
F.Yang,
F.Long,
D.Reyon,
M.D.Routh,
D.W.Kuo,
A.K.Mokhtari,
J.D.Van Ornam,
K.L.Rabe,
J.A.Hoy,
Y.J.Lee,
K.R.Rajashankar,
and
E.W.Yu
(2009).
Crystal structure of the membrane fusion protein CusB from Escherichia coli.
|
| |
J Mol Biol,
393,
342-355.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Wehmeier,
S.Schuster,
E.Fähnrich,
W.V.Kern,
and
J.A.Bohnert
(2009).
Site-directed mutagenesis reveals amino acid residues in the Escherichia coli RND efflux pump AcrB that confer macrolide resistance.
|
| |
Antimicrob Agents Chemother,
53,
329-330.
|
 |
|
|
|
|
 |
H.I.Zgurskaya
(2009).
Covalently linked AcrB giant offers a new powerful tool for mechanistic analysis of multidrug efflux in bacteria.
|
| |
J Bacteriol,
191,
1727-1728.
|
 |
|
|
|
|
 |
H.I.Zgurskaya
(2009).
Multicomponent drug efflux complexes: architecture and mechanism of assembly.
|
| |
Future Microbiol,
4,
919-932.
|
 |
|
|
|
|
 |
H.Nikaido,
and
Y.Takatsuka
(2009).
Mechanisms of RND multidrug efflux pumps.
|
| |
Biochim Biophys Acta,
1794,
769-781.
|
 |
|
|
|
|
 |
H.Nikaido
(2009).
Multidrug resistance in bacteria.
|
| |
Annu Rev Biochem,
78,
119-146.
|
 |
|
|
|
|
 |
H.T.Lin,
V.N.Bavro,
N.P.Barrera,
H.M.Frankish,
S.Velamakanni,
H.W.van Veen,
C.V.Robinson,
M.I.Borges-Walmsley,
and
A.R.Walmsley
(2009).
MacB ABC Transporter Is a Dimer Whose ATPase Activity and Macrolide-binding Capacity Are Regulated by the Membrane Fusion Protein MacA.
|
| |
J Biol Chem,
284,
1145-1154.
|
 |
|
|
|
|
 |
J.L.Martinez,
M.B.Sánchez,
L.Martínez-Solano,
A.Hernandez,
L.Garmendia,
A.Fajardo,
and
C.Alvarez-Ortega
(2009).
Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems.
|
| |
FEMS Microbiol Rev,
33,
430-449.
|
 |
|
|
|
|
 |
J.Scherer,
and
D.H.Nies
(2009).
CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34.
|
| |
Mol Microbiol,
73,
601-621.
|
 |
|
|
|
|
 |
J.Weng,
J.Ma,
K.Fan,
and
W.Wang
(2009).
Asymmetric conformational flexibility in the ATP-binding cassette transporter HI1470/1.
|
| |
Biophys J,
96,
1918-1930.
|
 |
|
|
|
|
 |
K.M.Pos
(2009).
Trinity revealed: Stoichiometric complex assembly of a bacterial multidrug efflux pump.
|
| |
Proc Natl Acad Sci U S A,
106,
6893-6894.
|
 |
|
|
|
|
 |
K.Nagano,
and
H.Nikaido
(2009).
Kinetic behavior of the major multidrug efflux pump AcrB of Escherichia coli.
|
| |
Proc Natl Acad Sci U S A,
106,
5854-5858.
|
 |
|
|
|
|
 |
K.Nishino,
Y.Senda,
M.Hayashi-Nishino,
and
A.Yamaguchi
(2009).
Role of the AraC-XylS family regulator YdeO in multi-drug resistance of Escherichia coli.
|
| |
J Antibiot (Tokyo),
62,
251-257.
|
 |
|
|
|
|
 |
L.R.Forrest,
and
G.Rudnick
(2009).
The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters.
|
| |
Physiology (Bethesda),
24,
377-386.
|
 |
|
|
|
|
 |
M.F.Symmons,
E.Bokma,
E.Koronakis,
C.Hughes,
and
V.Koronakis
(2009).
The assembled structure of a complete tripartite bacterial multidrug efflux pump.
|
| |
Proc Natl Acad Sci U S A,
106,
7173-7178.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Tal,
and
S.Schuldiner
(2009).
A coordinated network of transporters with overlapping specificities provides a robust survival strategy.
|
| |
Proc Natl Acad Sci U S A,
106,
9051-9056.
|
 |
|
|
|
|
 |
R.Schulz,
and
U.Kleinekathöfer
(2009).
Transitions between closed and open conformations of TolC: the effects of ions in simulations.
|
| |
Biophys J,
96,
3116-3125.
|
 |
|
|
|
|
 |
Smriti,
P.Zou,
and
H.S.McHaourab
(2009).
Mapping Daunorubicin-binding Sites in the ATP-binding Cassette Transporter MsbA Using Site-specific Quenching by Spin Labels.
|
| |
J Biol Chem,
284,
13904-13913.
|
 |
|
|
|
|
 |
T.Eicher,
L.Brandstätter,
and
K.M.Pos
(2009).
Structural and functional aspects of the multidrug efflux pump AcrB.
|
| |
Biol Chem,
390,
693-699.
|
 |
|
|
|
|
 |
T.von Rozycki,
and
D.H.Nies
(2009).
Cupriavidus metallidurans: evolution of a metal-resistant bacterium.
|
| |
Antonie Van Leeuwenhoek,
96,
115-139.
|
 |
|
|
|
|
 |
X.Z.Li,
and
H.Nikaido
(2009).
Efflux-mediated drug resistance in bacteria: an update.
|
| |
Drugs,
69,
1555-1623.
|
 |
|
|
|
|
 |
Y.Takatsuka,
and
H.Nikaido
(2009).
Covalently linked trimer of the AcrB multidrug efflux pump provides support for the functional rotating mechanism.
|
| |
J Bacteriol,
191,
1729-1737.
|
 |
|
|
|
|
 |
Z.Ma,
F.E.Jacobsen,
and
D.P.Giedroc
(2009).
Coordination chemistry of bacterial metal transport and sensing.
|
| |
Chem Rev,
109,
4644-4681.
|
 |
|
|
|
|
 |
A.L.Davidson,
E.Dassa,
C.Orelle,
and
J.Chen
(2008).
Structure, function, and evolution of bacterial ATP-binding cassette systems.
|
| |
Microbiol Mol Biol Rev,
72,
317.
|
 |
|
|
|
|
 |
D.Veesler,
S.Blangy,
C.Cambillau,
and
G.Sciara
(2008).
There is a baby in the bath water: AcrB contamination is a major problem in membrane-protein crystallization.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
64,
880-885.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.W.Li,
M.Onishi,
T.Kishino,
T.Matsuo,
W.Ogawa,
T.Kuroda,
and
T.Tsuchiya
(2008).
Properties and expression of a multidrug efflux pump AcrAB-KocC from Klebsiella pneumoniae.
|
| |
Biol Pharm Bull,
31,
577-582.
|
 |
|
|
|
|
 |
E.Kilic,
A.Spudich,
U.Kilic,
K.M.Rentsch,
R.Vig,
C.M.Matter,
H.Wunderli-Allenspach,
J.M.Fritschy,
C.L.Bassetti,
and
D.M.Hermann
(2008).
ABCC1: a gateway for pharmacological compounds to the ischaemic brain.
|
| |
Brain,
131,
2679-2689.
|
 |
|
|
|
|
 |
E.Nikaido,
A.Yamaguchi,
and
K.Nishino
(2008).
AcrAB Multidrug Efflux Pump Regulation in Salmonella enterica serovar Typhimurium by RamA in Response to Environmental Signals.
|
| |
J Biol Chem,
283,
24245-24253.
|
 |
|
|
|
|
 |
E.Padan
(2008).
The enlightening encounter between structure and function in the NhaA Na+-H+ antiporter.
|
| |
Trends Biochem Sci,
33,
435-443.
|
 |
|
|
|
|
 |
G.Krishnamoorthy,
E.B.Tikhonova,
and
H.I.Zgurskaya
(2008).
Fitting periplasmic membrane fusion proteins to inner membrane transporters: mutations that enable Escherichia coli AcrA to function with Pseudomonas aeruginosa MexB.
|
| |
J Bacteriol,
190,
691-698.
|
 |
|
|
|
|
 |
H.Hirakawa,
A.Takumi-Kobayashi,
U.Theisen,
T.Hirata,
K.Nishino,
and
A.Yamaguchi
(2008).
AcrS/EnvR represses expression of the acrAB multidrug efflux genes in Escherichia coli.
|
| |
J Bacteriol,
190,
6276-6279.
|
 |
|
|
|
|
 |
H.Yamanaka,
H.Kobayashi,
E.Takahashi,
and
K.Okamoto
(2008).
MacAB is involved in the secretion of Escherichia coli heat-stable enterotoxin II.
|
| |
J Bacteriol,
190,
7693-7698.
|
 |
|
|
|
|
 |
I.Bagai,
C.Rensing,
N.J.Blackburn,
and
M.M.McEvoy
(2008).
Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone.
|
| |
Biochemistry,
47,
11408-11414.
|
 |
|
|
|
|
 |
I.Lehner,
D.Basting,
B.Meyer,
W.Haase,
T.Manolikas,
C.Kaiser,
M.Karas,
and
C.Glaubitz
(2008).
The Key Residue for Substrate Transport (Glu14) in the EmrE Dimer Is Asymmetric.
|
| |
J Biol Chem,
283,
3281-3288.
|
 |
|
|
|
|
 |
J.A.Bohnert,
S.Schuster,
M.A.Seeger,
E.Fähnrich,
K.M.Pos,
and
W.V.Kern
(2008).
Site-directed mutagenesis reveals putative substrate binding residues in the Escherichia coli RND efflux pump AcrB.
|
| |
J Bacteriol,
190,
8225-8229.
|
 |
|
|
|
|
 |
J.Wu,
K.A.Hassan,
R.A.Skurray,
and
M.H.Brown
(2008).
Functional analyses reveal an important role for tyrosine residues in the staphylococcal multidrug efflux protein QacA.
|
| |
BMC Microbiol,
8,
147.
|
 |
|
|
|
|
 |
K.M.Peters,
J.T.Schuman,
R.A.Skurray,
M.H.Brown,
R.G.Brennan,
and
M.A.Schumacher
(2008).
QacR-cation recognition is mediated by a redundancy of residues capable of charge neutralization.
|
| |
Biochemistry,
47,
8122-8129.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Nishino,
Y.Senda,
and
A.Yamaguchi
(2008).
The AraC-family regulator GadX enhances multidrug resistance in Escherichia coli by activating expression of mdtEF multidrug efflux genes.
|
| |
J Infect Chemother,
14,
23-29.
|
 |
|
|
|
|
 |
L.Vaccaro,
K.A.Scott,
and
M.S.Sansom
(2008).
Gating at both ends and breathing in the middle: conformational dynamics of TolC.
|
| |
Biophys J,
95,
5681-5691.
|
 |
|
|
|
|
 |
M.A.Seeger,
C.von Ballmoos,
T.Eicher,
L.Brandstätter,
F.Verrey,
K.Diederichs,
and
K.M.Pos
(2008).
Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB.
|
| |
Nat Struct Mol Biol,
15,
199-205.
|
 |
|
|
|
|
 |
M.S.Wilke,
M.Heller,
A.L.Creagh,
C.A.Haynes,
L.P.McIntosh,
K.Poole,
and
N.C.Strynadka
(2008).
The crystal structure of MexR from Pseudomonas aeruginosa in complex with its antirepressor ArmR.
|
| |
Proc Natl Acad Sci U S A,
105,
14832-14837.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Masaike,
F.Koyama-Horibe,
K.Oiwa,
M.Yoshida,
and
T.Nishizaka
(2008).
Cooperative three-step motions in catalytic subunits of F(1)-ATPase correlate with 80 degrees and 40 degrees substep rotations.
|
| |
Nat Struct Mol Biol,
15,
1326-1333.
|
 |
|
|
|
|
 |
V.Cherezov,
W.Liu,
J.P.Derrick,
B.Luan,
A.Aksimentiev,
V.Katritch,
and
M.Caffrey
(2008).
In meso crystal structure and docking simulations suggest an alternative proteoglycan binding site in the OpcA outer membrane adhesin.
|
| |
Proteins,
71,
24-34.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.N.Bavro,
Z.Pietras,
N.Furnham,
L.Pérez-Cano,
J.Fernández-Recio,
X.Y.Pei,
R.Misra,
and
B.Luisi
(2008).
Assembly and channel opening in a bacterial drug efflux machine.
|
| |
Mol Cell,
30,
114-121.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.A.Elkins,
and
L.B.Mullis
(2007).
Substrate competition studies using whole-cell accumulation assays with the major tripartite multidrug efflux pumps of Escherichia coli.
|
| |
Antimicrob Agents Chemother,
51,
923-929.
|
 |
|
|
|
|
 |
C.C.Su,
H.Nikaido,
and
E.W.Yu
(2007).
Ligand-transporter interaction in the AcrB multidrug efflux pump determined by fluorescence polarization assay.
|
| |
FEBS Lett,
581,
4972-4976.
|
 |
|
|
|
|
 |
C.F.Higgins
(2007).
Multiple molecular mechanisms for multidrug resistance transporters.
|
| |
Nature,
446,
749-757.
|
 |
|
|
|
|
 |
G.Sennhauser,
P.Amstutz,
C.Briand,
O.Storchenegger,
and
M.G.Grütter
(2007).
Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors.
|
| |
PLoS Biol,
5,
e7.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.Bagai,
W.Liu,
C.Rensing,
N.J.Blackburn,
and
M.M.McEvoy
(2007).
Substrate-linked conformational change in the periplasmic component of a Cu(I)/Ag(I) efflux system.
|
| |
J Biol Chem,
282,
35695-35702.
|
 |
|
|
|
|
 |
K.Nishino,
E.Nikaido,
and
A.Yamaguchi
(2007).
Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium.
|
| |
J Bacteriol,
189,
9066-9075.
|
 |
|
|
|
|
 |
O.Lomovskaya,
H.I.Zgurskaya,
M.Totrov,
and
W.J.Watkins
(2007).
Waltzing transporters and 'the dance macabre' between humans and bacteria.
|
| |
Nat Rev Drug Discov,
6,
56-65.
|
 |
|
|
|
|
 |
S.Lobedanz,
E.Bokma,
M.F.Symmons,
E.Koronakis,
C.Hughes,
and
V.Koronakis
(2007).
A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps.
|
| |
Proc Natl Acad Sci U S A,
104,
4612-4617.
|
 |
|
|
|
|
 |
S.Schuldiner
(2007).
When biochemistry meets structural biology: the cautionary tale of EmrE.
|
| |
Trends Biochem Sci,
32,
252-258.
|
 |
|
|
|
|
 |
S.Törnroth-Horsefield,
P.Gourdon,
R.Horsefield,
L.Brive,
N.Yamamoto,
H.Mori,
A.Snijder,
and
R.Neutze
(2007).
Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist.
|
| |
Structure,
15,
1663-1673.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Trépout,
J.C.Taveau,
S.Mornet,
H.Benabdelhak,
A.Ducruix,
and
O.Lambert
(2007).
Organization of reconstituted lipoprotein MexA onto supported lipid membrane.
|
| |
Eur Biophys J,
36,
1029-1037.
|
 |
|
|
|
|
 |
V.Dastidar,
W.Mao,
O.Lomovskaya,
and
H.I.Zgurskaya
(2007).
Drug-induced conformational changes in multidrug efflux transporter AcrB from Haemophilus influenzae.
|
| |
J Bacteriol,
189,
5550-5558.
|
 |
|
|
|
|
 |
X.Xie,
and
Y.Tang
(2007).
Efficient synthesis of simvastatin by use of whole-cell biocatalysis.
|
| |
Appl Environ Microbiol,
73,
2054-2060.
|
 |
|
|
|
|
 |
Y.Takatsuka,
and
H.Nikaido
(2007).
Site-directed disulfide cross-linking shows that cleft flexibility in the periplasmic domain is needed for the multidrug efflux pump AcrB of Escherichia coli.
|
| |
J Bacteriol,
189,
8677-8684.
|
 |
|
|
|
|
 |
S.Schuldiner
(2006).
Structural biology: the ins and outs of drug transport.
|
| |
Nature,
443,
156-157.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |