 |
PDBsum entry 1g1f
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Hydrolase, signaling protein
|
PDB id
|
|
|
|
1g1f
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.3.1.3.48
- protein-tyrosine-phosphatase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
O-phospho-L-tyrosyl-[protein] + H2O = L-tyrosyl-[protein] + phosphate
|
 |
 |
 |
 |
 |
O-phospho-L-tyrosyl-[protein]
Bound ligand (Het Group name = )
matches with 76.19% similarity
|
+
|
H2O
|
=
|
L-tyrosyl-[protein]
|
+
|
phosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Mol Cell
6:1401-1412
(2000)
|
|
PubMed id:
|
|
|
|
|
| |
|
Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B.
|
|
A.Salmeen,
J.N.Andersen,
M.P.Myers,
N.K.Tonks,
D.Barford.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The protein tyrosine phosphatase PTP1B is responsible for negatively regulating
insulin signaling by dephosphorylating the phosphotyrosine residues of the
insulin receptor kinase (IRK) activation segment. Here, by integrating
crystallographic, kinetic, and PTP1B peptide binding studies, we define the
molecular specificity of this reaction. Extensive interactions are formed
between PTP1B and the IRK sequence encompassing the tandem pTyr residues at 1162
and 1163 such that pTyr-1162 is selected at the catalytic site and pTyr-1163 is
located within an adjacent pTyr recognition site. This selectivity is attributed
to the 70-fold greater affinity for tandem pTyr-containing peptides relative to
mono-pTyr peptides and predicts a hierarchical dephosphorylation process. Many
elements of the PTP1B-IRK interaction are unique to PTP1B, indicating that it
may be feasible to generate specific, small molecule inhibitors of this
interaction to treat diabetes and obesity.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Figure 2. Structure of the PTP1B Bisphosphorylated IR
Peptide Complex(A) Overview. The PTP loop (residues 215–222)
of PTP1B is shown in yellow, the WPD loop (residues 179-185) in
maroon, the pTyr loop (residues 45–49) in purple, and the Q
loop (residues 258–262) in pink.(B) Stereo view showing
details of the interactions between the bisphosphorylated IRK
peptide and PTP1B.(C) 2F[o]-F[c] electron density omit map,
contoured at the 1 σ level, for the IRK peptide; only pTyr-1162
was included in the refinement and phase calculation of the map.
|
 |
Figure 5.
Figure 5. Schematic Representation of the PTP1B
Bisphosphorylated IR Peptide Interactions
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Mol Cell
(2000,
6,
1401-1412)
copyright 2000.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
J.Revuelta-Cervantes,
R.Mayoral,
S.Miranda,
A.González-Rodríguez,
M.Fernández,
P.Martín-Sanz,
and
A.M.Valverde
(2011).
Protein Tyrosine Phosphatase 1B (PTP1B) deficiency accelerates hepatic regeneration in mice.
|
| |
Am J Pathol,
178,
1591-1604.
|
 |
|
|
|
|
 |
S.Wullschleger,
D.H.Wasserman,
A.Gray,
K.Sakamoto,
and
D.R.Alessi
(2011).
Role of TAPP1 and TAPP2 adaptor binding to PtdIns(3,4)P2 in regulating insulin sensitivity defined by knock-in analysis.
|
| |
Biochem J,
434,
265-274.
|
 |
|
|
|
|
 |
F.Escrivá,
A.González-Rodriguez,
E.Fernández-Millán,
C.M.Rondinone,
C.Alvarez,
and
A.M.Valverde
(2010).
PTP1B deficiency enhances liver growth during suckling by increasing the expression of insulin-like growth factor-I.
|
| |
J Cell Physiol,
225,
214-222.
|
 |
|
|
|
|
 |
K.A.Lantz,
S.G.Hart,
S.L.Planey,
M.F.Roitman,
I.A.Ruiz-White,
H.R.Wolfe,
and
M.P.McLane
(2010).
Inhibition of PTP1B by trodusquemine (MSI-1436) causes fat-specific weight loss in diet-induced obese mice.
|
| |
Obesity (Silver Spring),
18,
1516-1523.
|
 |
|
|
|
|
 |
K.J.Johnson,
A.R.Peck,
C.Liu,
T.H.Tran,
F.E.Utama,
A.B.Sjolund,
J.D.Schaber,
A.K.Witkiewicz,
and
H.Rui
(2010).
PTP1B suppresses prolactin activation of Stat5 in breast cancer cells.
|
| |
Am J Pathol,
177,
2971-2983.
|
 |
|
|
|
|
 |
L.Lu,
S.Wang,
M.Zhu,
Z.Liu,
M.Guo,
S.Xing,
and
X.Fu
(2010).
Inhibition protein tyrosine phosphatases by an oxovanadium glutamate complex, Na2[VO(Glu)2(CH3OH)](Glu = glutamate).
|
| |
Biometals,
23,
1139-1147.
|
 |
|
|
|
|
 |
A.J.Barr,
E.Ugochukwu,
W.H.Lee,
O.N.King,
P.Filippakopoulos,
I.Alfano,
P.Savitsky,
N.A.Burgess-Brown,
S.Müller,
and
S.Knapp
(2009).
Large-scale structural analysis of the classical human protein tyrosine phosphatome.
|
| |
Cell,
136,
352-363.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.L.White,
A.Whittington,
M.J.Barnes,
Z.Wang,
G.A.Bray,
and
C.D.Morrison
(2009).
HF diets increase hypothalamic PTP1B and induce leptin resistance through both leptin-dependent and -independent mechanisms.
|
| |
Am J Physiol Endocrinol Metab,
296,
E291-E299.
|
 |
|
|
|
|
 |
H.Y.Ku,
C.L.Wu,
L.Rabinow,
G.C.Chen,
and
T.C.Meng
(2009).
Organization of F-actin via concerted regulation of Kette by PTP61F and dAbl.
|
| |
Mol Cell Biol,
29,
3623-3632.
|
 |
|
|
|
|
 |
M.Delibegovic,
D.Zimmer,
C.Kauffman,
K.Rak,
E.G.Hong,
Y.R.Cho,
J.K.Kim,
B.B.Kahn,
B.G.Neel,
and
K.K.Bence
(2009).
Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress.
|
| |
Diabetes,
58,
590-599.
|
 |
|
|
|
|
 |
R.Maccari,
R.Ottanà,
R.Ciurleo,
P.Paoli,
G.Manao,
G.Camici,
C.Laggner,
and
T.Langer
(2009).
Structure-based optimization of benzoic acids as inhibitors of protein tyrosine phosphatase 1B and low molecular weight protein tyrosine phosphatase.
|
| |
ChemMedChem,
4,
957-962.
|
 |
|
|
|
|
 |
D.A.Critton,
A.Tortajada,
G.Stetson,
W.Peti,
and
R.Page
(2008).
Structural basis of substrate recognition by hematopoietic tyrosine phosphatase.
|
| |
Biochemistry,
47,
13336-13345.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.E.Sánchez,
P.Beltrao,
F.Stricher,
J.Schymkowitz,
J.Ferkinghoff-Borg,
F.Rousseau,
and
L.Serrano
(2008).
Genome-wide prediction of SH2 domain targets using structural information and the FoldX algorithm.
|
| |
PLoS Comput Biol,
4,
e1000052.
|
 |
|
|
|
|
 |
J.den Hertog,
A.Ostman,
and
F.D.Böhmer
(2008).
Protein tyrosine phosphatases: regulatory mechanisms.
|
| |
FEBS J,
275,
831-847.
|
 |
|
|
|
|
 |
L.Tabernero,
A.R.Aricescu,
E.Y.Jones,
and
S.E.Szedlacsek
(2008).
Protein tyrosine phosphatases: structure-function relationships.
|
| |
FEBS J,
275,
867-882.
|
 |
|
|
|
|
 |
V.Sangwan,
G.N.Paliouras,
J.V.Abella,
N.Dubé,
A.Monast,
M.L.Tremblay,
and
M.Park
(2008).
Regulation of the Met Receptor-tyrosine Kinase by the Protein-tyrosine Phosphatase 1B and T-cell Phosphatase.
|
| |
J Biol Chem,
283,
34374-34383.
|
 |
|
|
|
|
 |
Z.Q.Wang,
D.Ribnicky,
X.H.Zhang,
I.Raskin,
Y.Yu,
and
W.T.Cefalu
(2008).
Bioactives of Artemisia dracunculus L enhance cellular insulin signaling in primary human skeletal muscle culture.
|
| |
Metabolism,
57,
S58-S64.
|
 |
|
|
|
|
 |
A.González-Rodriguez,
O.Escribano,
J.Alba,
C.M.Rondinone,
M.Benito,
and
A.M.Valverde
(2007).
Levels of protein tyrosine phosphatase 1B determine susceptibility to apoptosis in serum-deprived hepatocytes.
|
| |
J Cell Physiol,
212,
76-88.
|
 |
|
|
|
|
 |
A.K.Hirsch,
F.R.Fischer,
and
F.Diederich
(2007).
Phosphate recognition in structural biology.
|
| |
Angew Chem Int Ed Engl,
46,
338-352.
|
 |
|
|
|
|
 |
B.Xue,
Y.B.Kim,
A.Lee,
E.Toschi,
S.Bonner-Weir,
C.R.Kahn,
B.G.Neel,
and
B.B.Kahn
(2007).
Protein-tyrosine phosphatase 1B deficiency reduces insulin resistance and the diabetic phenotype in mice with polygenic insulin resistance.
|
| |
J Biol Chem,
282,
23829-23840.
|
 |
|
|
|
|
 |
C.Grundner,
D.Perrin,
R.Hooft van Huijsduijnen,
D.Swinnen,
J.Gonzalez,
C.L.Gee,
T.N.Wells,
and
T.Alber
(2007).
Structural basis for selective inhibition of Mycobacterium tuberculosis protein tyrosine phosphatase PtpB.
|
| |
Structure,
15,
499-509.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.M.Picha,
S.S.Patel,
S.Mandiyan,
J.Koehn,
and
L.P.Wennogle
(2007).
The role of the C-terminal domain of protein tyrosine phosphatase-1B in phosphatase activity and substrate binding.
|
| |
J Biol Chem,
282,
2911-2917.
|
 |
|
|
|
|
 |
L.I.Pao,
K.Badour,
K.A.Siminovitch,
and
B.G.Neel
(2007).
Nonreceptor protein-tyrosine phosphatases in immune cell signaling.
|
| |
Annu Rev Immunol,
25,
473-523.
|
 |
|
|
|
|
 |
M.Hiromura,
A.Nakayama,
Y.Adachi,
M.Doi,
and
H.Sakurai
(2007).
Action mechanism of bis(allixinato)oxovanadium(IV) as a novel potent insulin-mimetic complex: regulation of GLUT4 translocation and FoxO1 transcription factor.
|
| |
J Biol Inorg Chem,
12,
1275-1287.
|
 |
|
|
|
|
 |
M.Stuible,
L.Zhao,
I.Aubry,
D.Schmidt-Arras,
F.D.Böhmer,
C.J.Li,
and
M.L.Tremblay
(2007).
Cellular inhibition of protein tyrosine phosphatase 1B by uncharged thioxothiazolidinone derivatives.
|
| |
Chembiochem,
8,
179-186.
|
 |
|
|
|
|
 |
S.C.Ruffolo,
P.K.Forsell,
X.Yuan,
S.Desmarais,
J.Himms-Hagen,
W.Cromlish,
K.K.Wong,
and
B.P.Kennedy
(2007).
Basal activation of p70S6K results in adipose-specific insulin resistance in protein-tyrosine phosphatase 1B -/- mice.
|
| |
J Biol Chem,
282,
30423-30433.
|
 |
|
|
|
|
 |
S.K.Kim,
and
R.F.Novak
(2007).
The role of intracellular signaling in insulin-mediated regulation of drug metabolizing enzyme gene and protein expression.
|
| |
Pharmacol Ther,
113,
88.
|
 |
|
|
|
|
 |
X.Yu,
J.P.Sun,
Y.He,
X.Guo,
S.Liu,
B.Zhou,
A.Hudmon,
and
Z.Y.Zhang
(2007).
Structure, inhibitor, and regulatory mechanism of Lyp, a lymphoid-specific tyrosine phosphatase implicated in autoimmune diseases.
|
| |
Proc Natl Acad Sci U S A,
104,
19767-19772.
|
 |
|
|
|
|
 |
A.G.Evdokimov,
M.Pokross,
R.Walter,
M.Mekel,
B.Cox,
C.Li,
R.Bechard,
F.Genbauffe,
R.Andrews,
C.Diven,
B.Howard,
V.Rastogi,
J.Gray,
M.Maier,
and
K.G.Peters
(2006).
Engineering the catalytic domain of human protein tyrosine phosphatase beta for structure-based drug discovery.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
1435-1445.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.J.Barr,
J.E.Debreczeni,
J.Eswaran,
and
S.Knapp
(2006).
Crystal structure of human protein tyrosine phosphatase 14 (PTPN14) at 1.65-A resolution.
|
| |
Proteins,
63,
1132-1136.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Ostman,
C.Hellberg,
and
F.D.Böhmer
(2006).
Protein-tyrosine phosphatases and cancer.
|
| |
Nat Rev Cancer,
6,
307-320.
|
 |
|
|
|
|
 |
E.Asante-Appiah,
S.Patel,
C.Desponts,
J.M.Taylor,
C.Lau,
C.Dufresne,
M.Therien,
R.Friesen,
J.W.Becker,
Y.Leblanc,
B.P.Kennedy,
and
G.Scapin
(2006).
Conformation-assisted inhibition of protein-tyrosine phosphatase-1B elicits inhibitor selectivity over T-cell protein-tyrosine phosphatase.
|
| |
J Biol Chem,
281,
8010-8015.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
F.V.Rao,
H.C.Dorfmueller,
F.Villa,
M.Allwood,
I.M.Eggleston,
and
D.M.van Aalten
(2006).
Structural insights into the mechanism and inhibition of eukaryotic O-GlcNAc hydrolysis.
|
| |
EMBO J,
25,
1569-1578.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Burks,
and
Y.M.Agazie
(2006).
Modulation of alpha-catenin Tyr phosphorylation by SHP2 positively effects cell transformation induced by the constitutively active FGFR3.
|
| |
Oncogene,
25,
7166-7179.
|
 |
|
|
|
|
 |
M.Nascimento,
W.W.Zhang,
A.Ghosh,
D.R.Houston,
A.M.Berghuis,
M.Olivier,
and
G.Matlashewski
(2006).
Identification and characterization of a protein-tyrosine phosphatase in Leishmania: Involvement in virulence.
|
| |
J Biol Chem,
281,
36257-36268.
|
 |
|
|
|
|
 |
M.Vinciguerra,
and
M.Foti
(2006).
PTEN and SHIP2 phosphoinositide phosphatases as negative regulators of insulin signalling.
|
| |
Arch Physiol Biochem,
112,
89.
|
 |
|
|
|
|
 |
P.D.Simoncic,
C.J.McGlade,
and
M.L.Tremblay
(2006).
PTP1B and TC-PTP: novel roles in immune-cell signaling.
|
| |
Can J Physiol Pharmacol,
84,
667-675.
|
 |
|
|
|
|
 |
P.J.Ala,
L.Gonneville,
M.C.Hillman,
M.Becker-Pasha,
M.Wei,
B.G.Reid,
R.Klabe,
E.W.Yue,
B.Wayland,
B.Douty,
P.Polam,
Z.Wasserman,
M.Bower,
A.P.Combs,
T.C.Burn,
G.F.Hollis,
and
R.Wynn
(2006).
Structural basis for inhibition of protein-tyrosine phosphatase 1B by isothiazolidinone heterocyclic phosphonate mimetics.
|
| |
J Biol Chem,
281,
32784-32795.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.J.Ala,
L.Gonneville,
M.Hillman,
M.Becker-Pasha,
E.W.Yue,
B.Douty,
B.Wayland,
P.Polam,
M.L.Crawley,
E.McLaughlin,
R.B.Sparks,
B.Glass,
A.Takvorian,
A.P.Combs,
T.C.Burn,
G.F.Hollis,
and
R.Wynn
(2006).
Structural insights into the design of nonpeptidic isothiazolidinone-containing inhibitors of protein-tyrosine phosphatase 1B.
|
| |
J Biol Chem,
281,
38013-38021.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Salmeen,
and
D.Barford
(2005).
Functions and mechanisms of redox regulation of cysteine-based phosphatases.
|
| |
Antioxid Redox Signal,
7,
560-577.
|
 |
|
|
|
|
 |
B.J.Goldstein,
K.Mahadev,
M.Kalyankar,
and
X.Wu
(2005).
Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets.
|
| |
Diabetes,
54,
311-321.
|
 |
|
|
|
|
 |
F.G.Haj,
J.M.Zabolotny,
Y.B.Kim,
B.B.Kahn,
and
B.G.Neel
(2005).
Liver-specific protein-tyrosine phosphatase 1B (PTP1B) re-expression alters glucose homeostasis of PTP1B-/-mice.
|
| |
J Biol Chem,
280,
15038-15046.
|
 |
|
|
|
|
 |
F.Villa,
M.Deak,
G.B.Bloomberg,
D.R.Alessi,
and
D.M.van Aalten
(2005).
Crystal structure of the PTPL1/FAP-1 human tyrosine phosphatase mutated in colorectal cancer: evidence for a second phosphotyrosine substrate recognition pocket.
|
| |
J Biol Chem,
280,
8180-8187.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Keilhack,
F.S.David,
M.McGregor,
L.C.Cantley,
and
B.G.Neel
(2005).
Diverse biochemical properties of Shp2 mutants. Implications for disease phenotypes.
|
| |
J Biol Chem,
280,
30984-30993.
|
 |
|
|
|
|
 |
I.Gouni-Berthold,
E.Giannakidou,
D.Müller-Wieland,
M.Faust,
J.Kotzka,
H.K.Berthold,
and
W.Krone
(2005).
The Pro387Leu variant of protein tyrosine phosphatase-1B is not associated with diabetes mellitus type 2 in a German population.
|
| |
J Intern Med,
257,
272-280.
|
 |
|
|
|
|
 |
J.G.Mielke,
C.Taghibiglou,
L.Liu,
Y.Zhang,
Z.Jia,
K.Adeli,
and
Y.T.Wang
(2005).
A biochemical and functional characterization of diet-induced brain insulin resistance.
|
| |
J Neurochem,
93,
1568-1578.
|
 |
|
|
|
|
 |
L.Bialy,
and
H.Waldmann
(2005).
Inhibitors of protein tyrosine phosphatases: next-generation drugs?
|
| |
Angew Chem Int Ed Engl,
44,
3814-3839.
|
 |
|
|
|
|
 |
L.Tautz,
S.Bruckner,
S.Sareth,
A.Alonso,
J.Bogetz,
N.Bottini,
M.Pellecchia,
and
T.Mustelin
(2005).
Inhibition of Yersinia tyrosine phosphatase by furanyl salicylate compounds.
|
| |
J Biol Chem,
280,
9400-9408.
|
 |
|
|
|
|
 |
R.B.Ceddia
(2005).
Direct metabolic regulation in skeletal muscle and fat tissue by leptin: implications for glucose and fatty acids homeostasis.
|
| |
Int J Obes (Lond),
29,
1175-1183.
|
 |
|
|
|
|
 |
S.Galic,
C.Hauser,
B.B.Kahn,
F.G.Haj,
B.G.Neel,
N.K.Tonks,
and
T.Tiganis
(2005).
Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTP1B and TCPTP.
|
| |
Mol Cell Biol,
25,
819-829.
|
 |
|
|
|
|
 |
S.Li,
R.S.Depetris,
D.Barford,
J.Chernoff,
and
S.R.Hubbard
(2005).
Crystal structure of a complex between protein tyrosine phosphatase 1B and the insulin receptor tyrosine kinase.
|
| |
Structure,
13,
1643-1651.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.T.Jacob,
and
T.Motiwala
(2005).
Epigenetic regulation of protein tyrosine phosphatases: potential molecular targets for cancer therapy.
|
| |
Cancer Gene Ther,
12,
665-672.
|
 |
|
|
|
|
 |
Y.Nakagawa,
N.Aoki,
K.Aoyama,
H.Shimizu,
H.Shimano,
N.Yamada,
and
H.Miyazaki
(2005).
Receptor-type protein tyrosine phosphatase epsilon (PTPepsilonM) is a negative regulator of insulin signaling in primary hepatocytes and liver.
|
| |
Zoolog Sci,
22,
169-175.
|
 |
|
|
|
|
 |
C.Frank,
C.Burkhardt,
D.Imhof,
J.Ringel,
O.Zschörnig,
K.Wieligmann,
M.Zacharias,
and
F.D.Böhmer
(2004).
Effective dephosphorylation of Src substrates by SHP-1.
|
| |
J Biol Chem,
279,
11375-11383.
|
 |
|
|
|
|
 |
C.Wiesmann,
K.J.Barr,
J.Kung,
J.Zhu,
D.A.Erlanson,
W.Shen,
B.J.Fahr,
M.Zhong,
L.Taylor,
M.Randal,
R.S.McDowell,
and
S.K.Hansen
(2004).
Allosteric inhibition of protein tyrosine phosphatase 1B.
|
| |
Nat Struct Mol Biol,
11,
730-737.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.A.Erlanson,
J.A.Wells,
and
A.C.Braisted
(2004).
Tethering: fragment-based drug discovery.
|
| |
Annu Rev Biophys Biomol Struct,
33,
199-223.
|
 |
|
|
|
|
 |
I.K.Lund,
H.S.Andersen,
L.F.Iversen,
O.H.Olsen,
K.B.Møller,
A.K.Pedersen,
Y.Ge,
D.D.Holsworth,
M.J.Newman,
F.U.Axe,
and
N.P.Møller
(2004).
Structure-based design of selective and potent inhibitors of protein-tyrosine phosphatase beta.
|
| |
J Biol Chem,
279,
24226-24235.
|
 |
|
|
|
|
 |
J.M.Zabolotny,
F.G.Haj,
Y.B.Kim,
H.J.Kim,
G.I.Shulman,
J.K.Kim,
B.G.Neel,
and
B.B.Kahn
(2004).
Transgenic overexpression of protein-tyrosine phosphatase 1B in muscle causes insulin resistance, but overexpression with leukocyte antigen-related phosphatase does not additively impair insulin action.
|
| |
J Biol Chem,
279,
24844-24851.
|
 |
|
|
|
|
 |
S.D.Taylor,
and
B.Hill
(2004).
Recent advances in protein tyrosine phosphatase 1B inhibitors.
|
| |
Expert Opin Investig Drugs,
13,
199-214.
|
 |
|
|
|
|
 |
S.Wälchli,
X.Espanel,
A.Harrenga,
M.Rossi,
G.Cesareni,
and
R.H.van Huijsduijnen
(2004).
Probing protein-tyrosine phosphatase substrate specificity using a phosphotyrosine-containing phage library.
|
| |
J Biol Chem,
279,
311-318.
|
 |
|
|
|
|
 |
A.Ragab,
S.Bodin,
C.Viala,
H.Chap,
B.Payrastre,
and
J.Ragab-Thomas
(2003).
The tyrosine phosphatase 1B regulates linker for activation of T-cell phosphorylation and platelet aggregation upon FcgammaRIIa cross-linking.
|
| |
J Biol Chem,
278,
40923-40932.
|
 |
|
|
|
|
 |
C.H.Gray,
V.M.Good,
N.K.Tonks,
and
D.Barford
(2003).
The structure of the cell cycle protein Cdc14 reveals a proline-directed protein phosphatase.
|
| |
EMBO J,
22,
3524-3535.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
F.Gu,
N.Dubé,
J.W.Kim,
A.Cheng,
M.d.e. .J.Ibarra-Sanchez,
M.L.Tremblay,
and
Y.R.Boisclair
(2003).
Protein tyrosine phosphatase 1B attenuates growth hormone-mediated JAK2-STAT signaling.
|
| |
Mol Cell Biol,
23,
3753-3762.
|
 |
|
|
|
|
 |
H.N.Marsh,
C.I.Dubreuil,
C.Quevedo,
A.Lee,
M.Majdan,
G.S.Walsh,
S.Hausdorff,
F.A.Said,
O.Zoueva,
M.Kozlowski,
K.Siminovitch,
B.G.Neel,
F.D.Miller,
and
D.R.Kaplan
(2003).
SHP-1 negatively regulates neuronal survival by functioning as a TrkA phosphatase.
|
| |
J Cell Biol,
163,
999.
|
 |
|
|
|
|
 |
J.P.Sun,
A.A.Fedorov,
S.Y.Lee,
X.L.Guo,
K.Shen,
D.S.Lawrence,
S.C.Almo,
and
Z.Y.Zhang
(2003).
Crystal structure of PTP1B complexed with a potent and selective bidentate inhibitor.
|
| |
J Biol Chem,
278,
12406-12414.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Chiarugi,
and
P.Cirri
(2003).
Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction.
|
| |
Trends Biochem Sci,
28,
509-514.
|
 |
|
|
|
|
 |
S.Dadke,
and
J.Chernoff
(2003).
Protein-tyrosine phosphatase 1B mediates the effects of insulin on the actin cytoskeleton in immortalized fibroblasts.
|
| |
J Biol Chem,
278,
40607-40611.
|
 |
|
|
|
|
 |
S.Galic,
M.Klingler-Hoffmann,
M.T.Fodero-Tavoletti,
M.A.Puryer,
T.C.Meng,
N.K.Tonks,
and
T.Tiganis
(2003).
Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP.
|
| |
Mol Cell Biol,
23,
2096-2108.
|
 |
|
|
|
|
 |
T.Fukada,
and
N.K.Tonks
(2003).
Identification of YB-1 as a regulator of PTP1B expression: implications for regulation of insulin and cytokine signaling.
|
| |
EMBO J,
22,
479-493.
|
 |
|
|
|
|
 |
X.Espanel,
S.Wälchli,
T.Rückle,
A.Harrenga,
M.Huguenin-Reggiani,
and
R.H.van Huijsduijnen
(2003).
Mapping of synergistic components of weakly interacting protein-protein motifs using arrays of paired peptides.
|
| |
J Biol Chem,
278,
15162-15167.
|
 |
|
|
|
|
 |
Y.H.Lee,
J.Giraud,
R.J.Davis,
and
M.F.White
(2003).
c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade.
|
| |
J Biol Chem,
278,
2896-2902.
|
 |
|
|
|
|
 |
A.Cheng,
N.Dubé,
F.Gu,
and
M.L.Tremblay
(2002).
Coordinated action of protein tyrosine phosphatases in insulin signal transduction.
|
| |
Eur J Biochem,
269,
1050-1059.
|
 |
|
|
|
|
 |
D.A.Buckley,
A.Cheng,
P.A.Kiely,
M.L.Tremblay,
and
R.O'Connor
(2002).
Regulation of insulin-like growth factor type I (IGF-I) receptor kinase activity by protein tyrosine phosphatase 1B (PTP-1B) and enhanced IGF-I-mediated suppression of apoptosis and motility in PTP-1B-deficient fibroblasts.
|
| |
Mol Cell Biol,
22,
1998-2010.
|
 |
|
|
|
|
 |
E.Asante-Appiah,
S.Patel,
C.Dufresne,
P.Roy,
Q.Wang,
V.Patel,
R.W.Friesen,
C.Ramachandran,
J.W.Becker,
Y.Leblanc,
B.P.Kennedy,
and
G.Scapin
(2002).
The structure of PTP-1B in complex with a peptide inhibitor reveals an alternative binding mode for bisphosphonates.
|
| |
Biochemistry,
41,
9043-9051.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.E.Waltner-Law,
X.L.Wang,
B.K.Law,
R.K.Hall,
M.Nawano,
and
D.K.Granner
(2002).
Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production.
|
| |
J Biol Chem,
277,
34933-34940.
|
 |
|
|
|
|
 |
S.Hati,
S.Bhattacharyya,
J.V.Price,
and
A.S.Tracey
(2002).
Comparative modeling of the phosphatase and kinase domains of protein tyrosine phosphatase and insulin receptor kinase from Drosophila melanogaster (DPTP61fm), and a computational study of their mutual interactions.
|
| |
Biochem Cell Biol,
80,
225-239.
|
 |
|
|
|
|
 |
V.Béréziat,
A.Kasus-Jacobi,
D.Perdereau,
B.Cariou,
J.Girard,
and
A.F.Burnol
(2002).
Inhibition of insulin receptor catalytic activity by the molecular adapter Grb14.
|
| |
J Biol Chem,
277,
4845-4852.
|
 |
|
|
|
|
 |
X.Espanel,
M.Huguenin-Reggiani,
and
R.H.Van Huijsduijnen
(2002).
The SPOT technique as a tool for studying protein tyrosine phosphatase substrate specificities.
|
| |
Protein Sci,
11,
2326-2334.
|
 |
|
|
|
|
 |
G.Scapin,
S.Patel,
V.Patel,
B.Kennedy,
and
E.Asante-Appiah
(2001).
The structure of apo protein-tyrosine phosphatase 1B C215S mutant: more than just an S --> O change.
|
| |
Protein Sci,
10,
1596-1605.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Song,
N.Hanlon,
N.R.Brown,
M.E.Noble,
L.N.Johnson,
and
D.Barford
(2001).
Phosphoprotein-protein interactions revealed by the crystal structure of kinase-associated phosphatase in complex with phosphoCDK2.
|
| |
Mol Cell,
7,
615-626.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.N.Andersen,
O.H.Mortensen,
G.H.Peters,
P.G.Drake,
L.F.Iversen,
O.H.Olsen,
P.G.Jansen,
H.S.Andersen,
N.K.Tonks,
and
N.P.Møller
(2001).
Structural and evolutionary relationships among protein tyrosine phosphatase domains.
|
| |
Mol Cell Biol,
21,
7117-7136.
|
 |
|
|
|
|
 |
M.Balasubramanyam,
and
V.Mohan
(2001).
Orally active insulin mimics: where do we stand now?
|
| |
J Biosci,
26,
383-390.
|
 |
|
|
|
|
 |
M.Frankel,
A.J.Ablooglu,
J.W.Leone,
E.Rusinova,
J.B.Ross,
R.L.Heinrikson,
and
R.A.Kohanski
(2001).
Intrasteric inhibition of ATP binding is not required to prevent unregulated autophosphorylation or signaling by the insulin receptor.
|
| |
Mol Cell Biol,
21,
4197-4207.
|
 |
|
|
|
|
 |
M.P.Myers,
J.N.Andersen,
A.Cheng,
M.L.Tremblay,
C.M.Horvath,
J.P.Parisien,
A.Salmeen,
D.Barford,
and
N.K.Tonks
(2001).
TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B.
|
| |
J Biol Chem,
276,
47771-47774.
|
 |
|
|
|
|
 |
N.K.Tonks,
and
B.G.Neel
(2001).
Combinatorial control of the specificity of protein tyrosine phosphatases.
|
| |
Curr Opin Cell Biol,
13,
182-195.
|
 |
|
|
|
|
 |
Z.Y.Zhang
(2001).
Protein tyrosine phosphatases: prospects for therapeutics.
|
| |
Curr Opin Chem Biol,
5,
416-423.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |