|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
1213 a.a.*
|
 |
|
|
|
|
|
|
|
943 a.a.*
|
 |
|
|
|
|
|
|
|
263 a.a.*
|
 |
|
|
|
|
|
|
|
110 a.a.*
|
 |
|
|
|
|
|
|
|
211 a.a.*
|
 |
|
|
|
|
|
|
|
140 a.a.*
|
 |
|
|
|
|
|
|
|
117 a.a.*
|
 |
|
|
|
|
|
|
|
65 a.a.*
|
 |
|
|
|
|
|
|
|
36 a.a.*
|
 |
|
|
|
|
|
|
* C-alpha coords only
|
|
|
|
| Superseded by: |
 |
|
 |
|
PDB id:
|
 |
|
 |
| Name: |
 |
Transcription
|
 |
|
Title:
|
 |
Crystallographic backbone model of RNA polymerase ii
|
|
Structure:
|
 |
DNA-directed RNA polymerase ii largest subunit. Chain: a. Synonym: rpb1. DNA-directed RNA polymerase ii 140kd polypeptide. Chain: b. Synonym: rpb2. DNA-directed RNA polymerase ii 45kd polypeptide. Chain: c. Synonym: rpb3.
|
|
Source:
|
 |
Saccharomyces cerevisiae. Yeast. Yeast
|
|
Biol. unit:
|
 |
Decamer (from
)
|
|
Resolution:
|
 |
|
3.00Å
|
R-factor:
|
not given
|
|
|
Authors:
|
 |
P.Cramer,D.A.Bushnell,J.Fu,A.L.Gnatt,B.Maier-Davis, N.E.Thompson,R.R.Burgess,A.M.Edwards,P.R.David,R.D.Kornberg
|
Key ref:
|
 |
P.Cramer
et al.
(2000).
Architecture of RNA polymerase II and implications for the transcription mechanism.
Science,
288,
640-649.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
20-Mar-00
|
Release date:
|
29-Apr-00
|
|
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
No UniProt id for this chain
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
No UniProt id for this chain
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
No UniProt id for this chain
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
No UniProt id for this chain
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
No UniProt id for this chain
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
No UniProt id for this chain
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
No UniProt id for this chain
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chains A, B, C, K, E, F, H, I, J:
E.C.2.7.7.6
- DNA-directed Rna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
RNA(n) + a ribonucleoside 5'-triphosphate = RNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
RNA(n)
|
+
|
ribonucleoside 5'-triphosphate
|
=
|
RNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Science
288:640-649
(2000)
|
|
PubMed id:
|
|
|
|
|
| |
|
Architecture of RNA polymerase II and implications for the transcription mechanism.
|
|
P.Cramer,
D.A.Bushnell,
J.Fu,
A.L.Gnatt,
B.Maier-Davis,
N.E.Thompson,
R.R.Burgess,
A.M.Edwards,
P.R.David,
R.D.Kornberg.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
A backbone model of a 10-subunit yeast RNA polymerase II has been derived from
x-ray diffraction data extending to 3 angstroms resolution. All 10 subunits
exhibit a high degree of identity with the corresponding human proteins, and 9
of the 10 subunits are conserved among the three eukaryotic RNA polymerases I,
II, and III. Notable features of the model include a pair of jaws, formed by
subunits Rpb1, Rpb5, and Rpb9, that appear to grip DNA downstream of the active
center. A clamp on the DNA nearer the active center, formed by Rpb1, Rpb2, and
Rpb6, may be locked in the closed position by RNA, accounting for the great
stability of transcribing complexes. A pore in the protein complex beneath the
active center may allow entry of substrates for polymerization and exit of the
transcript during proofreading and passage through pause sites in the DNA.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 4.
Fig. 4. Jaws. (A) Stereoview of structural elements
constituting the jaws (left) and the location of these elements
within pol II (right). (B) Mobility of the larger,
NH[2]-terminal domain of Rpb5. Backbone models of free Rpb5
[gray (47)] and Rpb5 in pol II (pink) are shown with their
smaller, COOH-terminal domains superimposed. (C) Conservation of
amino acid residues of Rpb5.
|
 |
Figure 6.
Fig. 6. Topology of the polymerizing complex, and location of
Rpb4 and Rpb7. (A) Nucleic acid configuration in polymerizing
(top) and backtracking (bottom) complexes. (B) Structural
features of functional significance and their location with
respect to the nucleic acids. A surface representation of pol II
is shown as viewed from the top in Fig. 3. To the surface
representation has been added the DNA-RNA hybrid, modeled as
nine base pairs of canonical A-DNA (DNA template strand, blue;
RNA, red), positioned such that the growing (3') end of the RNA
is adjacent to the active site metal and clashes with the
protein are avoided. The exact orientation of the hybrid remains
to be determined. The nontemplate strand of the DNA within the
transcription bubble, single-stranded RNA and the upstream DNA
duplex are not shown. (C) Cutaway view with schematic of DNA
(blue) and with the helical axis of the DNA-RNA hybrid indicated
(dashed white line). An opening in the floor of the cleft that
binds nucleic acid exposes the DNA-RNA hybrid (pore 1) to the
inverted funnel-shaped cavity below. The plane of section is
indicated by a line in (B), and the direction of view
perpendicular to this plane (side) is as in Fig. 3. (D) Surface
representation as in (B), with direction of view as in (C). The
molecular envelope of pol II determined by electron microscopy
of 2D crystals at 16 Å resolution is indicated (yellow
line), as is the location of subunits Rpb4 and Rpb7 (arrow,
Rpb4/7), determined by difference 2D crystallography (25).
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from the AAAs:
Science
(2000,
288,
640-649)
copyright 2000.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
S.O.Dahms,
M.Kuester,
C.Streb,
C.Roth,
N.Sträter,
and
M.E.Than
(2013).
Localization and orientation of heavy-atom cluster compounds in protein crystals using molecular replacement.
|
| |
Acta Crystallogr D Biol Crystallogr,
69,
284-297.
|
 |
|
|
|
|
 |
L.Larivière,
C.Plaschka,
M.Seizl,
L.Wenzeck,
F.Kurth,
and
P.Cramer
(2012).
Structure of the Mediator head module.
|
| |
Nature,
492,
448-451.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.C.Cheung,
and
P.Cramer
(2011).
Structural basis of RNA polymerase II backtracking, arrest and reactivation.
|
| |
Nature,
471,
249-253.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.Czeko,
M.Seizl,
C.Augsberger,
T.Mielke,
and
P.Cramer
(2011).
Iwr1 directs RNA polymerase II nuclear import.
|
| |
Mol Cell,
42,
261-266.
|
 |
|
|
|
|
 |
F.W.Martinez-Rucobo,
S.Sainsbury,
A.C.Cheung,
and
P.Cramer
(2011).
Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity.
|
| |
EMBO J,
30,
1302-1310.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.L.Gleghorn,
E.K.Davydova,
R.Basu,
L.B.Rothman-Denes,
and
K.S.Murakami
(2011).
X-ray crystal structures elucidate the nucleotidyl transfer reaction of transcript initiation using two nucleotides.
|
| |
Proc Natl Acad Sci U S A,
108,
3566-3571.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Uetrecht,
R.J.Rose,
E.van Duijn,
K.Lorenzen,
and
A.J.Heck
(2010).
Ion mobility mass spectrometry of proteins and protein assemblies.
|
| |
Chem Soc Rev,
39,
1633-1655.
|
 |
|
|
|
|
 |
D.F.Kelly,
D.Dukovski,
and
T.Walz
(2010).
Strategy for the use of affinity grids to prepare non-His-tagged macromolecular complexes for single-particle electron microscopy.
|
| |
J Mol Biol,
400,
675-681.
|
 |
|
|
|
|
 |
J.Farlow,
M.A.Ichou,
J.Huggins,
and
S.Ibrahim
(2010).
Comparative whole genome sequence analysis of wild-type and cidofovir-resistant monkeypoxvirus.
|
| |
Virol J,
7,
110.
|
 |
|
|
|
|
 |
M.W.Bowler,
M.Guijarro,
S.Petitdemange,
I.Baker,
O.Svensson,
M.Burghammer,
C.Mueller-Dieckmann,
E.J.Gordon,
D.Flot,
S.M.McSweeney,
and
G.A.Leonard
(2010).
Diffraction cartography: applying microbeams to macromolecular crystallography sample evaluation and data collection.
|
| |
Acta Crystallogr D Biol Crystallogr,
66,
855-864.
|
 |
|
|
|
|
 |
M.Warkentin,
and
R.E.Thorne
(2010).
Slow cooling and temperature-controlled protein crystallography.
|
| |
J Struct Funct Genomics,
11,
85-89.
|
 |
|
|
|
|
 |
N.Corbi,
E.M.Batassa,
C.Pisani,
A.Onori,
M.G.Di Certo,
G.Strimpakos,
M.Fanciulli,
E.Mattei,
and
C.Passananti
(2010).
The eEF1γ subunit contacts RNA polymerase II and binds vimentin promoter region.
|
| |
PLoS One,
5,
e14481.
|
 |
|
|
|
|
 |
P.Cramer
(2010).
Towards molecular systems biology of gene transcription and regulation.
|
| |
Biol Chem,
391,
731-735.
|
 |
|
|
|
|
 |
R.O.Weinzierl
(2010).
The nucleotide addition cycle of RNA polymerase is controlled by two molecular hinges in the Bridge Helix domain.
|
| |
BMC Biol,
8,
134.
|
 |
|
|
|
|
 |
S.Y.Hong,
and
P.J.Chen
(2010).
Phosphorylation of serine 177 of the small hepatitis delta antigen regulates viral antigenomic RNA replication by interacting with the processive RNA polymerase II.
|
| |
J Virol,
84,
1430-1438.
|
 |
|
|
|
|
 |
C.Oubridge,
D.A.Krummel,
A.K.Leung,
J.Li,
and
K.Nagai
(2009).
Interpreting a low resolution map of human U1 snRNP using anomalous scatterers.
|
| |
Structure,
17,
930-938.
|
 |
|
|
|
|
 |
C.Y.Chen,
C.C.Chang,
C.F.Yen,
M.T.Chiu,
and
W.H.Chang
(2009).
Mapping RNA exit channel on transcribing RNA polymerase II by FRET analysis.
|
| |
Proc Natl Acad Sci U S A,
106,
127-132.
|
 |
|
|
|
|
 |
F.Brueckner,
K.J.Armache,
A.Cheung,
G.E.Damsma,
H.Kettenberger,
E.Lehmann,
J.Sydow,
and
P.Cramer
(2009).
Structure-function studies of the RNA polymerase II elongation complex.
|
| |
Acta Crystallogr D Biol Crystallogr,
65,
112-120.
|
 |
|
|
|
|
 |
G.Bao
(2009).
Protein Mechanics: A New Frontier in Biomechanics.
|
| |
Exp Mech,
49,
153-164.
|
 |
|
|
|
|
 |
H.Saeki,
and
J.Q.Svejstrup
(2009).
Stability, flexibility, and dynamic interactions of colliding RNA polymerase II elongation complexes.
|
| |
Mol Cell,
35,
191-205.
|
 |
|
|
|
|
 |
H.Spåhr,
G.Calero,
D.A.Bushnell,
and
R.D.Kornberg
(2009).
Schizosacharomyces pombe RNA polymerase II at 3.6-A resolution.
|
| |
Proc Natl Acad Sci U S A,
106,
9185-9190.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Kresge,
R.D.Simoni,
and
R.L.Hill
(2009).
100 years of biochemistry and molecular biology. The decade-long pursuit of a reconstituted yeast transcription system: the work of Roger D. Kornberg.
|
| |
J Biol Chem,
284,
e18-e20.
|
 |
|
|
|
|
 |
P.A.Meyer,
P.Ye,
M.H.Suh,
M.Zhang,
and
J.Fu
(2009).
Structure of the 12-subunit RNA polymerase II refined with the aid of anomalous diffraction data.
|
| |
J Biol Chem,
284,
12933-12939.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.K.Gangaraju,
P.Prasad,
A.Srour,
M.N.Kagalwala,
and
B.Bartholomew
(2009).
Conformational changes associated with template commitment in ATP-dependent chromatin remodeling by ISW2.
|
| |
Mol Cell,
35,
58-69.
|
 |
|
|
|
|
 |
W.Jonkers,
and
M.Rep
(2009).
Lessons from fungal F-box proteins.
|
| |
Eukaryot Cell,
8,
677-695.
|
 |
|
|
|
|
 |
Y.Korkhin,
U.M.Unligil,
O.Littlefield,
P.J.Nelson,
D.I.Stuart,
P.B.Sigler,
S.D.Bell,
and
N.G.Abrescia
(2009).
Evolution of Complex RNA Polymerases: The Complete Archaeal RNA Polymerase Structure.
|
| |
PLoS Biol,
7,
e102.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.D.Kaplan,
K.M.Larsson,
and
R.D.Kornberg
(2008).
The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin.
|
| |
Mol Cell,
30,
547-556.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Alber,
F.Förster,
D.Korkin,
M.Topf,
and
A.Sali
(2008).
Integrating diverse data for structure determination of macromolecular assemblies.
|
| |
Annu Rev Biochem,
77,
443-477.
|
 |
|
|
|
|
 |
J.Andrecka,
R.Lewis,
F.Brückner,
E.Lehmann,
P.Cramer,
and
J.Michaelis
(2008).
Single-molecule tracking of mRNA exiting from RNA polymerase II.
|
| |
Proc Natl Acad Sci U S A,
105,
135-140.
|
 |
|
|
|
|
 |
J.C.Zweers,
I.Barák,
D.Becher,
A.J.Driessen,
M.Hecker,
V.P.Kontinen,
M.J.Saller,
L.Vavrová,
and
J.M.van Dijl
(2008).
Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes.
|
| |
Microb Cell Fact,
7,
10.
|
 |
|
|
|
|
 |
J.Gerber,
A.Reiter,
R.Steinbauer,
S.Jakob,
C.D.Kuhn,
P.Cramer,
J.Griesenbeck,
P.Milkereit,
and
H.Tschochner
(2008).
Site specific phosphorylation of yeast RNA polymerase I.
|
| |
Nucleic Acids Res,
36,
793-802.
|
 |
|
|
|
|
 |
J.Mukhopadhyay,
K.Das,
S.Ismail,
D.Koppstein,
M.Jang,
B.Hudson,
S.Sarafianos,
S.Tuske,
J.Patel,
R.Jansen,
H.Irschik,
E.Arnold,
and
R.H.Ebright
(2008).
The RNA polymerase "switch region" is a target for inhibitors.
|
| |
Cell,
135,
295-307.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Fuxreiter,
P.Tompa,
I.Simon,
V.N.Uversky,
J.C.Hansen,
and
F.J.Asturias
(2008).
Malleable machines take shape in eukaryotic transcriptional regulation.
|
| |
Nat Chem Biol,
4,
728-737.
|
 |
|
|
|
|
 |
M.Okuda,
A.Tanaka,
M.Satoh,
S.Mizuta,
M.Takazawa,
Y.Ohkuma,
and
Y.Nishimura
(2008).
Structural insight into the TFIIE-TFIIH interaction: TFIIE and p53 share the binding region on TFIIH.
|
| |
EMBO J,
27,
1161-1171.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Cramer,
K.J.Armache,
S.Baumli,
S.Benkert,
F.Brueckner,
C.Buchen,
G.E.Damsma,
S.Dengl,
S.R.Geiger,
A.J.Jasiak,
A.Jawhari,
S.Jennebach,
T.Kamenski,
H.Kettenberger,
C.D.Kuhn,
E.Lehmann,
K.Leike,
J.F.Sydow,
and
A.Vannini
(2008).
Structure of eukaryotic RNA polymerases.
|
| |
Annu Rev Biophys,
37,
337-352.
|
 |
|
|
|
|
 |
R.Sousa
(2008).
Tie me up, tie me down: inhibiting RNA polymerase.
|
| |
Cell,
135,
205-207.
|
 |
|
|
|
|
 |
S.M.Soltis,
A.E.Cohen,
A.Deacon,
T.Eriksson,
A.González,
S.McPhillips,
H.Chui,
P.Dunten,
M.Hollenbeck,
I.Mathews,
M.Miller,
P.Moorhead,
R.P.Phizackerley,
C.Smith,
J.Song,
H.van dem Bedem,
P.Ellis,
P.Kuhn,
T.McPhillips,
N.Sauter,
K.Sharp,
I.Tsyba,
and
G.Wolf
(2008).
New paradigm for macromolecular crystallography experiments at SSRL: automated crystal screening and remote data collection.
|
| |
Acta Crystallogr D Biol Crystallogr,
64,
1210-1221.
|
 |
|
|
|
|
 |
S.Naji,
M.G.Bertero,
P.Spitalny,
P.Cramer,
and
M.Thomm
(2008).
Structure-function analysis of the RNA polymerase cleft loops elucidates initial transcription, DNA unwinding and RNA displacement.
|
| |
Nucleic Acids Res,
36,
676-687.
|
 |
|
|
|
|
 |
S.Nottebaum,
L.Tan,
D.Trzaska,
H.C.Carney,
and
R.O.Weinzierl
(2008).
The RNA polymerase factory: a robotic in vitro assembly platform for high-throughput production of recombinant protein complexes.
|
| |
Nucleic Acids Res,
36,
245-252.
|
 |
|
|
|
|
 |
W.Tian,
L.V.Zhang,
M.TaÅŸan,
F.D.Gibbons,
O.D.King,
J.Park,
Z.Wunderlich,
J.M.Cherry,
and
F.P.Roth
(2008).
Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene function.
|
| |
Genome Biol,
9,
S7.
|
 |
|
|
|
|
 |
C.Zaros,
J.F.Briand,
Y.Boulard,
S.Labarre-Mariotte,
M.C.Garcia-Lopez,
P.Thuriaux,
and
F.Navarro
(2007).
Functional organization of the Rpb5 subunit shared by the three yeast RNA polymerases.
|
| |
Nucleic Acids Res,
35,
634-647.
|
 |
|
|
|
|
 |
D.Roccatano,
A.Barthel,
and
M.Zacharias
(2007).
Structural flexibility of the nucleosome core particle at atomic resolution studied by molecular dynamics simulation.
|
| |
Biopolymers,
85,
407-421.
|
 |
|
|
|
|
 |
E.A.Kashkina,
M.V.Anikin,
W.T.McAllister,
N.Kochetkov,
and
D.E.Temyakov
(2007).
Determination of the melting site of the DNA duplex in the active center of bacterial RNA-polymerase by fluorescence quenching technique.
|
| |
Dokl Biochem Biophys,
416,
285-289.
|
 |
|
|
|
|
 |
H.T.Chen,
L.Warfield,
and
S.Hahn
(2007).
The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex.
|
| |
Nat Struct Mol Biol,
14,
696-703.
|
 |
|
|
|
|
 |
K.Lorenzen,
A.Vannini,
P.Cramer,
and
A.J.Heck
(2007).
Structural biology of RNA polymerase III: mass spectrometry elucidates subcomplex architecture.
|
| |
Structure,
15,
1237-1245.
|
 |
|
|
|
|
 |
P.Cramer
(2007).
Finding the right spot to start transcription.
|
| |
Nat Struct Mol Biol,
14,
686-687.
|
 |
|
|
|
|
 |
R.D.Kornberg
(2007).
The molecular basis of eukaryotic transcription.
|
| |
Proc Natl Acad Sci U S A,
104,
12955-12961.
|
 |
|
|
|
|
 |
S.Devaux,
S.Kelly,
L.Lecordier,
B.Wickstead,
D.Perez-Morga,
E.Pays,
L.Vanhamme,
and
K.Gull
(2007).
Diversification of function by different isoforms of conventionally shared RNA polymerase subunits.
|
| |
Mol Biol Cell,
18,
1293-1301.
|
 |
|
|
|
|
 |
S.G.Cresawn,
C.Prins,
D.R.Latner,
and
R.C.Condit
(2007).
Mapping and phenotypic analysis of spontaneous isatin-beta-thiosemicarbazone resistant mutants of vaccinia virus.
|
| |
Virology,
363,
319-332.
|
 |
|
|
|
|
 |
T.J.Santangelo,
L.Cubonová,
C.L.James,
and
J.N.Reeve
(2007).
TFB1 or TFB2 is sufficient for Thermococcus kodakaraensis viability and for basal transcription in vitro.
|
| |
J Mol Biol,
367,
344-357.
|
 |
|
|
|
|
 |
Y.Tamada,
K.Nakamori,
H.Nakatani,
K.Matsuda,
S.Hata,
T.Furumoto,
and
K.Izui
(2007).
Temporary expression of the TAF10 gene and its requirement for normal development of Arabidopsis thaliana.
|
| |
Plant Cell Physiol,
48,
134-146.
|
 |
|
|
|
|
 |
A.J.Jasiak,
K.J.Armache,
B.Martens,
R.P.Jansen,
and
P.Cramer
(2006).
Structural biology of RNA polymerase III: subcomplex C17/25 X-ray structure and 11 subunit enzyme model.
|
| |
Mol Cell,
23,
71-81.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Ujvári,
and
D.S.Luse
(2006).
RNA emerging from the active site of RNA polymerase II interacts with the Rpb7 subunit.
|
| |
Nat Struct Mol Biol,
13,
49-54.
|
 |
|
|
|
|
 |
C.Romier,
M.Ben Jelloul,
S.Albeck,
G.Buchwald,
D.Busso,
P.H.Celie,
E.Christodoulou,
V.De Marco,
S.van Gerwen,
P.Knipscheer,
J.H.Lebbink,
V.Notenboom,
A.Poterszman,
N.Rochel,
S.X.Cohen,
T.Unger,
J.L.Sussman,
D.Moras,
T.K.Sixma,
and
A.Perrakis
(2006).
Co-expression of protein complexes in prokaryotic and eukaryotic hosts: experimental procedures, database tracking and case studies.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
1232-1242.
|
 |
|
|
|
|
 |
D.Wang,
D.A.Bushnell,
K.D.Westover,
C.D.Kaplan,
and
R.D.Kornberg
(2006).
Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis.
|
| |
Cell,
127,
941-954.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.J.Steinmetz,
S.B.Ng,
J.P.Cloute,
and
D.A.Brow
(2006).
cis- and trans-Acting determinants of transcription termination by yeast RNA polymerase II.
|
| |
Mol Cell Biol,
26,
2688-2696.
|
 |
|
|
|
|
 |
H.Kettenberger,
and
P.Cramer
(2006).
Fluorescence detection of nucleic acids and proteins in multi-component crystals.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
146-150.
|
 |
|
|
|
|
 |
J.Soutourina,
V.Bordas-Le Floch,
G.Gendrel,
A.Flores,
C.Ducrot,
H.Dumay-Odelot,
P.Soularue,
F.Navarro,
B.R.Cairns,
O.Lefebvre,
and
M.Werner
(2006).
Rsc4 connects the chromatin remodeler RSC to RNA polymerases.
|
| |
Mol Cell Biol,
26,
4920-4933.
|
 |
|
|
|
|
 |
M.Hampsey
(2006).
The Pol II initiation complex: finding a place to start.
|
| |
Nat Struct Mol Biol,
13,
564-566.
|
 |
|
|
|
|
 |
M.W.Bowler,
M.G.Montgomery,
A.G.Leslie,
and
J.E.Walker
(2006).
Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F(1)-ATPase by controlled dehydration.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
991-995.
|
 |
|
|
|
|
 |
P.A.Meyer,
P.Ye,
M.Zhang,
M.H.Suh,
and
J.Fu
(2006).
Phasing RNA polymerase II using intrinsically bound Zn atoms: an updated structural model.
|
| |
Structure,
14,
973-982.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Cramer
(2006).
Deciphering the RNA polymerase II structure: a personal perspective.
|
| |
Nat Struct Mol Biol,
13,
1042-1044.
|
 |
|
|
|
|
 |
S.A.Kostek,
P.Grob,
S.De Carlo,
J.S.Lipscomb,
F.Garczarek,
and
E.Nogales
(2006).
Molecular architecture and conformational flexibility of human RNA polymerase II.
|
| |
Structure,
14,
1691-1700.
|
 |
|
|
|
|
 |
J.L.Knight,
V.Mekler,
J.Mukhopadhyay,
R.H.Ebright,
and
R.M.Levy
(2005).
Distance-restrained docking of rifampicin and rifamycin SV to RNA polymerase using systematic FRET measurements: developing benchmarks of model quality and reliability.
|
| |
Biophys J,
88,
925-938.
|
 |
|
|
|
|
 |
M.H.Suh,
P.Ye,
M.Zhang,
S.Hausmann,
S.Shuman,
A.L.Gnatt,
and
J.Fu
(2005).
Fcp1 directly recognizes the C-terminal domain (CTD) and interacts with a site on RNA polymerase II distinct from the CTD.
|
| |
Proc Natl Acad Sci U S A,
102,
17314-17319.
|
 |
|
|
|
|
 |
R.D.Chapman,
M.Conrad,
and
D.Eick
(2005).
Role of the mammalian RNA polymerase II C-terminal domain (CTD) nonconsensus repeats in CTD stability and cell proliferation.
|
| |
Mol Cell Biol,
25,
7665-7674.
|
 |
|
|
|
|
 |
S.J.Greive,
and
P.H.von Hippel
(2005).
Thinking quantitatively about transcriptional regulation.
|
| |
Nat Rev Mol Cell Biol,
6,
221-232.
|
 |
|
|
|
|
 |
S.O.Gudima,
J.Chang,
and
J.M.Taylor
(2005).
Reconstitution in cultured cells of replicating HDV RNA from pairs of less than full-length RNAs.
|
| |
RNA,
11,
90-98.
|
 |
|
|
|
|
 |
W.J.Benga,
S.Grandemange,
G.V.Shpakovski,
E.K.Shematorova,
C.Kedinger,
and
M.Vigneron
(2005).
Distinct regions of RPB11 are required for heterodimerization with RPB3 in human and yeast RNA polymerase II.
|
| |
Nucleic Acids Res,
33,
3582-3590.
|
 |
|
|
|
|
 |
Y.Onodera,
J.R.Haag,
T.Ream,
P.C.Nunes,
O.Pontes,
and
C.S.Pikaard
(2005).
Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation.
|
| |
Cell,
120,
613-622.
|
 |
|
|
|
|
 |
B.E.Nickels,
and
A.Hochschild
(2004).
Regulation of RNA polymerase through the secondary channel.
|
| |
Cell,
118,
281-284.
|
 |
|
|
|
|
 |
B.Guglielmi,
N.L.van Berkum,
B.Klapholz,
T.Bijma,
M.Boube,
C.Boschiero,
H.M.Bourbon,
F.C.Holstege,
and
M.Werner
(2004).
A high resolution protein interaction map of the yeast Mediator complex.
|
| |
Nucleic Acids Res,
32,
5379-5391.
|
 |
|
|
|
|
 |
B.S.Chen,
and
M.Hampsey
(2004).
Functional interaction between TFIIB and the Rpb2 subunit of RNA polymerase II: implications for the mechanism of transcription initiation.
|
| |
Mol Cell Biol,
24,
3983-3991.
|
 |
|
|
|
|
 |
C.Jeronimo,
M.F.Langelier,
M.Zeghouf,
M.Cojocaru,
D.Bergeron,
D.Baali,
D.Forget,
S.Mnaimneh,
A.P.Davierwala,
J.Pootoolal,
M.Chandy,
V.Canadien,
B.K.Beattie,
D.P.Richards,
J.L.Workman,
T.R.Hughes,
J.Greenblatt,
and
B.Coulombe
(2004).
RPAP1, a novel human RNA polymerase II-associated protein affinity purified with recombinant wild-type and mutated polymerase subunits.
|
| |
Mol Cell Biol,
24,
7043-7058.
|
 |
|
|
|
|
 |
D.Forget,
M.F.Langelier,
C.Thérien,
V.Trinh,
and
B.Coulombe
(2004).
Photo-cross-linking of a purified preinitiation complex reveals central roles for the RNA polymerase II mobile clamp and TFIIE in initiation mechanisms.
|
| |
Mol Cell Biol,
24,
1122-1131.
|
 |
|
|
|
|
 |
E.Staub,
P.Fiziev,
A.Rosenthal,
and
B.Hinzmann
(2004).
Insights into the evolution of the nucleolus by an analysis of its protein domain repertoire.
|
| |
Bioessays,
26,
567-581.
|
 |
|
|
|
|
 |
F.J.Asturias
(2004).
Another piece in the transcription initiation puzzle.
|
| |
Nat Struct Mol Biol,
11,
1031-1033.
|
 |
|
|
|
|
 |
F.J.Asturias
(2004).
RNA polymerase II structure, and organization of the preinitiation complex.
|
| |
Curr Opin Struct Biol,
14,
121-129.
|
 |
|
|
|
|
 |
H.Kettenberger,
K.J.Armache,
and
P.Cramer
(2004).
Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS.
|
| |
Mol Cell,
16,
955-965.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Gagneur,
R.Krause,
T.Bouwmeester,
and
G.Casari
(2004).
Modular decomposition of protein-protein interaction networks.
|
| |
Genome Biol,
5,
R57.
|
 |
|
|
|
|
 |
K.D.Westover,
D.A.Bushnell,
and
R.D.Kornberg
(2004).
Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center.
|
| |
Cell,
119,
481-489.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Delgermaa,
N.Hayashi,
D.Dorjsuren,
T.Nomura,
l.e. .T.T.Thuy,
and
S.Murakami
(2004).
Subcellular localization of RPB5-mediating protein and its putative functional partner.
|
| |
Mol Cell Biol,
24,
8556-8566.
|
 |
|
|
|
|
 |
M.Kim,
S.H.Ahn,
N.J.Krogan,
J.F.Greenblatt,
and
S.Buratowski
(2004).
Transitions in RNA polymerase II elongation complexes at the 3' ends of genes.
|
| |
EMBO J,
23,
354-364.
|
 |
|
|
|
|
 |
N.N.Batada,
K.D.Westover,
D.A.Bushnell,
M.Levitt,
and
R.D.Kornberg
(2004).
Diffusion of nucleoside triphosphates and role of the entry site to the RNA polymerase II active center.
|
| |
Proc Natl Acad Sci U S A,
101,
17361-17364.
|
 |
|
|
|
|
 |
P.Cramer
(2004).
RNA polymerase II structure: from core to functional complexes.
|
| |
Curr Opin Genet Dev,
14,
218-226.
|
 |
|
|
|
|
 |
R.D.Chapman,
B.Palancade,
A.Lang,
O.Bensaude,
and
D.Eick
(2004).
The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability.
|
| |
Nucleic Acids Res,
32,
35-44.
|
 |
|
|
|
|
 |
R.Krause,
C.von Mering,
P.Bork,
and
T.Dandekar
(2004).
Shared components of protein complexes--versatile building blocks or biochemical artefacts?
|
| |
Bioessays,
26,
1333-1343.
|
 |
|
|
|
|
 |
S.Hahn
(2004).
Structure and mechanism of the RNA polymerase II transcription machinery.
|
| |
Nat Struct Mol Biol,
11,
394-403.
|
 |
|
|
|
|
 |
A.Shilatifard,
R.C.Conaway,
and
J.W.Conaway
(2003).
The RNA polymerase II elongation complex.
|
| |
Annu Rev Biochem,
72,
693-715.
|
 |
|
|
|
|
 |
D.A.Bushnell,
and
R.D.Kornberg
(2003).
Complete, 12-subunit RNA polymerase II at 4.1-A resolution: implications for the initiation of transcription.
|
| |
Proc Natl Acad Sci U S A,
100,
6969-6973.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Schaft,
A.Roguev,
K.M.Kotovic,
A.Shevchenko,
M.Sarov,
A.Shevchenko,
K.M.Neugebauer,
and
A.F.Stewart
(2003).
The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional elongation.
|
| |
Nucleic Acids Res,
31,
2475-2482.
|
 |
|
|
|
|
 |
F.J.Asturias,
and
J.L.Craighead
(2003).
RNA polymerase II at initiation.
|
| |
Proc Natl Acad Sci U S A,
100,
6893-6895.
|
 |
|
|
|
|
 |
H.Kettenberger,
K.J.Armache,
and
P.Cramer
(2003).
Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage.
|
| |
Cell,
114,
347-357.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Meka,
G.Daoust,
K.B.Arnvig,
F.Werner,
P.Brick,
and
S.Onesti
(2003).
Structural and functional homology between the RNAP(I) subunits A14/A43 and the archaeal RNAP subunits E/F.
|
| |
Nucleic Acids Res,
31,
4391-4400.
|
 |
|
|
|
|
 |
H.Mitsuzawa,
E.Kanda,
and
A.Ishihama
(2003).
Rpb7 subunit of RNA polymerase II interacts with an RNA-binding protein involved in processing of transcripts.
|
| |
Nucleic Acids Res,
31,
4696-4701.
|
 |
|
|
|
|
 |
J.K.Harris,
S.T.Kelley,
G.B.Spiegelman,
and
N.R.Pace
(2003).
The genetic core of the universal ancestor.
|
| |
Genome Res,
13,
407-412.
|
 |
|
|
|
|
 |
J.N.Reeve
(2003).
Archaeal chromatin and transcription.
|
| |
Mol Microbiol,
48,
587-598.
|
 |
|
|
|
|
 |
K.J.Armache,
H.Kettenberger,
and
P.Cramer
(2003).
Architecture of initiation-competent 12-subunit RNA polymerase II.
|
| |
Proc Natl Acad Sci U S A,
100,
6964-6968.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Pal,
and
D.S.Luse
(2003).
The initiation-elongation transition: lateral mobility of RNA in RNA polymerase II complexes is greatly reduced at +8/+9 and absent by +23.
|
| |
Proc Natl Acad Sci U S A,
100,
5700-5705.
|
 |
|
|
|
|
 |
N.Opalka,
M.Chlenov,
P.Chacon,
W.J.Rice,
W.Wriggers,
and
S.A.Darst
(2003).
Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase.
|
| |
Cell,
114,
335-345.
|
 |
|
|
|
|
 |
Q.Tan,
M.H.Prysak,
and
N.A.Woychik
(2003).
Loss of the Rpb4/Rpb7 subcomplex in a mutant form of the Rpb6 subunit shared by RNA polymerases I, II, and III.
|
| |
Mol Cell Biol,
23,
3329-3338.
|
 |
|
|
|
|
 |
R.C.Conaway,
S.E.Kong,
and
J.W.Conaway
(2003).
TFIIS and GreB: two like-minded transcription elongation factors with sticky fingers.
|
| |
Cell,
114,
272-274.
|
 |
|
|
|
|
 |
S.Karlin,
J.Mrázek,
and
A.J.Gentles
(2003).
Genome comparisons and analysis.
|
| |
Curr Opin Struct Biol,
13,
344-352.
|
 |
|
|
|
|
 |
T.J.Santangelo,
R.A.Mooney,
R.Landick,
and
J.W.Roberts
(2003).
RNA polymerase mutations that impair conversion to a termination-resistant complex by Q antiterminator proteins.
|
| |
Genes Dev,
17,
1281-1292.
|
 |
|
|
|
|
 |
W.Wei,
J.X.Gu,
C.Q.Zhu,
F.Y.Sun,
D.Dorjsuren,
Y.Lin,
and
S.Murakami
(2003).
Interaction with general transcription factor IIF (TFIIF) is required for the suppression of activated transcription by RPB5-mediating protein (RMP).
|
| |
Cell Res,
13,
111-120.
|
 |
|
|
|
|
 |
X.Na,
H.O.Duan,
E.M.Messing,
S.R.Schoen,
C.K.Ryan,
P.A.di Sant'Agnese,
E.A.Golemis,
and
G.Wu
(2003).
Identification of the RNA polymerase II subunit hsRPB7 as a novel target of the von Hippel-Lindau protein.
|
| |
EMBO J,
22,
4249-4259.
|
 |
|
|
|
|
 |
Y.Cui,
and
C.L.Denis
(2003).
In vivo evidence that defects in the transcriptional elongation factors RPB2, TFIIS, and SPT5 enhance upstream poly(A) site utilization.
|
| |
Mol Cell Biol,
23,
7887-7901.
|
 |
|
|
|
|
 |
A.Grove,
M.S.Adessa,
E.P.Geiduschek,
and
G.A.Kassavetis
(2002).
Marking the start site of RNA polymerase III transcription: the role of constraint, compaction and continuity of the transcribed DNA strand.
|
| |
EMBO J,
21,
704-714.
|
 |
|
|
|
|
 |
A.J.Warren
(2002).
Eukaryotic transcription factors.
|
| |
Curr Opin Struct Biol,
12,
107-114.
|
 |
|
|
|
|
 |
A.M.Edwards,
B.Kus,
R.Jansen,
D.Greenbaum,
J.Greenblatt,
and
M.Gerstein
(2002).
Bridging structural biology and genomics: assessing protein interaction data with known complexes.
|
| |
Trends Genet,
18,
529-536.
|
 |
|
|
|
|
 |
D.A.Bushnell,
P.Cramer,
and
R.D.Kornberg
(2002).
Structural basis of transcription: alpha-amanitin-RNA polymerase II cocrystal at 2.8 A resolution.
|
| |
Proc Natl Acad Sci U S A,
99,
1218-1222.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Peyroche,
E.Levillain,
M.Siaut,
I.Callebaut,
P.Schultz,
A.Sentenac,
M.Riva,
and
C.Carles
(2002).
The A14-A43 heterodimer subunit in yeast RNA pol I and their relationship to Rpb4-Rpb7 pol II subunits.
|
| |
Proc Natl Acad Sci U S A,
99,
14670-14675.
|
 |
|
|
|
|
 |
H.Sakurai,
and
A.Ishihama
(2002).
Level of the RNA polymerase II in the fission yeast stays constant but phosphorylation of its carboxyl terminal domain varies depending on the phase and rate of cell growth.
|
| |
Genes Cells,
7,
273-284.
|
 |
|
|
|
|
 |
J.F.Kugel,
and
J.A.Goodrich
(2002).
Translocation after synthesis of a four-nucleotide RNA commits RNA polymerase II to promoter escape.
|
| |
Mol Cell Biol,
22,
762-773.
|
 |
|
|
|
|
 |
J.L.Craighead,
W.H.Chang,
and
F.J.Asturias
(2002).
Structure of yeast RNA polymerase II in solution: implications for enzyme regulation and interaction with promoter DNA.
|
| |
Structure,
10,
1117-1125.
|
 |
|
|
|
|
 |
M.N.Vassylyeva,
J.Lee,
S.I.Sekine,
O.Laptenko,
S.Kuramitsu,
T.Shibata,
Y.Inoue,
S.Borukhov,
D.G.Vassylyev,
and
S.Yokoyama
(2002).
Purification, crystallization and initial crystallographic analysis of RNA polymerase holoenzyme from Thermus thermophilus.
|
| |
Acta Crystallogr D Biol Crystallogr,
58,
1497-1500.
|
 |
|
|
|
|
 |
P.Cramer
(2002).
Common structural features of nucleic acid polymerases.
|
| |
Bioessays,
24,
724-729.
|
 |
|
|
|
|
 |
P.Cramer
(2002).
Multisubunit RNA polymerases.
|
| |
Curr Opin Struct Biol,
12,
89-97.
|
 |
|
|
|
|
 |
P.Hu,
S.Wu,
Y.Sun,
C.C.Yuan,
R.Kobayashi,
M.P.Myers,
and
N.Hernandez
(2002).
Characterization of human RNA polymerase III identifies orthologues for Saccharomyces cerevisiae RNA polymerase III subunits.
|
| |
Mol Cell Biol,
22,
8044-8055.
|
 |
|
|
|
|
 |
R.R.Burgess,
and
N.E.Thompson
(2002).
Advances in gentle immunoaffinity chromatography.
|
| |
Curr Opin Biotechnol,
13,
304-308.
|
 |
|
|
|
|
 |
R.Sijbrandi,
U.Fiedler,
and
H.T.Timmers
(2002).
RNA polymerase II complexes in the very early phase of transcription are not susceptible to TFIIS-induced exonucleolytic cleavage.
|
| |
Nucleic Acids Res,
30,
2290-2298.
|
 |
|
|
|
|
 |
S.A.Darst,
N.Opalka,
P.Chacon,
A.Polyakov,
C.Richter,
G.Zhang,
and
W.Wriggers
(2002).
Conformational flexibility of bacterial RNA polymerase.
|
| |
Proc Natl Acad Sci U S A,
99,
4296-4301.
|
 |
|
|
|
|
 |
S.Li,
and
M.J.Smerdon
(2002).
Rpb4 and Rpb9 mediate subpathways of transcription-coupled DNA repair in Saccharomyces cerevisiae.
|
| |
EMBO J,
21,
5921-5929.
|
 |
|
|
|
|
 |
A.A.Best,
and
G.J.Olsen
(2001).
Similar subunit architecture of archaeal and eukaryal RNA polymerases.
|
| |
FEMS Microbiol Lett,
195,
85-90.
|
 |
|
|
|
|
 |
A.Dvir,
J.W.Conaway,
and
R.C.Conaway
(2001).
Mechanism of transcription initiation and promoter escape by RNA polymerase II.
|
| |
Curr Opin Genet Dev,
11,
209-214.
|
 |
|
|
|
|
 |
C.W.Müller
(2001).
Transcription factors: global and detailed views.
|
| |
Curr Opin Struct Biol,
11,
26-32.
|
 |
|
|
|
|
 |
D.Jeruzalmi,
M.O'Donnell,
and
J.Kuriyan
(2001).
Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III.
|
| |
Cell,
106,
429-441.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.A.Campbell,
N.Korzheva,
A.Mustaev,
K.Murakami,
S.Nair,
A.Goldfarb,
and
S.A.Darst
(2001).
Structural mechanism for rifampicin inhibition of bacterial rna polymerase.
|
| |
Cell,
104,
901-912.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Todone,
P.Brick,
F.Werner,
R.O.Weinzierl,
and
S.Onesti
(2001).
Structure of an archaeal homolog of the eukaryotic RNA polymerase II RPB4/RPB7 complex.
|
| |
Mol Cell,
8,
1137-1143.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Sakurai,
and
A.Ishihama
(2001).
Transcription organization and mRNA levels of the genes for all 12 subunits of the fission yeast RNA polymerase II.
|
| |
Genes Cells,
6,
25-36.
|
 |
|
|
|
|
 |
J.F.Briand,
F.Navarro,
P.Rematier,
C.Boschiero,
S.Labarre,
M.Werner,
G.V.Shpakovski,
and
P.Thuriaux
(2001).
Partners of Rpb8p, a small subunit shared by yeast RNA polymerases I, II and III.
|
| |
Mol Cell Biol,
21,
6056-6065.
|
 |
|
|
|
|
 |
J.H.Laity,
B.M.Lee,
and
P.E.Wright
(2001).
Zinc finger proteins: new insights into structural and functional diversity.
|
| |
Curr Opin Struct Biol,
11,
39-46.
|
 |
|
|
|
|
 |
K.Severinov
(2001).
T7 RNA polymerase transcription complex: what you see is not what you get.
|
| |
Proc Natl Acad Sci U S A,
98,
5-7.
|
 |
|
|
|
|
 |
L.Minakhin,
S.Bhagat,
A.Brunning,
E.A.Campbell,
S.A.Darst,
R.H.Ebright,
and
K.Severinov
(2001).
Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly.
|
| |
Proc Natl Acad Sci U S A,
98,
892-897.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.Spangler,
X.Wang,
J.W.Conaway,
R.C.Conaway,
and
A.Dvir
(2001).
TFIIH action in transcription initiation and promoter escape requires distinct regions of downstream promoter DNA.
|
| |
Proc Natl Acad Sci U S A,
98,
5544-5549.
|
 |
|
|
|
|
 |
N.Korzheva,
and
A.Mustaev
(2001).
Transcription elongation complex: structure and function.
|
| |
Curr Opin Microbiol,
4,
119-125.
|
 |
|
|
|
|
 |
R.D.Kornberg
(2001).
The eukaryotic gene transcription machinery.
|
| |
Biol Chem,
382,
1103-1107.
|
 |
|
|
|
|
 |
S.A.Darst
(2001).
Bacterial RNA polymerase.
|
| |
Curr Opin Struct Biol,
11,
155-162.
|
 |
|
|
|
|
 |
S.D.Bell,
and
S.P.Jackson
(2001).
Mechanism and regulation of transcription in archaea.
|
| |
Curr Opin Microbiol,
4,
208-213.
|
 |
|
|
|
|
 |
S.Grandemange,
S.Schaller,
S.Yamano,
S.Du Manoir,
G.V.Shpakovski,
M.G.Mattei,
C.Kedinger,
and
M.Vigneron
(2001).
A human RNA polymerase II subunit is encoded by a recently generated multigene family.
|
| |
BMC Mol Biol,
2,
14.
|
 |
|
|
|
|
 |
S.Rozenfeld,
and
P.Thuriaux
(2001).
A genetic look at the active site of RNA polymerase III.
|
| |
EMBO Rep,
2,
598-603.
|
 |
|
|
|
|
 |
T.M.Gruber,
D.Markov,
M.M.Sharp,
B.A.Young,
C.Z.Lu,
H.J.Zhong,
I.Artsimovitch,
K.M.Geszvain,
T.M.Arthur,
R.R.Burgess,
R.Landick,
K.Severinov,
and
C.A.Gross
(2001).
Binding of the initiation factor sigma(70) to core RNA polymerase is a multistep process.
|
| |
Mol Cell,
8,
21-31.
|
 |
|
|
|
|
 |
U.Fiedler,
and
H.T.Timmers
(2001).
Analysis of the open region of RNA polymerase II transcription complexes in the early phase of elongation.
|
| |
Nucleic Acids Res,
29,
2706-2714.
|
 |
|
|
|
|
 |
W.A.Breyer,
and
B.W.Matthews
(2001).
A structural basis for processivity.
|
| |
Protein Sci,
10,
1699-1711.
|
 |
|
|
|
|
 |
Y.Huang,
and
R.J.Maraia
(2001).
Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human.
|
| |
Nucleic Acids Res,
29,
2675-2690.
|
 |
|
|
|
|
 |
C.I.Wooddell,
and
R.R.Burgess
(2000).
Topology of yeast RNA polymerase II subunits in transcription elongation complexes studied by photoaffinity cross-linking.
|
| |
Biochemistry,
39,
13405-13421.
|
 |
|
|
|
|
 |
D.L.Pappas,
and
M.Hampsey
(2000).
Functional interaction between Ssu72 and the Rpb2 subunit of RNA polymerase II in Saccharomyces cerevisiae.
|
| |
Mol Cell Biol,
20,
8343-8351.
|
 |
|
|
|
|
 |
F.Werner,
J.J.Eloranta,
and
R.O.Weinzierl
(2000).
Archaeal RNA polymerase subunits F and P are bona fide homologs of eukaryotic RPB4 and RPB12.
|
| |
Nucleic Acids Res,
28,
4299-4305.
|
 |
|
|
|
|
 |
G.G.Shipley
(2000).
Bilayers and nonbilayers: structure, forces and protein crystallization.
|
| |
Curr Opin Struct Biol,
10,
471-473.
|
 |
|
|
|
|
 |
H.T.Chen,
P.Legault,
J.Glushka,
J.G.Omichinski,
and
R.A.Scott
(2000).
Structure of a (Cys3His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription.
|
| |
Protein Sci,
9,
1743-1752.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Féthière,
A.Andersson,
K.Keinänen,
and
D.R.Madden
(2000).
Crystallization of an AMPA receptor binding domain without agonist: importance of carbohydrate content and flash-cooling conditions.
|
| |
Acta Crystallogr D Biol Crystallogr,
56,
1625-1629.
|
 |
|
|
|
|
 |
J.W.Conaway,
A.Shilatifard,
A.Dvir,
and
R.C.Conaway
(2000).
Control of elongation by RNA polymerase II.
|
| |
Trends Biochem Sci,
25,
375-380.
|
 |
|
|
|
|
 |
M.Douziech,
F.Coin,
J.M.Chipoulet,
Y.Arai,
Y.Ohkuma,
J.M.Egly,
and
B.Coulombe
(2000).
Mechanism of promoter melting by the xeroderma pigmentosum complementation group B helicase of transcription factor IIH revealed by protein-DNA photo-cross-linking.
|
| |
Mol Cell Biol,
20,
8168-8177.
|
 |
|
|
|
|
 |
N.Naryshkin,
A.Revyakin,
Y.Kim,
V.Mekler,
and
R.H.Ebright
(2000).
Structural organization of the RNA polymerase-promoter open complex.
|
| |
Cell,
101,
601-611.
|
 |
|
|
|
|
 |
R.D.Finn,
E.V.Orlova,
B.Gowen,
M.Buck,
and
M.van Heel
(2000).
Escherichia coli RNA polymerase core and holoenzyme structures.
|
| |
EMBO J,
19,
6833-6844.
|
 |
|
|
|
|
 |
T.I.Lee,
and
R.A.Young
(2000).
Transcription of eukaryotic protein-coding genes.
|
| |
Annu Rev Genet,
34,
77.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
| |