spacer
spacer

PDBsum entry 1ro5

Go to PDB code: 
protein ligands metals links
Signaling protein PDB id
1ro5

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
197 a.a. *
Ligands
SO4 ×4
Metals
_ZN
Waters ×58
* Residue conservation analysis
PDB id:
1ro5
Name: Signaling protein
Title: Crystal structure of the ahl synthase lasi
Structure: Autoinducer synthesis protein lasi. Chain: a. Synonym: ahl synthase lasi. Engineered: yes. Mutation: yes
Source: Pseudomonas aeruginosa. Organism_taxid: 287. Gene: lasi, pa1432. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dodecamer (from PQS)
Resolution:
2.30Å     R-factor:   0.197     R-free:   0.236
Authors: T.A.Gould,H.P.Schweizer,M.E.Churchill
Key ref: T.A.Gould et al. (2004). Structure of the Pseudomonas aeruginosa acyl-homoserinelactone synthase LasI. Mol Microbiol, 53, 1135-1146. PubMed id: 15306017
Date:
01-Dec-03     Release date:   24-Aug-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P33883  (LASI_PSEAE) -  Acyl-homoserine-lactone synthase from Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1)
Seq:
Struc:
201 a.a.
197 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.2.3.1.184  - acyl-homoserine-lactone synthase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a fatty acyl-[ACP] + S-adenosyl-L-methionine = an N-acyl-L-homoserine lactone + S-methyl-5'-thioadenosine + holo-[ACP] + H+
fatty acyl-[ACP]
+ S-adenosyl-L-methionine
= N-acyl-L-homoserine lactone
+ S-methyl-5'-thioadenosine
+ holo-[ACP]
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
Mol Microbiol 53:1135-1146 (2004)
PubMed id: 15306017  
 
 
Structure of the Pseudomonas aeruginosa acyl-homoserinelactone synthase LasI.
T.A.Gould, H.P.Schweizer, M.E.Churchill.
 
  ABSTRACT  
 
The LasI/LasR quorum-sensing system plays a pivotal role in virulence gene regulation of the opportunistic human pathogen, Pseudomonas aeruginosa. Here we report the crystal structure of the acyl-homoserine lactone (AHL) synthase LasI that produces 3-oxo-C12-AHL from the substrates 3-oxo-C12-acyl-carrier protein (acyl-ACP) and S-adenosyl-L-methionine. The LasI six-stranded beta sheet platform, buttressed by three alpha helices, forms a V-shaped substrate-binding cleft that leads to a tunnel passing through the enzyme that can accommodate the acyl-chain of acyl-ACP. This tunnel places no apparent restriction on acyl-chain length, in contrast to a restrictive hydrophobic pocket seen in the AHL-synthase EsaI. Interactions of essential conserved N-terminal residues, Arg23, Phe27 and Trp33, suggest that the N-terminus forms an enclosed substrate-binding pocket for S-adenosyl-L-methionine. Analysis of AHL-synthase surface residues identified a binding site for acyl-ACP, a role that was supported by in vivo reporter assay analysis of the mutated residues, including Arg154 and Lys150. This structure and the novel explanation of AHL-synthase acyl-chain-length selectivity promise to guide the design of Pseudomonas aeruginosa-specific quorum-sensing inhibitors as antibacterial agents.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21258753 J.C.Kwan, T.Meickle, D.Ladwa, M.Teplitski, V.Paul, and H.Luesch (2011).
Lyngbyoic acid, a "tagged" fatty acid from a marine cyanobacterium, disrupts quorum sensing in Pseudomonas aeruginosa.
  Mol Biosyst, 7, 1205-1216.  
20514483 M.A.Savka, P.T.Le, and T.J.Burr (2011).
LasR receptor for detection of long-chain quorum-sensing signals: identification of N-acyl-homoserine lactones encoded by the avsI locus of Agrobacterium vitis.
  Curr Microbiol, 62, 101-110.  
20179876 J.S.Dickschat (2010).
Quorum sensing and bacterial biofilms.
  Nat Prod Rep, 27, 343-369.  
20133764 M.Tizzano, B.D.Gulbransen, A.Vandenbeuch, T.R.Clapp, J.P.Herman, H.M.Sibhatu, M.E.Churchill, W.L.Silver, S.C.Kinnamon, and T.E.Finger (2010).
Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals.
  Proc Natl Acad Sci U S A, 107, 3210-3215.  
20846031 N.Bhargava, P.Sharma, and N.Capalash (2010).
Quorum sensing in Acinetobacter: an emerging pathogen.
  Crit Rev Microbiol, 36, 349-360.  
19123197 P.K.Kambam, D.T.Eriksen, J.Lajoie, D.J.Sayut, and L.Sun (2009).
Altering the substrate specificity of RhlI by directed evolution.
  Chembiochem, 10, 553-558.  
19686078 W.L.Ng, and B.L.Bassler (2009).
Bacterial quorum-sensing network architectures.
  Annu Rev Genet, 43, 197-222.  
18408026 A.Takaya, F.Tabuchi, H.Tsuchiya, E.Isogai, and T.Yamamoto (2008).
Negative regulation of quorum-sensing systems in Pseudomonas aeruginosa by ATP-dependent Lon protease.
  J Bacteriol, 190, 4181-4188.  
18568169 G.D.Geske, J.C.O'Neill, and H.E.Blackwell (2008).
Expanding dialogues: from natural autoinducers to non-natural analogues that modulate quorum sensing in Gram-negative bacteria.
  Chem Soc Rev, 37, 1432-1447.  
18568158 J.S.Cisar, and D.S.Tan (2008).
Small molecule inhibition of microbial natural product biosynthesis-an emerging antibiotic strategy.
  Chem Soc Rev, 37, 1320-1329.  
19022174 M.Cooley, S.R.Chhabra, and P.Williams (2008).
N-Acylhomoserine lactone-mediated quorum sensing: a twist in the tail and a blow for host immunity.
  Chem Biol, 15, 1141-1147.  
18428113 P.K.Kambam, D.J.Sayut, Y.Niu, D.T.Eriksen, and L.Sun (2008).
Directed evolution of LuxI for enhanced OHHL production.
  Biotechnol Bioeng, 101, 263-272.  
17360279 C.E.White, and S.C.Winans (2007).
Cell-cell communication in the plant pathogen Agrobacterium tumefaciens.
  Philos Trans R Soc Lond B Biol Sci, 362, 1135-1148.  
17360280 P.Williams, K.Winzer, W.C.Chan, and M.Cámara (2007).
Look who's talking: communication and quorum sensing in the bacterial world.
  Philos Trans R Soc Lond B Biol Sci, 362, 1119-1134.  
17459113 R.Van Houdt, M.Givskov, and C.W.Michiels (2007).
Quorum sensing in Serratia.
  FEMS Microbiol Rev, 31, 407-424.  
16953322 W.Nasser, and S.Reverchon (2007).
New insights into the regulatory mechanisms of the LuxR family of quorum sensing regulators.
  Anal Bioanal Chem, 387, 381-390.  
16513747 G.Hao, and T.J.Burr (2006).
Regulation of long-chain N-acyl-homoserine lactones in Agrobacterium vitis.
  J Bacteriol, 188, 2173-2183.  
16962965 M.E.Churchill (2006).
A new GNAT in bacterial signaling?
  Structure, 14, 1342-1344.  
16570653 R.A.Scott, J.Weil, P.T.Le, P.Williams, R.G.Fray, S.B.von Bodman, and M.A.Savka (2006).
Long- and short-chain plant-produced bacterial N-acyl-homoserine lactones become components of phyllosphere, rhizosphere, and soil.
  Mol Plant Microbe Interact, 19, 227-239.  
16962973 R.M.Van Wagoner, and J.Clardy (2006).
FeeM, an N-acyl amino acid synthase from an uncultured soil microbe: structure, mechanism, and acyl carrier protein binding.
  Structure, 14, 1425-1435.
PDB code: 2g0b
16385066 T.A.Gould, J.Herman, J.Krank, R.C.Murphy, and M.E.Churchill (2006).
Specificity of acyl-homoserine lactone synthases examined by mass spectrometry.
  J Bacteriol, 188, 773-783.  
16269739 C.Farah, M.Vera, D.Morin, D.Haras, C.A.Jerez, and N.Guiliani (2005).
Evidence for a functional quorum-sensing type AI-1 system in the extremophilic bacterium Acidithiobacillus ferrooxidans.
  Appl Environ Microbiol, 71, 7033-7040.  
16212498 C.M.Waters, and B.L.Bassler (2005).
Quorum sensing: cell-to-cell communication in bacteria.
  Annu Rev Cell Dev Biol, 21, 319-346.  
15634689 G.Brader, S.Sjöblom, H.Hyytiäinen, K.Sims-Huopaniemi, and E.T.Palva (2005).
Altering substrate chain length specificity of an acylhomoserine lactone synthase in bacterial communication.
  J Biol Chem, 280, 10403-10409.  
16077095 K.L.Visick, and C.Fuqua (2005).
Decoding microbial chatter: cell-cell communication in bacteria.
  J Bacteriol, 187, 5507-5519.  
16225687 P.Z.Kozbial, and A.R.Mushegian (2005).
Natural history of S-adenosylmethionine-binding proteins.
  BMC Struct Biol, 5, 19.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer