spacer
spacer

PDBsum entry 1mo8

Go to PDB code: 
protein ligands links
Hydrolase PDB id
1mo8

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
213 a.a. *
Ligands
ATP
* Residue conservation analysis
PDB id:
1mo8
Name: Hydrolase
Title: Atpase
Structure: Sodium/potassium-transporting atpase alpha-1. Chain: a. Fragment: residues 383-595. Synonym: sodium pump, na+/k+ atpase 1. Engineered: yes
Source: Rattus norvegicus. Norway rat. Organism_taxid: 10116. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693.
NMR struc: 20 models
Authors: M.Hilge,G.Siegal,G.W.Vuister,P.Guentert,S.M.Gloor,J.P.Abrahams
Key ref:
M.Hilge et al. (2003). ATP-induced conformational changes of the nucleotide-binding domain of Na,K-ATPase. Nat Struct Biol, 10, 468-474. PubMed id: 12730684 DOI: 10.1038/nsb924
Date:
08-Sep-02     Release date:   10-Jun-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P06685  (AT1A1_RAT) -  Sodium/potassium-transporting ATPase subunit alpha-1 from Rattus norvegicus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1023 a.a.
213 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.7.2.2.13  - Na(+)/K(+)-exchanging ATPase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: K+(out) + Na+(in) + ATP + H2O = K+(in) + Na(+)(out) + ADP + phosphate + H(+)
K(+)(out)
Bound ligand (Het Group name = ATP)
corresponds exactly
+ Na(+)(in)
+ ATP
+ H2O
= K(+)(in)
+ Na(+)(out)
+ ADP
+ phosphate
+ H(+)
      Cofactor: Mg(2+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1038/nsb924 Nat Struct Biol 10:468-474 (2003)
PubMed id: 12730684  
 
 
ATP-induced conformational changes of the nucleotide-binding domain of Na,K-ATPase.
M.Hilge, G.Siegal, G.W.Vuister, P.Güntert, S.M.Gloor, J.P.Abrahams.
 
  ABSTRACT  
 
The Na,K-ATPase hydrolyzes ATP to drive the coupled extrusion and uptake of Na+ and K+ ions across the plasma membrane. Here, we report two high-resolution NMR structures of the 213-residue nucleotide-binding domain of rat alpha1 Na,K-ATPase, determined in the absence and the presence of ATP. The nucleotide binds in the anti conformation and shows a relative paucity of interactions with the protein, reflecting the low-affinity ATP-binding state. Binding of ATP induces substantial conformational changes in the binding pocket and in residues located in the hinge region connecting the N- and P-domains. Structural comparison with the Ca-ATPase stabilized by the inhibitor thapsigargin, E2(TG), and the model of the H-ATPase in the E1 form suggests that the observed changes may trigger the series of events necessary for the release of the K+ ions and/or disengagement of the A-domain, leading to the eventual transfer of the gamma-phosphate group to the invariant Asp369.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. ATP binding to the N-domain of NaK 1. (a) Titration curves for ATP (red), ADP (green) and MgATP (blue) giving K[d] values of 5.1, 24.2 and 25.1 mM, respectively, with standard deviations of 0.4, 5.3 and 8.6, respectively. (b) Mapping of chemical shift changes on the molecular surface of the N-domain of NaK 1. The color code reflects the normalized weighted average of the 1H and 15N chemical shifts calculated as (( 2[NH] + 2[N] / 25) / 2)1/2 / [max], where [max] is the maximum observed weighted shift difference in p.p.m.38. The most significant changes are in red and the moderate changes in yellow. (c) The ATP-binding pocket displaying one of the energy-minimized CYANA conformers with ATP and amino acids critical for ATP binding in ball-and-stick representation. (d) Stereo view of the conformational changes at the N and C termini in response to ATP binding. The ATP-bound form of the N-domain is colored blue; the native form of the protein is colored yellow. Binding of ATP (shown in ball and stick; carbon atoms, black; nitrogen, blue; oxygen, red; and phosphorons, magenta) causes a displacement of strands 1 and 6. The disordered loop between residues 391 -408 has been removed for clarity.
Figure 3.
Figure 3. Docking and superposition of the native (green) and ATP-bound (red) N-domain of NaK 1, the E2(TG) form of Ca-ATPase (violet) and E1 form of H-ATPase (blue). (a) Solution structure of the ATP-bound N-domain of NaK 1 and the crystal structure of the E2(TG) form of SERCA1a docked in the 11-Å Cryo-EM structure of Na,K-ATPase illustrating the relative positions of the three cytosolic domains, the TM-domain and the subunit, as well as the difference in positions of the N-domains. The surface corresponds to 75% of the expected molecular volume. (b) Enlarged view of the native and ATP-bound N-domains of NaK 1. (c) Superposition of native and ATP-bound N-domain with the E2(TG) form of Ca-ATPase. (d) Superposition of native and ATP-bound N-domain with the model for the E1 form of H-ATPase. Panels c and d focus on residues in the hinge region between the N- and P-domains.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (2003, 10, 468-474) copyright 2003.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21334305 M.A.Rocafull, F.J.Romero, L.E.Thomas, and J.R.Del Castillo (2011).
Isolation and cloning of the K(+)-independent, ouabain-insensitive Na(+)-ATPase.
  Biochim Biophys Acta, 1808, 1684-1700.  
21351879 M.G.Palmgren, and P.Nissen (2011).
P-type ATPases.
  Annu Rev Biophys, 40, 243-266.  
20809990 J.V.Møller, C.Olesen, A.M.Winther, and P.Nissen (2010).
The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump.
  Q Rev Biophys, 43, 501-566.  
20333435 L.Banci, I.Bertini, F.Cantini, and S.Ciofi-Baffoni (2010).
Cellular copper distribution: a mechanistic systems biology approach.
  Cell Mol Life Sci, 67, 2563-2589.  
19917612 L.Banci, I.Bertini, F.Cantini, S.Inagaki, M.Migliardi, and A.Rosato (2010).
The binding mode of ATP revealed by the solution structure of the N-domain of human ATP7A.
  J Biol Chem, 285, 2537-2544.
PDB codes: 2kmv 2kmx
18957371 J.P.Morth, H.Poulsen, M.S.Toustrup-Jensen, V.R.Schack, J.Egebjerg, J.P.Andersen, B.Vilsen, and P.Nissen (2009).
The structure of the Na+,K+-ATPase and mapping of isoform differences and disease-related mutations.
  Philos Trans R Soc Lond B Biol Sci, 364, 217-227.  
19167286 P.L.Frederix, P.D.Bosshart, and A.Engel (2009).
Atomic force microscopy of biological membranes.
  Biophys J, 96, 329-338.  
19506077 Z.Li, T.Cai, J.Tian, J.X.Xie, X.Zhao, L.Liu, J.I.Shapiro, and Z.Xie (2009).
NaKtide, a Na/K-ATPase-derived peptide Src inhibitor, antagonizes ouabain-activated signal transduction in cultured cells.
  J Biol Chem, 284, 21066-21076.  
18283487 Z.Li, and Z.Xie (2009).
The Na/K-ATPase/Src complex and cardiotonic steroid-activated protein kinase cascades.
  Pflugers Arch, 457, 635-644.  
18075585 J.P.Morth, B.P.Pedersen, M.S.Toustrup-Jensen, T.L.Sørensen, J.Petersen, J.P.Andersen, B.Vilsen, and P.Nissen (2007).
Crystal structure of the sodium-potassium pump.
  Nature, 450, 1043-1049.
PDB codes: 3b8e 3kdp
17425287 K.Munson, R.J.Law, and G.Sachs (2007).
Analysis of the gastric H,K ATPase for ion pathways and inhibitor binding sites.
  Biochemistry, 46, 5398-5417.  
17511473 P.Teriete, C.M.Franzin, J.Choi, and F.M.Marassi (2007).
Structure of the Na,K-ATPase regulatory protein FXYD1 in micelles.
  Biochemistry, 46, 6774-6783.
PDB code: 2jo1
17415608 S.Noguchi, T.Komiya, H.Eguchi, A.Shirahata, J.Nikawa, and M.Kawamura (2007).
Methionine aminopeptidase II: A molecular chaperone for sarcoplasmic reticulum calcium ATPase.
  J Membr Biol, 215, 105-110.  
16649212 M.Kubala (2006).
ATP-binding to P-type ATPases as revealed by biochemical, spectroscopic, and crystallographic experiments.
  Proteins, 64, 1.  
16567646 O.Dmitriev, R.Tsivkovskii, F.Abildgaard, C.T.Morgan, J.L.Markley, and S.Lutsenko (2006).
Solution structure of the N-domain of Wilson disease protein: distinct nucleotide-binding environment and effects of disease mutations.
  Proc Natl Acad Sci U S A, 103, 5302-5307.
PDB code: 2arf
17557166 P.Purhonen, K.Thomsen, A.B.Maunsbach, and H.Hebert (2006).
Association of renal Na,K-ATPase alpha-subunit with the beta- and gamma-subunits based on cryoelectron microscopy.
  J Membr Biol, 214, 139-146.  
16055367 D.C.Masui, R.P.Furriel, E.C.Silva, F.L.Mantelatto, J.C.McNamara, H.Barrabin, H.M.Scofano, C.F.Fontes, and F.A.Leone (2005).
Gill microsomal (Na+,K+)-ATPase from the blue crab Callinectes danae: Interactions at cationic sites.
  Int J Biochem Cell Biol, 37, 2521-2535.  
15708860 E.Cohen, R.Goldshleger, A.Shainskaya, D.M.Tal, C.Ebel, M.le Maire, and S.J.Karlish (2005).
Purification of Na+,K+-ATPase expressed in Pichia pastoris reveals an essential role of phospholipid-protein interactions.
  J Biol Chem, 280, 16610-16618.  
15764602 T.Imagawa, T.Yamamoto, S.Kaya, K.Sakaguchi, and K.Taniguchi (2005).
Thr-774 (transmembrane segment M5), Val-920 (M8), and Glu-954 (M9) are involved in Na+ transport, and Gln-923 (M8) is essential for Na,K-ATPase activity.
  J Biol Chem, 280, 18736-18744.  
15205462 C.T.Morgan, R.Tsivkovskii, Y.A.Kosinsky, R.G.Efremov, and S.Lutsenko (2004).
The distinct functional properties of the nucleotide-binding domain of ATP7B, the human copper-transporting ATPase: analysis of the Wilson disease mutations E1064A, H1069Q, R1151H, and C1104F.
  J Biol Chem, 279, 36363-36371.  
15189143 C.Toyoshima, and G.Inesi (2004).
Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum.
  Annu Rev Biochem, 73, 269-292.  
15229613 C.Toyoshima, and T.Mizutani (2004).
Crystal structure of the calcium pump with a bound ATP analogue.
  Nature, 430, 529-535.
PDB code: 1vfp
15133025 D.B.McIntosh, J.D.Clausen, D.G.Woolley, D.H.MacLennan, B.Vilsen, and J.P.Andersen (2004).
Roles of conserved P domain residues and Mg2+ in ATP binding in the ground and Ca2+-activated states of sarcoplasmic reticulum Ca2+-ATPase.
  J Biol Chem, 279, 32515-32523.  
15381702 M.Liu, and A.Barth (2004).
Phosphorylation of the sarcoplasmic reticulum Ca(2+)-ATPase from ATP and ATP analogs studied by infrared spectroscopy.
  J Biol Chem, 279, 49902-49909.  
15260953 P.de Carvalho Aguiar, K.J.Sweadner, J.T.Penniston, J.Zaremba, L.Liu, M.Caton, G.Linazasoro, M.Borg, M.A.Tijssen, S.B.Bressman, W.B.Dobyns, A.Brashear, and L.J.Ozelius (2004).
Mutations in the Na+/K+ -ATPase alpha3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism.
  Neuron, 43, 169-175.  
15373838 R.Krumscheid, R.Ettrich, Z.Sovová, K.Susánková, Z.Lánský, K.Hofbauerová, H.Linnertz, J.Teisinger, E.Amler, and W.Schoner (2004).
The phosphatase activity of the isolated H4-H5 loop of Na+/K+ ATPase resides outside its ATP binding site.
  Eur J Biochem, 271, 3923-3936.  
14580339 M.V.Poyurovsky, X.Jacq, C.Ma, O.Karni-Schmidt, P.J.Parker, M.Chalfie, J.L.Manley, and C.Prives (2003).
Nucleotide binding by the Mdm2 RING domain facilitates Arf-independent Mdm2 nucleolar localization.
  Mol Cell, 12, 875-887.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer