 |
PDBsum entry 1vfp
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.7.2.2.10
- P-type Ca(2+) transporter.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Ca2+(in) + ATP + H2O = Ca2+(out) + ADP + phosphate + H+
|
 |
 |
 |
 |
 |
Ca(2+)(in)
|
+
|
ATP
|
+
|
H2O
|
=
|
Ca(2+)(out)
Bound ligand (Het Group name = )
matches with 81.25% similarity
|
+
|
ADP
|
+
|
phosphate
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Cofactor:
|
 |
Mg(2+)
|
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Nature
430:529-535
(2004)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structure of the calcium pump with a bound ATP analogue.
|
|
C.Toyoshima,
T.Mizutani.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
P-type ATPases are ATP-powered ion pumps that establish ion concentration
gradients across cell and organelle membranes. Here, we describe the crystal
structure of the Ca2+ pump of skeletal muscle sarcoplasmic reticulum, a
representative member of the P-type ATPase superfamily, with an ATP analogue, a
Mg2+ and two Ca2+ ions in the respective binding sites. In this state, the ATP
analogue reorganizes the three cytoplasmic domains (A, N and P), which are
widely separated without nucleotide, by directly bridging the N and P domains.
The structure of the P-domain itself is altered by the binding of the ATP
analogue and Mg2+. As a result, the A-domain is tilted so that one of the
transmembrane helices moves to lock the cytoplasmic gate of the transmembrane
Ca2+-binding sites. This appears to be the mechanism for occluding the bound
Ca2+ ions, before releasing them into the lumen of the sarcoplasmic reticulum.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Figure 3: Transmembrane Ca^2+-binding sites (I and II) and the
movement of the M1 helix.
a, E1 2Ca^2+;
b, E1 AMPPCP;
c, superimposition of E1 2Ca^2+
(violet) and E1 AMPPCP
(atom colour) in stereo view. Cyan (a–c) and violet spheres
(c) represent bound Ca^2+; red spheres indicate water molecules
in the crystals. Owing to the resolution limitation of the
diffraction data, no water molecules are shown in b. Dotted
lines in c show the coordination of Ca^2+ and hydrogen bonds
involving E309 and D800 side chains.
|
 |
Figure 4.
Figure 4: Omit-annealed F[o] - F[c] map around AMPPCP at 5
sigma- (a)
and the hydrogen-bonding network around AMPPCP (b). AMPPCP is
shown in ball-and-stick representation; the N- and P-domains are
coloured light green and orange, respectively. Light-green
broken lines in b show likely hydrogen bonds. A part of the
N-domain is removed for clarity. Small spheres represent Mg^2+
(green) and two water molecules (red), which coordinate to the
Mg^2+, together with -phosphate,
carboxyl groups of Asp 351 and Asp703, and a carbonyl group of
Thr 353 (orange broken lines in a and dark-green lines in b).
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2004,
430,
529-535)
copyright 2004.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
C.Toyoshima,
S.Yonekura,
J.Tsueda,
and
S.Iwasawa
(2011).
Trinitrophenyl derivatives bind differently from parent adenine nucleotides to Ca2+-ATPase in the absence of Ca2+.
|
| |
Proc Natl Acad Sci U S A,
108,
1833-1838.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.P.Drew,
M.Hrmova,
C.Lunde,
A.K.Jacobs,
M.Tester,
and
G.B.Fincher
(2011).
Structural and functional analyses of PpENA1 provide insights into cation binding by type IID P-type ATPases in lower plants and fungi.
|
| |
Biochim Biophys Acta,
1808,
1483-1492.
|
 |
|
|
|
|
 |
J.P.Morth,
B.P.Pedersen,
M.J.Buch-Pedersen,
J.P.Andersen,
B.Vilsen,
M.G.Palmgren,
and
P.Nissen
(2011).
A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps.
|
| |
Nat Rev Mol Cell Biol,
12,
60-70.
|
 |
|
|
|
|
 |
M.G.Palmgren,
and
P.Nissen
(2011).
P-type ATPases.
|
| |
Annu Rev Biophys,
40,
243-266.
|
 |
|
|
|
|
 |
P.K.Naik,
M.Srivastava,
P.Bajaj,
S.Jain,
A.Dubey,
P.Ranjan,
R.Kumar,
and
H.Singh
(2011).
The binding modes and binding affinities of artemisinin derivatives with Plasmodium falciparum Ca(2+)-ATPase (PfATP6).
|
| |
J Mol Model,
17,
333-357.
|
 |
|
|
|
|
 |
S.Herroeder,
M.E.Schönherr,
S.G.De Hert,
and
M.W.Hollmann
(2011).
Magnesium--essentials for anesthesiologists.
|
| |
Anesthesiology,
114,
971-993.
|
 |
|
|
|
|
 |
S.Mukhopadhyay,
and
A.D.Linstedt
(2011).
Identification of a gain-of-function mutation in a Golgi P-type ATPase that enhances Mn2+ efflux and protects against toxicity.
|
| |
Proc Natl Acad Sci U S A,
108,
858-863.
|
 |
|
|
|
|
 |
H.Suzuki,
K.Yamasaki,
T.Daiho,
and
S.Danko
(2010).
[Mechanism of ca(2+) pump as revealed by mutations, development of stable analogs of phosphorylated intermediates, and their structural analyses].
|
| |
Yakugaku Zasshi,
130,
179-189.
|
 |
|
|
|
|
 |
I.Mangialavori,
M.Ferreira-Gomes,
M.F.Pignataro,
E.E.Strehler,
and
J.P.Rossi
(2010).
Determination of the dissociation constants for Ca2+ and calmodulin from the plasma membrane Ca2+ pump by a lipid probe that senses membrane domain changes.
|
| |
J Biol Chem,
285,
123-130.
|
 |
|
|
|
|
 |
J.V.Møller,
C.Olesen,
A.M.Winther,
and
P.Nissen
(2010).
The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump.
|
| |
Q Rev Biophys,
43,
501-566.
|
 |
|
|
|
|
 |
K.McLuskey,
A.W.Roszak,
Y.Zhu,
and
N.W.Isaacs
(2010).
Crystal structures of all-alpha type membrane proteins.
|
| |
Eur Biophys J,
39,
723-755.
|
 |
|
|
|
|
 |
L.Banci,
I.Bertini,
F.Cantini,
and
S.Ciofi-Baffoni
(2010).
Cellular copper distribution: a mechanistic systems biology approach.
|
| |
Cell Mol Life Sci,
67,
2563-2589.
|
 |
|
|
|
|
 |
L.Banci,
I.Bertini,
F.Cantini,
S.Inagaki,
M.Migliardi,
and
A.Rosato
(2010).
The binding mode of ATP revealed by the solution structure of the N-domain of human ATP7A.
|
| |
J Biol Chem,
285,
2537-2544.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Bublitz,
H.Poulsen,
J.P.Morth,
and
P.Nissen
(2010).
In and out of the cation pumps: P-type ATPase structure revisited.
|
| |
Curr Opin Struct Biol,
20,
431-439.
|
 |
|
|
|
|
 |
M.L.Gumz,
I.J.Lynch,
M.M.Greenlee,
B.D.Cain,
and
C.S.Wingo
(2010).
The renal H+-K+-ATPases: physiology, regulation, and structure.
|
| |
Am J Physiol Renal Physiol,
298,
F12-F21.
|
 |
|
|
|
|
 |
N.Vedovato,
and
D.C.Gadsby
(2010).
The two C-terminal tyrosines stabilize occluded Na/K pump conformations containing Na or K ions.
|
| |
J Gen Physiol,
136,
63-82.
|
 |
|
|
|
|
 |
S.Meier,
N.N.Tavraz,
K.L.Dürr,
and
T.Friedrich
(2010).
Hyperpolarization-activated inward leakage currents caused by deletion or mutation of carboxy-terminal tyrosines of the Na+/K+-ATPase {alpha} subunit.
|
| |
J Gen Physiol,
135,
115-134.
|
 |
|
|
|
|
 |
Y.Sugita,
M.Ikeguchi,
and
C.Toyoshima
(2010).
Relationship between Ca2+-affinity and shielding of bulk water in the Ca2+-pump from molecular dynamics simulations.
|
| |
Proc Natl Acad Sci U S A,
107,
21465-21469.
|
 |
|
|
|
|
 |
A.K.Boal,
and
A.C.Rosenzweig
(2009).
Structural biology of copper trafficking.
|
| |
Chem Rev,
109,
4760-4779.
|
 |
|
|
|
|
 |
C.H.Ho,
S.H.Lin,
H.C.Hu,
and
Y.F.Tsay
(2009).
CHL1 functions as a nitrate sensor in plants.
|
| |
Cell,
138,
1184-1194.
|
 |
|
|
|
|
 |
D.A.Middleton,
E.Hughes,
N.U.Fedosova,
and
M.Esmann
(2009).
Solid-state NMR studies of adenosine 5'-triphosphate freeze-trapped in the nucleotide site of Na,K-ATPase.
|
| |
Chembiochem,
10,
1789-1792.
|
 |
|
|
|
|
 |
D.C.Gadsby
(2009).
Ion channels versus ion pumps: the principal difference, in principle.
|
| |
Nat Rev Mol Cell Biol,
10,
344-352.
|
 |
|
|
|
|
 |
D.C.Gadsby,
A.Takeuchi,
P.Artigas,
and
N.Reyes
(2009).
Review. Peering into an ATPase ion pump with single-channel recordings.
|
| |
Philos Trans R Soc Lond B Biol Sci,
364,
229-238.
|
 |
|
|
|
|
 |
D.R.Weiss,
and
M.Levitt
(2009).
Can morphing methods predict intermediate structures?
|
| |
J Mol Biol,
385,
665-674.
|
 |
|
|
|
|
 |
F.B.Garah,
J.L.Stigliani,
F.Coslédan,
B.Meunier,
and
A.Robert
(2009).
Docking studies of structurally diverse antimalarial drugs targeting PfATP6: no correlation between in silico binding affinity and in vitro antimalarial activity.
|
| |
ChemMedChem,
4,
1469-1479.
|
 |
|
|
|
|
 |
I.Mangialavori,
A.M.Giraldo,
C.M.Buslje,
M.F.Gomes,
A.J.Caride,
and
J.P.Rossi
(2009).
A new conformation in sarcoplasmic reticulum calcium pump and plasma membrane Ca2+ pumps revealed by a photoactivatable phospholipidic probe.
|
| |
J Biol Chem,
284,
4823-4828.
|
 |
|
|
|
|
 |
J.J.Gargus
(2009).
Genetic calcium signaling abnormalities in the central nervous system: seizures, migraine, and autism.
|
| |
Ann N Y Acad Sci,
1151,
133-156.
|
 |
|
|
|
|
 |
J.P.Morth,
H.Poulsen,
M.S.Toustrup-Jensen,
V.R.Schack,
J.Egebjerg,
J.P.Andersen,
B.Vilsen,
and
P.Nissen
(2009).
The structure of the Na+,K+-ATPase and mapping of isoform differences and disease-related mutations.
|
| |
Philos Trans R Soc Lond B Biol Sci,
364,
217-227.
|
 |
|
|
|
|
 |
K.O.Håkansson
(2009).
The structure of Mg-ATPase nucleotide-binding domain at 1.6 A resolution reveals a unique ATP-binding motif.
|
| |
Acta Crystallogr D Biol Crystallogr,
65,
1181-1186.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Kubala,
L.Grycova,
Z.Lansky,
P.Sklenovsky,
M.Janovska,
M.Otyepka,
and
J.Teisinger
(2009).
Changes in electrostatic surface potential of Na+/K+-ATPase cytoplasmic headpiece induced by cytoplasmic ligand(s) binding.
|
| |
Biophys J,
97,
1756-1764.
|
 |
|
|
|
|
 |
M.Lübben,
R.Portmann,
G.Kock,
R.Stoll,
M.M.Young,
and
M.Solioz
(2009).
Structural model of the CopA copper ATPase of Enterococcus hirae based on chemical cross-linking.
|
| |
Biometals,
22,
363-375.
|
 |
|
|
|
|
 |
M.Laursen,
M.Bublitz,
K.Moncoq,
C.Olesen,
J.V.Møller,
H.S.Young,
P.Nissen,
and
J.P.Morth
(2009).
Cyclopiazonic Acid Is Complexed to a Divalent Metal Ion When Bound to the Sarcoplasmic Reticulum Ca2+-ATPase.
|
| |
J Biol Chem,
284,
13513-13518.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Blanco-Arias,
A.P.Einholm,
H.Mamsa,
C.Concheiro,
H.Gutiérrez-de-Terán,
J.Romero,
M.S.Toustrup-Jensen,
A.Carracedo,
J.C.Jen,
B.Vilsen,
and
M.J.Sobrido
(2009).
A C-terminal mutation of ATP1A3 underscores the crucial role of sodium affinity in the pathophysiology of rapid-onset dystonia-parkinsonism.
|
| |
Hum Mol Genet,
18,
2370-2377.
|
 |
|
|
|
|
 |
S.Danko,
T.Daiho,
K.Yamasaki,
X.Liu,
and
H.Suzuki
(2009).
Formation of the stable structural analog of ADP-sensitive phosphoenzyme of Ca2+-ATPase with occluded Ca2+ by beryllium fluoride: structural changes during phosphorylation and isomerization.
|
| |
J Biol Chem,
284,
22722-22735.
|
 |
|
|
|
|
 |
T.Belogus,
H.Haviv,
and
S.J.Karlish
(2009).
Neutralization of the charge on Asp 369 of Na+,K+-ATPase triggers E1 <--> E2 conformational changes.
|
| |
J Biol Chem,
284,
31038-31051.
|
 |
|
|
|
|
 |
T.Shinoda,
H.Ogawa,
F.Cornelius,
and
C.Toyoshima
(2009).
Crystal structure of the sodium-potassium pump at 2.4 A resolution.
|
| |
Nature,
459,
446-450.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Tsuda,
and
C.Toyoshima
(2009).
Nucleotide recognition by CopA, a Cu+-transporting P-type ATPase.
|
| |
EMBO J,
28,
1782-1791.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
V.V.Petrov
(2009).
Functioning of Saccharomyces cerevisiae Pma1 H+-ATPase carrying the minimal number of cysteine residues.
|
| |
Biochemistry (Mosc),
74,
1155-1163.
|
 |
|
|
|
|
 |
X.Liu,
T.Daiho,
K.Yamasaki,
G.Wang,
S.Danko,
and
H.Suzuki
(2009).
Roles of interaction between actuator and nucleotide binding domains of sarco(endo)plasmic reticulum Ca(2+)-ATPase as revealed by single and swap mutational analyses of serine 186 and glutamate 439.
|
| |
J Biol Chem,
284,
25190-25198.
|
 |
|
|
|
|
 |
Y.Hatori,
D.Lewis,
C.Toyoshima,
and
G.Inesi
(2009).
Reaction cycle of Thermotoga maritima copper ATPase and conformational characterization of catalytically deficient mutants.
|
| |
Biochemistry,
48,
4871-4880.
|
 |
|
|
|
|
 |
Y.Huang,
H.Li,
and
Y.Bu
(2009).
Molecular dynamics simulation exploration of cooperative migration mechanism of calcium ions in sarcoplasmic reticulum Ca2+-ATPase.
|
| |
J Comput Chem,
30,
2136-2145.
|
 |
|
|
|
|
 |
A.Takeuchi,
N.Reyes,
P.Artigas,
and
D.C.Gadsby
(2008).
The ion pathway through the opened Na(+),K(+)-ATPase pump.
|
| |
Nature,
456,
413-416.
|
 |
|
|
|
|
 |
C.C.Wu,
W.J.Rice,
and
D.L.Stokes
(2008).
Structure of a copper pump suggests a regulatory role for its metal-binding domain.
|
| |
Structure,
16,
976-985.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Xu,
A.M.Prasad,
G.Inesi,
and
C.Toyoshima
(2008).
Critical role of val-304 in conformational transitions that allow Ca2+ occlusion and phosphoenzyme turnover in the Ca2+ transport ATPase.
|
| |
J Biol Chem,
283,
3297-3304.
|
 |
|
|
|
|
 |
D.J.Müller,
N.Wu,
and
K.Palczewski
(2008).
Vertebrate membrane proteins: structure, function, and insights from biophysical approaches.
|
| |
Pharmacol Rev,
60,
43-78.
|
 |
|
|
|
|
 |
F.A,
J.C,
and
A.H-J
(2008).
Properties of the SR Ca-ATPase in an Open Microsomal Membrane Preparation.
|
| |
Open Biochem J,
2,
91-99.
|
 |
|
|
|
|
 |
G.Inesi,
D.Lewis,
C.Toyoshima,
A.Hirata,
and
L.de Meis
(2008).
Conformational fluctuations of the Ca2+-ATPase in the native membrane environment. Effects of pH, temperature, catalytic substrates, and thapsigargin.
|
| |
J Biol Chem,
283,
1189-1196.
|
 |
|
|
|
|
 |
H.Eguchi,
M.Morii,
Y.Takahashi,
H.Sakai,
M.Nakano,
H.Ochiai,
A.Shirahata,
Y.Hara,
M.Kawamura,
and
K.Takeda
(2008).
Functional consequences of various leucine mutations in the M3/M4 loop of the Na+,K +-ATPase alpha-Subunit.
|
| |
J Membr Biol,
221,
133-140.
|
 |
|
|
|
|
 |
J.D.Clausen,
D.B.McIntosh,
D.G.Woolley,
and
J.P.Andersen
(2008).
Critical Interaction of Actuator Domain Residues Arginine 174, Isoleucine 188, and Lysine 205 with Modulatory Nucleotide in Sarcoplasmic Reticulum Ca2+-ATPase.
|
| |
J Biol Chem,
283,
35703-35714.
|
 |
|
|
|
|
 |
K.Yamasaki,
G.Wang,
T.Daiho,
S.Danko,
and
H.Suzuki
(2008).
Roles of Tyr122-hydrophobic cluster and K+ binding in Ca2+ -releasing process of ADP-insensitive phosphoenzyme of sarcoplasmic reticulum Ca2+ -ATPase.
|
| |
J Biol Chem,
283,
29144-29155.
|
 |
|
|
|
|
 |
M.Andersson,
J.Vincent,
D.van der Spoel,
J.Davidsson,
and
R.Neutze
(2008).
A proposed time-resolved X-ray scattering approach to track local and global conformational changes in membrane transport proteins.
|
| |
Structure,
16,
21-28.
|
 |
|
|
|
|
 |
M.Lape,
C.Elam,
M.Versluis,
R.Kempton,
and
S.Paula
(2008).
Molecular determinants of sarco/endoplasmic reticulum calcium ATPase inhibition by hydroquinone-based compounds.
|
| |
Proteins,
70,
639-649.
|
 |
|
|
|
|
 |
N.J.Traaseth,
K.N.Ha,
R.Verardi,
L.Shi,
J.J.Buffy,
L.R.Masterson,
and
G.Veglia
(2008).
Structural and dynamic basis of phospholamban and sarcolipin inhibition of Ca(2+)-ATPase.
|
| |
Biochemistry,
47,
3.
|
 |
|
|
|
|
 |
A.P.Einholm,
J.P.Andersen,
and
B.Vilsen
(2007).
Importance of Leu99 in transmembrane segment M1 of the Na+, K+ -ATPase in the binding and occlusion of K+.
|
| |
J Biol Chem,
282,
23854-23866.
|
 |
|
|
|
|
 |
A.P.Einholm,
J.P.Andersen,
and
B.Vilsen
(2007).
Roles of transmembrane segment M1 of Na(+),K (+)-ATPase and Ca (2+)-ATPase, the gatekeeper and the pivot.
|
| |
J Bioenerg Biomembr,
39,
357-366.
|
 |
|
|
|
|
 |
B.P.Pedersen,
M.J.Buch-Pedersen,
J.P.Morth,
M.G.Palmgren,
and
P.Nissen
(2007).
Crystal structure of the plasma membrane proton pump.
|
| |
Nature,
450,
1111-1114.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Olesen,
M.Picard,
A.M.Winther,
C.Gyrup,
J.P.Morth,
C.Oxvig,
J.V.Møller,
and
P.Nissen
(2007).
The structural basis of calcium transport by the calcium pump.
|
| |
Nature,
450,
1036-1042.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Toyoshima,
Y.Norimatsu,
S.Iwasawa,
T.Tsuda,
and
H.Ogawa
(2007).
How processing of aspartylphosphate is coupled to lumenal gating of the ion pathway in the calcium pump.
|
| |
Proc Natl Acad Sci U S A,
104,
19831-19836.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.L.Karjalainen,
K.Hauser,
and
A.Barth
(2007).
Proton paths in the sarcoplasmic reticulum Ca(2+) -ATPase.
|
| |
Biochim Biophys Acta,
1767,
1310-1318.
|
 |
|
|
|
|
 |
G.Guerra,
V.V.Petrov,
K.E.Allen,
M.Miranda,
J.P.Pardo,
and
C.W.Slayman
(2007).
Role of transmembrane segment M8 in the biogenesis and function of yeast plasma-membrane H(+)-ATPase.
|
| |
Biochim Biophys Acta,
1768,
2383-2392.
|
 |
|
|
|
|
 |
J.D.Clausen,
D.B.McIntosh,
A.N.Anthonisen,
D.G.Woolley,
B.Vilsen,
and
J.P.Andersen
(2007).
ATP-binding modes and functionally important interdomain bonds of sarcoplasmic reticulum Ca2+-ATPase revealed by mutation of glycine 438, glutamate 439, and arginine 678.
|
| |
J Biol Chem,
282,
20686-20697.
|
 |
|
|
|
|
 |
K.Hauser,
and
A.Barth
(2007).
Side-chain protonation and mobility in the sarcoplasmic reticulum Ca2+-ATPase: implications for proton countertransport and Ca2+ release.
|
| |
Biophys J,
93,
3259-3270.
|
 |
|
|
|
|
 |
K.Moncoq,
C.A.Trieber,
and
H.S.Young
(2007).
The molecular basis for cyclopiazonic acid inhibition of the sarcoplasmic reticulum calcium pump.
|
| |
J Biol Chem,
282,
9748-9757.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Munson,
R.J.Law,
and
G.Sachs
(2007).
Analysis of the gastric H,K ATPase for ion pathways and inhibitor binding sites.
|
| |
Biochemistry,
46,
5398-5417.
|
 |
|
|
|
|
 |
K.N.Ha,
N.J.Traaseth,
R.Verardi,
J.Zamoon,
A.Cembran,
C.B.Karim,
D.D.Thomas,
and
G.Veglia
(2007).
Controlling the Inhibition of the Sarcoplasmic Ca2+-ATPase by Tuning Phospholamban Structural Dynamics.
|
| |
J Biol Chem,
282,
37205-37214.
|
 |
|
|
|
|
 |
K.Nagamune,
W.L.Beatty,
and
L.D.Sibley
(2007).
Artemisinin induces calcium-dependent protein secretion in the protozoan parasite Toxoplasma gondii.
|
| |
Eukaryot Cell,
6,
2147-2156.
|
 |
|
|
|
|
 |
L.Skjaerven,
I.Jonassen,
and
N.Reuter
(2007).
TMM@: a web application for the analysis of transmembrane helix mobility.
|
| |
BMC Bioinformatics,
8,
232.
|
 |
|
|
|
|
 |
M.J.Caplan
(2007).
The future of the pump.
|
| |
J Clin Gastroenterol,
41,
S217-S222.
|
 |
|
|
|
|
 |
M.Takahashi,
Y.Kondou,
and
C.Toyoshima
(2007).
Interdomain communication in calcium pump as revealed in the crystal structures with transmembrane inhibitors.
|
| |
Proc Natl Acad Sci U S A,
104,
5800-5805.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Y.Bartee,
and
S.Lutsenko
(2007).
Hepatic copper-transporting ATPase ATP7B: function and inactivation at the molecular and cellular level.
|
| |
Biometals,
20,
627-637.
|
 |
|
|
|
|
 |
R.F.Rakowski,
P.Artigas,
F.Palma,
M.Holmgren,
P.De Weer,
and
D.C.Gadsby
(2007).
Sodium flux ratio in Na/K pump-channels opened by palytoxin.
|
| |
J Gen Physiol,
130,
41-54.
|
 |
|
|
|
|
 |
T.Daiho,
K.Yamasaki,
S.Danko,
and
H.Suzuki
(2007).
Critical role of Glu40-Ser48 loop linking actuator domain and first transmembrane helix of Ca2+-ATPase in Ca2+ deocclusion and release from ADP-insensitive phosphoenzyme.
|
| |
J Biol Chem,
282,
34429-34447.
|
 |
|
|
|
|
 |
T.Kimura,
P.B.Allen,
A.C.Nairn,
and
M.J.Caplan
(2007).
Arrestins and spinophilin competitively regulate Na+,K+-ATPase trafficking through association with a large cytoplasmic loop of the Na+,K+-ATPase.
|
| |
Mol Biol Cell,
18,
4508-4518.
|
 |
|
|
|
|
 |
X.Liang,
D.J.Campopiano,
and
P.J.Sadler
(2007).
Metals in membranes.
|
| |
Chem Soc Rev,
36,
968-992.
|
 |
|
|
|
|
 |
Y.Hatori,
E.Majima,
T.Tsuda,
and
C.Toyoshima
(2007).
Domain organization and movements in heavy metal ion pumps: papain digestion of CopA, a Cu+-transporting ATPase.
|
| |
J Biol Chem,
282,
25213-25221.
|
 |
|
|
|
|
 |
A.M.Jensen,
T.L.Sørensen,
C.Olesen,
J.V.Møller,
and
P.Nissen
(2006).
Modulatory and catalytic modes of ATP binding by the calcium pump.
|
| |
EMBO J,
25,
2305-2314.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.N.Anthonisen,
J.D.Clausen,
and
J.P.Andersen
(2006).
Mutational analysis of the conserved TGES loop of sarcoplasmic reticulum Ca2+-ATPase.
|
| |
J Biol Chem,
281,
31572-31582.
|
 |
|
|
|
|
 |
C.Li,
K.Geering,
and
J.D.Horisberger
(2006).
The third sodium binding site of Na,K-ATPase is functionally linked to acidic pH-activated inward current.
|
| |
J Membr Biol,
213,
1-9.
|
 |
|
|
|
|
 |
D.L.Stokes,
A.J.Pomfret,
W.J.Rice,
J.P.Glaves,
and
H.S.Young
(2006).
Interactions between Ca2+-ATPase and the pentameric form of phospholamban in two-dimensional co-crystals.
|
| |
Biophys J,
90,
4213-4223.
|
 |
|
|
|
|
 |
F.Tadini-Buoninsegni,
G.Bartolommei,
M.R.Moncelli,
R.Guidelli,
and
G.Inesi
(2006).
Pre-steady state electrogenic events of Ca2+/H+ exchange and transport by the Ca2+-ATPase.
|
| |
J Biol Chem,
281,
37720-37727.
|
 |
|
|
|
|
 |
G.Inesi,
D.Lewis,
H.Ma,
A.Prasad,
and
C.Toyoshima
(2006).
Concerted conformational effects of Ca2+ and ATP are required for activation of sequential reactions in the Ca2+ ATPase (SERCA) catalytic cycle.
|
| |
Biochemistry,
45,
13769-13778.
|
 |
|
|
|
|
 |
J.D.Clausen,
D.B.McIntosh,
D.G.Woolley,
A.N.Anthonisen,
B.Vilsen,
and
J.P.Andersen
(2006).
Asparagine 706 and glutamate 183 at the catalytic site of sarcoplasmic reticulum Ca2+-ATPase play critical but distinct roles in E2 states.
|
| |
J Biol Chem,
281,
9471-9481.
|
 |
|
|
|
|
 |
K.Hauser
(2006).
Electrostatic calculations for assignment of infrared difference bands to carboxyl groups getting protonated during protein reactions.
|
| |
Biopolymers,
82,
430-434.
|
 |
|
|
|
|
 |
K.R.Vanmolkot,
H.Stroink,
J.B.Koenderink,
E.E.Kors,
J.J.van den Heuvel,
E.H.van den Boogerd,
A.H.Stam,
J.Haan,
B.B.De Vries,
G.M.Terwindt,
R.R.Frants,
M.D.Ferrari,
and
A.M.van den Maagdenberg
(2006).
Severe episodic neurological deficits and permanent mental retardation in a child with a novel FHM2 ATP1A2 mutation.
|
| |
Ann Neurol,
59,
310-314.
|
 |
|
|
|
|
 |
M.H.Sazinsky,
A.K.Mandal,
J.M.Argüello,
and
A.C.Rosenzweig
(2006).
Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu+-ATPase.
|
| |
J Biol Chem,
281,
11161-11166.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Haupt,
M.Bramkamp,
M.Heller,
M.Coles,
G.Deckers-Hebestreit,
B.Herkenhoff-Hesselmann,
K.Altendorf,
and
H.Kessler
(2006).
The holo-form of the nucleotide binding domain of the KdpFABC complex from Escherichia coli reveals a new binding mode.
|
| |
J Biol Chem,
281,
9641-9649.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Kubala
(2006).
ATP-binding to P-type ATPases as revealed by biochemical, spectroscopic, and crystallographic experiments.
|
| |
Proteins,
64,
1.
|
 |
|
|
|
|
 |
M.Picard,
C.Toyoshima,
and
P.Champeil
(2006).
Effects of inhibitors on luminal opening of Ca2+ binding sites in an E2P-like complex of sarcoplasmic reticulum Ca22+-ATPase with Be22+-fluoride.
|
| |
J Biol Chem,
281,
3360-3369.
|
 |
|
|
|
|
 |
O.Dmitriev,
R.Tsivkovskii,
F.Abildgaard,
C.T.Morgan,
J.L.Markley,
and
S.Lutsenko
(2006).
Solution structure of the N-domain of Wilson disease protein: distinct nucleotide-binding environment and effects of disease mutations.
|
| |
Proc Natl Acad Sci U S A,
103,
5302-5307.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Purhonen,
K.Thomsen,
A.B.Maunsbach,
and
H.Hebert
(2006).
Association of renal Na,K-ATPase alpha-subunit with the beta- and gamma-subunits based on cryoelectron microscopy.
|
| |
J Membr Biol,
214,
139-146.
|
 |
|
|
|
|
 |
R.E.Dempski,
K.Hartung,
T.Friedrich,
and
E.Bamberg
(2006).
Fluorometric measurements of intermolecular distances between the alpha- and beta-subunits of the Na+/K+-ATPase.
|
| |
J Biol Chem,
281,
36338-36346.
|
 |
|
|
|
|
 |
R.Grisshammer
(2006).
Understanding recombinant expression of membrane proteins.
|
| |
Curr Opin Biotechnol,
17,
337-340.
|
 |
|
|
|
|
 |
R.Nuzzo,
and
C.Toyoshima
(2006).
Profile of Chikashi Toyoshima.
|
| |
Proc Natl Acad Sci U S A,
103,
1165-1167.
|
 |
|
|
|
|
 |
R.P.Clausen
(2006).
Organic chemistry at the interface to biology.
|
| |
Chembiochem,
7,
845-849.
|
 |
|
|
|
|
 |
Y.Miyauchi,
T.Daiho,
K.Yamasaki,
H.Takahashi,
A.Ishida-Yamamoto,
S.Danko,
H.Suzuki,
and
H.Iizuka
(2006).
Comprehensive analysis of expression and function of 51 sarco(endo)plasmic reticulum Ca2+-ATPase mutants associated with Darier disease.
|
| |
J Biol Chem,
281,
22882-22895.
|
 |
|
|
|
|
 |
Y.S.Tsai,
A.Pendse,
S.S.Moy,
I.Mohri,
A.Perez,
J.N.Crawley,
K.Suzuki,
and
N.Maeda
(2006).
A de novo deafwaddler mutation of Pmca2 arising in ES cells and hitchhiking with a targeted modification of the Pparg gene.
|
| |
Mamm Genome,
17,
716-722.
|
 |
|
|
|
|
 |
Y.Wei,
and
D.Fu
(2006).
Binding and transport of metal ions at the dimer interface of the Escherichia coli metal transporter YiiP.
|
| |
J Biol Chem,
281,
23492-23502.
|
 |
|
|
|
|
 |
Z.Chen,
B.L.Akin,
D.L.Stokes,
and
L.R.Jones
(2006).
Cross-linking of C-terminal residues of phospholamban to the Ca2+ pump of cardiac sarcoplasmic reticulum to probe spatial and functional interactions within the transmembrane domain.
|
| |
J Biol Chem,
281,
14163-14172.
|
 |
|
|
|
|
 |
A.C.Uhlemann,
A.Cameron,
U.Eckstein-Ludwig,
J.Fischbarg,
P.Iserovich,
F.A.Zuniga,
M.East,
A.Lee,
L.Brady,
R.K.Haynes,
and
S.Krishna
(2005).
A single amino acid residue can determine the sensitivity of SERCAs to artemisinins.
|
| |
Nat Struct Mol Biol,
12,
628-629.
|
 |
|
|
|
|
 |
A.P.Einholm,
M.Toustrup-Jensen,
J.P.Andersen,
and
B.Vilsen
(2005).
Mutation of Gly-94 in transmembrane segment M1 of Na+,K+-ATPase interferes with Na+ and K+ binding in E2P conformation.
|
| |
Proc Natl Acad Sci U S A,
102,
11254-11259.
|
 |
|
|
|
|
 |
C.Li,
O.Capendeguy,
K.Geering,
and
J.D.Horisberger
(2005).
A third Na+-binding site in the sodium pump.
|
| |
Proc Natl Acad Sci U S A,
102,
12706-12711.
|
 |
|
|
|
|
 |
C.Peinelt,
and
H.J.Apell
(2005).
Kinetics of Ca2+ binding to the SR Ca-ATPase in the E1 state.
|
| |
Biophys J,
89,
2427-2433.
|
 |
|
|
|
|
 |
D.L.Stokes,
F.Delavoie,
W.J.Rice,
P.Champeil,
D.B.McIntosh,
and
J.J.Lacapère
(2005).
Structural studies of a stabilized phosphoenzyme intermediate of Ca2+-ATPase.
|
| |
J Biol Chem,
280,
18063-18072.
|
 |
|
|
|
|
 |
E.Cohen,
R.Goldshleger,
A.Shainskaya,
D.M.Tal,
C.Ebel,
M.le Maire,
and
S.J.Karlish
(2005).
Purification of Na+,K+-ATPase expressed in Pichia pastoris reveals an essential role of phospholipid-protein interactions.
|
| |
J Biol Chem,
280,
16610-16618.
|
 |
|
|
|
|
 |
G.Wang,
K.Yamasaki,
T.Daiho,
and
H.Suzuki
(2005).
Critical hydrophobic interactions between phosphorylation and actuator domains of Ca2+-ATPase for hydrolysis of phosphorylated intermediate.
|
| |
J Biol Chem,
280,
26508-26516.
|
 |
|
|
|
|
 |
J.V.Møller,
C.Olesen,
A.M.Jensen,
and
P.Nissen
(2005).
The structural basis for coupling of Ca2+ transport to ATP hydrolysis by the sarcoplasmic reticulum Ca2+-ATPase.
|
| |
J Bioenerg Biomembr,
37,
359-364.
|
 |
|
|
|
|
 |
K.Obara,
N.Miyashita,
C.Xu,
I.Toyoshima,
Y.Sugita,
G.Inesi,
and
C.Toyoshima
(2005).
Structural role of countertransport revealed in Ca(2+) pump crystal structure in the absence of Ca(2+).
|
| |
Proc Natl Acad Sci U S A,
102,
14489-14496.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.Dode,
J.P.Andersen,
L.Raeymaekers,
L.Missiaen,
B.Vilsen,
and
F.Wuytack
(2005).
Functional comparison between secretory pathway Ca2+/Mn2+-ATPase (SPCA) 1 and sarcoplasmic reticulum Ca2+-ATPase (SERCA) 1 isoforms by steady-state and transient kinetic analyses.
|
| |
J Biol Chem,
280,
39124-39134.
|
 |
|
|
|
|
 |
L.Segall,
A.Mezzetti,
R.Scanzano,
J.J.Gargus,
E.Purisima,
and
R.Blostein
(2005).
Alterations in the alpha2 isoform of Na,K-ATPase associated with familial hemiplegic migraine type 2.
|
| |
Proc Natl Acad Sci U S A,
102,
11106-11111.
|
 |
|
|
|
|
 |
M.Füzesi,
K.E.Gottschalk,
M.Lindzen,
A.Shainskaya,
B.Küster,
H.Garty,
and
S.J.Karlish
(2005).
Covalent cross-links between the gamma subunit (FXYD2) and alpha and beta subunits of Na,K-ATPase: modeling the alpha-gamma interaction.
|
| |
J Biol Chem,
280,
18291-18301.
|
 |
|
|
|
|
 |
M.Jidenko,
R.C.Nielsen,
T.L.Sørensen,
J.V.Møller,
M.le Maire,
P.Nissen,
and
C.Jaxel
(2005).
Crystallization of a mammalian membrane protein overexpressed in Saccharomyces cerevisiae.
|
| |
Proc Natl Acad Sci U S A,
102,
11687-11691.
|
 |
|
|
|
|
 |
M.Liu,
E.L.Karjalainen,
and
A.Barth
(2005).
Use of helper enzymes for ADP removal in infrared spectroscopic experiments: application to Ca2+-ATPase.
|
| |
Biophys J,
88,
3615-3624.
|
 |
|
|
|
|
 |
M.Liu,
M.Krasteva,
and
A.Barth
(2005).
Interactions of phosphate groups of ATP and Aspartyl phosphate with the sarcoplasmic reticulum Ca2+-ATPase: an FTIR study.
|
| |
Biophys J,
89,
4352-4363.
|
 |
|
|
|
|
 |
M.Picard,
C.Toyoshima,
and
P.Champeil
(2005).
The average conformation at micromolar [Ca2+] of Ca2+-atpase with bound nucleotide differs from that adopted with the transition state analog ADP.AlFx or with AMPPCP under crystallization conditions at millimolar [Ca2+].
|
| |
J Biol Chem,
280,
18745-18754.
|
 |
|
|
|
|
 |
M.V.Mikhailov,
J.D.Campbell,
H.de Wet,
K.Shimomura,
B.Zadek,
R.F.Collins,
M.S.Sansom,
R.C.Ford,
and
F.M.Ashcroft
(2005).
3-D structural and functional characterization of the purified KATP channel complex Kir6.2-SUR1.
|
| |
EMBO J,
24,
4166-4175.
|
 |
|
|
|
|
 |
O.Capendeguy,
and
J.D.Horisberger
(2005).
The role of the third extracellular loop of the Na+,K+-ATPase alpha subunit in a luminal gating mechanism.
|
| |
J Physiol,
565,
207-218.
|
 |
|
|
|
|
 |
P.L.Pedersen
(2005).
Transport ATPases: structure, motors, mechanism and medicine: a brief overview.
|
| |
J Bioenerg Biomembr,
37,
349-357.
|
 |
|
|
|
|
 |
R.E.Dempski,
T.Friedrich,
and
E.Bamberg
(2005).
The beta subunit of the Na+/K+-ATPase follows the conformational state of the holoenzyme.
|
| |
J Gen Physiol,
125,
505-520.
|
 |
|
|
|
|
 |
S.Hua,
C.Xu,
H.Ma,
and
G.Inesi
(2005).
Interference with phosphoenzyme isomerization and inhibition of the sarco-endoplasmic reticulum Ca2+ ATPase by 1,3-dibromo-2,4,6-tris(methylisothiouronium) benzene.
|
| |
J Biol Chem,
280,
17579-17583.
|
 |
|
|
|
|
 |
S.Silver,
and
l.e. .T.Phung
(2005).
A bacterial view of the periodic table: genes and proteins for toxic inorganic ions.
|
| |
J Ind Microbiol Biotechnol,
32,
587-605.
|
 |
|
|
|
|
 |
Y.A.Mahmmoud,
H.Vorum,
and
F.Cornelius
(2005).
Interaction of FXYD10 (PLMS) with Na,K-ATPase from shark rectal glands. Close proximity of Cys74 of FXYD10 to Cys254 in the a domain of the alpha-subunit revealed by intermolecular thiol cross-linking.
|
| |
J Biol Chem,
280,
27776-27782.
|
 |
|
|
|
|
 |
A.K.Mandal,
Y.Yang,
T.M.Kertesz,
and
J.M.Argüello
(2004).
Identification of the transmembrane metal binding site in Cu+-transporting PIB-type ATPases.
|
| |
J Biol Chem,
279,
54802-54807.
|
 |
|
|
|
|
 |
C.Olesen,
T.L.Sørensen,
R.C.Nielsen,
J.V.Møller,
and
P.Nissen
(2004).
Dephosphorylation of the calcium pump coupled to counterion occlusion.
|
| |
Science,
306,
2251-2255.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.R.Lancaster
(2004).
Structural biology: ion pump in the movies.
|
| |
Nature,
432,
286-287.
|
 |
|
|
|
|
 |
C.Toyoshima,
H.Nomura,
and
T.Tsuda
(2004).
Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues.
|
| |
Nature,
432,
361-368.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.D.Clausen,
and
J.P.Andersen
(2004).
Functional consequences of alterations to Thr247, Pro248, Glu340, Asp813, Arg819, and Arg822 at the interfaces between domain P, M3, and L6-7 of sarcoplasmic reticulum Ca2+-ATPase. Roles in Ca2+ interaction and phosphoenzyme processing.
|
| |
J Biol Chem,
279,
54426-54437.
|
 |
|
|
|
|
 |
K.Sato,
K.Yamasaki,
T.Daiho,
Y.Miyauchi,
H.Takahashi,
A.Ishida-Yamamoto,
S.Nakamura,
H.Iizuka,
and
H.Suzuki
(2004).
Distinct types of abnormality in kinetic properties of three Darier disease-causing sarco(endo)plasmic reticulum Ca2+-ATPase mutants that exhibit normal expression and high Ca2+ transport activity.
|
| |
J Biol Chem,
279,
35595-35603.
|
 |
|
|
|
|
 |
M.Liu,
and
A.Barth
(2004).
Phosphorylation of the sarcoplasmic reticulum Ca(2+)-ATPase from ATP and ATP analogs studied by infrared spectroscopy.
|
| |
J Biol Chem,
279,
49902-49909.
|
 |
|
|
|
|
 |
T.L.Sørensen,
J.D.Clausen,
A.M.Jensen,
B.Vilsen,
J.V.Møller,
J.P.Andersen,
and
P.Nissen
(2004).
Localization of a K+ -binding site involved in dephosphorylation of the sarcoplasmic reticulum Ca2+ -ATPase.
|
| |
J Biol Chem,
279,
46355-46358.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |