 |
PDBsum entry 1dwt
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Oxygen transport
|
PDB id
|
|
|
|
1dwt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class 2:
|
 |
E.C.1.11.1.-
- ?????
|
|
 |
 |
 |
 |
 |
Enzyme class 3:
|
 |
E.C.1.7.-.-
|
|
 |
 |
 |
 |
 |
 |
 |
|
Note, where more than one E.C. class is given (as above), each may
correspond to a different protein domain or, in the case of polyprotein
precursors, to a different mature protein.
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nature
403:921-923
(2000)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin.
|
|
K.Chu,
J.Vojtchovský,
B.H.McMahon,
R.M.Sweet,
J.Berendzen,
I.Schlichting.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Small molecules such as NO, O2, CO or H2 are important biological ligands that
bind to metalloproteins to function crucially in processes such as signal
transduction, respiration and catalysis. A key issue for understanding the
regulation of reaction mechanisms in these systems is whether ligands gain
access to the binding sites through specific channels and docking sites, or by
random diffusion through the protein matrix. A model system for studying this
issue is myoglobin, a simple haem protein. Myoglobin has been studied
extensively by spectroscopy, crystallography, computation and theory. It serves
as an aid to oxygen diffusion but also binds carbon monoxide, a byproduct of
endogenous haem catabolism. Molecular dynamics simulations, random mutagenesis
and flash photolysis studies indicate that ligand migration occurs through a
limited number of pathways involving docking sites. Here we report the 1.4 A
resolution crystal structure of a ligand-binding intermediate in carbonmonoxy
myoglobin that may have far-reaching implications for understanding the dynamics
of ligand binding and catalysis.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1: Position of the CO molecule in states A and B. a,
Electron-density map of F[obs](MbCO*) - F[obs](CO bound) shows
positive (black, 10 )
and negative (grey, 7 )
electron density at the position of CO* (B) and bound CO (A),
respectively. b, Electron density map of 2F[obs ]- F[calc] (1.0
)
of state B generated by photolysis. The iron is located below
the haem plane; the CO molecule is shown almost along its axis.
c, Electron density map of 2F[obs ]- F[calc] (1.0 )
of state A. The iron is in the haem plane; CO is bound almost
perpendicular to the haem plane.
|
 |
Figure 2.
Figure 2: Position of the CO molecule in state D. a, Electron
density map of F[obs](Mb**CO) - F[obs ](CO rebound) shows
positive (black, 4.2 )
and negative (grey, 5.2 )
electron density below the haem and at the position of bound CO,
respectively. b, Electron density maps of 2F[obs ]-[]F[calc]
(1.0 ).
The iron is below the haem plane; no electron density associated
with CO is seen at the distal side of the haem, but a new peak
interpreted as CO* appears below the haem. c, The CO-bound
complex obtained after briefly thawing the photorelaxed complex
shown in a, b.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2000,
403,
921-923)
copyright 2000.
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
K.H.Kim,
K.Y.Oang,
J.Kim,
J.H.Lee,
Y.Kim,
and
H.Ihee
(2011).
Direct observation of myoglobin structural dynamics from 100 picoseconds to 1 microsecond with picosecond X-ray solution scattering.
|
| |
Chem Commun (Camb),
47,
289-291.
|
 |
|
|
|
|
 |
M.Anselmi,
A.Di Nola,
and
A.Amadei
(2011).
The effects of the L29F mutation on the ligand migration kinetics in crystallized myoglobin as revealed by molecular dynamics simulations.
|
| |
Proteins,
79,
867-879.
|
 |
|
|
|
|
 |
A.Tomita,
T.Sato,
S.Nozawa,
S.Y.Koshihara,
and
S.Adachi
(2010).
Tracking ligand-migration pathways of carbonmonoxy myoglobin in crystals at cryogenic temperatures.
|
| |
Acta Crystallogr A,
66,
220-228.
|
 |
|
|
|
|
 |
H.S.Cho,
N.Dashdorj,
F.Schotte,
T.Graber,
R.Henning,
and
P.Anfinrud
(2010).
Protein structural dynamics in solution unveiled via 100-ps time-resolved x-ray scattering.
|
| |
Proc Natl Acad Sci U S A,
107,
7281-7286.
|
 |
|
|
|
|
 |
Q.H.Zhou,
H.M.Zhang,
L.Wu,
and
Y.Q.Wang
(2010).
Binding of Al(III)-tetracarboxyphthalocyanine to hemoglobin and myoglobin.
|
| |
Protein J,
29,
265-275.
|
 |
|
|
|
|
 |
S.Westenhoff,
E.Nazarenko,
E.Malmerberg,
J.Davidsson,
G.Katona,
and
R.Neutze
(2010).
Time-resolved structural studies of protein reaction dynamics: a smorgasbord of X-ray approaches.
|
| |
Acta Crystallogr A,
66,
207-219.
|
 |
|
|
|
|
 |
X.Zhang,
and
Y.Chen
(2010).
Photo-controlled Zn(2+) release system with dual binding-sites and turn-on fluorescence.
|
| |
Phys Chem Chem Phys,
12,
1177-1181.
|
 |
|
|
|
|
 |
Y.Nishihara,
S.Kato,
and
S.Hayashi
(2010).
Protein collective motions coupled to ligand migration in myoglobin.
|
| |
Biophys J,
98,
1649-1657.
|
 |
|
|
|
|
 |
A.Tomita,
T.Sato,
K.Ichiyanagi,
S.Nozawa,
H.Ichikawa,
M.Chollet,
F.Kawai,
S.Y.Park,
T.Tsuduki,
T.Yamato,
S.Y.Koshihara,
and
S.Adachi
(2009).
Visualizing breathing motion of internal cavities in concert with ligand migration in myoglobin.
|
| |
Proc Natl Acad Sci U S A,
106,
2612-2616.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.Baron,
C.Riley,
P.Chenprakhon,
K.Thotsaporn,
R.T.Winter,
A.Alfieri,
F.Forneris,
W.J.van Berkel,
P.Chaiyen,
M.W.Fraaije,
A.Mattevi,
and
J.A.McCammon
(2009).
Multiple pathways guide oxygen diffusion into flavoenzyme active sites.
|
| |
Proc Natl Acad Sci U S A,
106,
10603-10608.
|
 |
|
|
|
|
 |
T.Moschetti,
U.Mueller,
J.Schulze,
M.Brunori,
and
B.Vallone
(2009).
The structure of neuroglobin at high Xe and Kr pressure reveals partial conservation of globin internal cavities.
|
| |
Biophys J,
97,
1700-1708.
|
 |
|
|
|
|
 |
X.Zhang,
and
Y.Chen
(2009).
Phototriggered metal-ion release from phenolic Schiff bases: a system for metal-ion photodelivery.
|
| |
Chemphyschem,
10,
1993-1995.
|
 |
|
|
|
|
 |
J.Z.Ruscio,
D.Kumar,
M.Shukla,
M.G.Prisant,
T.M.Murali,
and
A.V.Onufriev
(2008).
Atomic level computational identification of ligand migration pathways between solvent and binding site in myoglobin.
|
| |
Proc Natl Acad Sci U S A,
105,
9204-9209.
|
 |
|
|
|
|
 |
M.Anselmi,
A.Di Nola,
and
A.Amadei
(2008).
The kinetics of ligand migration in crystallized myoglobin as revealed by molecular dynamics simulations.
|
| |
Biophys J,
94,
4277-4281.
|
 |
|
|
|
|
 |
Z.N.Zahran,
L.Chooback,
D.M.Copeland,
A.H.West,
and
G.B.Richter-Addo
(2008).
Crystal structures of manganese- and cobalt-substituted myoglobin in complex with NO and nitrite reveal unusual ligand conformations.
|
| |
J Inorg Biochem,
102,
216-233.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Sato,
Y.Gao,
T.Kitagawa,
and
Y.Mizutani
(2007).
Primary protein response after ligand photodissociation in carbonmonoxy myoglobin.
|
| |
Proc Natl Acad Sci U S A,
104,
9627-9632.
|
 |
|
|
|
|
 |
G.Silkstone,
A.Jasaitis,
M.T.Wilson,
and
M.H.Vos
(2007).
Ligand dynamics in an electron transfer protein. Picosecond geminate recombination of carbon monoxide to heme in mutant forms of cytochrome c.
|
| |
J Biol Chem,
282,
1638-1649.
|
 |
|
|
|
|
 |
K.Nienhaus,
J.E.Knapp,
P.Palladino,
W.E.Royer,
and
G.U.Nienhaus
(2007).
Ligand migration and binding in the dimeric hemoglobin of Scapharca inaequivalvis.
|
| |
Biochemistry,
46,
14018-14031.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Mouawad,
C.Tetreau,
S.Abdel-Azeim,
D.Perahia,
and
D.Lavalette
(2007).
CO migration pathways in cytochrome P450cam studied by molecular dynamics simulations.
|
| |
Protein Sci,
16,
781-794.
|
 |
|
|
|
|
 |
P.Deng,
K.Nienhaus,
P.Palladino,
J.S.Olson,
G.Blouin,
L.Moens,
S.Dewilde,
E.Geuens,
and
G.U.Nienhaus
(2007).
Transient ligand docking sites in Cerebratulus lacteus mini-hemoglobin.
|
| |
Gene,
398,
208-223.
|
 |
|
|
|
|
 |
A.Bidon-Chanal,
M.A.Martí,
A.Crespo,
M.Milani,
M.Orozco,
M.Bolognesi,
F.J.Luque,
and
D.A.Estrin
(2006).
Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N.
|
| |
Proteins,
64,
457-464.
|
 |
|
|
|
|
 |
E.Pinakoulaki,
H.Yoshimura,
V.Daskalakis,
S.Yoshioka,
S.Aono,
and
C.Varotsis
(2006).
Two ligand-binding sites in the O2-sensing signal transducer HemAT: implications for ligand recognition/discrimination and signaling.
|
| |
Proc Natl Acad Sci U S A,
103,
14796-14801.
|
 |
|
|
|
|
 |
S.Abbruzzetti,
S.Bruno,
S.Faggiano,
E.Grandi,
A.Mozzarelli,
and
C.Viappiani
(2006).
Time-resolved methods in Biophysics. 2. Monitoring haem proteins at work with nanosecond laser flash photolysis.
|
| |
Photochem Photobiol Sci,
5,
1109-1120.
|
 |
|
|
|
|
 |
A.Arcovito,
D.C.Lamb,
G.U.Nienhaus,
J.L.Hazemann,
M.Benfatto,
and
S.Della Longa
(2005).
Light-induced relaxation of photolyzed carbonmonoxy myoglobin: a temperature-dependent x-ray absorption near-edge structure (XANES) study.
|
| |
Biophys J,
88,
2954-2964.
|
 |
|
|
|
|
 |
C.Tetreau,
L.Mouawad,
S.Murail,
P.Duchambon,
Y.Blouquit,
and
D.Lavalette
(2005).
Disentangling ligand migration and heme pocket relaxation in cytochrome P450cam.
|
| |
Biophys J,
88,
1250-1263.
|
 |
|
|
|
|
 |
D.Dantsker,
C.Roche,
U.Samuni,
G.Blouin,
J.S.Olson,
and
J.M.Friedman
(2005).
The position 68(E11) side chain in myoglobin regulates ligand capture, bond formation with heme iron, and internal movement into the xenon cavities.
|
| |
J Biol Chem,
280,
38740-38755.
|
 |
|
|
|
|
 |
G.Silkstone,
A.Jasaitis,
M.H.Vos,
and
M.T.Wilson
(2005).
Geminate carbon monoxide rebinding to a c-type haem.
|
| |
Dalton Trans,
(),
3489-3494.
|
 |
|
|
|
|
 |
J.Helbing,
K.Nienhaus,
G.U.Nienhaus,
and
P.Hamm
(2005).
Restricted rotational motion of CO in a protein internal cavity: evidence for nonseparating correlation functions from IR pump-probe spectroscopy.
|
| |
J Chem Phys,
122,
124505.
|
 |
|
|
|
|
 |
J.J.van Thor,
G.Y.Georgiev,
M.Towrie,
and
J.T.Sage
(2005).
Ultrafast and low barrier motions in the photoreactions of the green fluorescent protein.
|
| |
J Biol Chem,
280,
33652-33659.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Schmidt,
K.Nienhaus,
R.Pahl,
A.Krasselt,
S.Anderson,
F.Parak,
G.U.Nienhaus,
and
V.Srajer
(2005).
Ligand migration pathway and protein dynamics in myoglobin: a time-resolved crystallographic study on L29W MbCO.
|
| |
Proc Natl Acad Sci U S A,
102,
11704-11709.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Y.Sheu
(2005).
Molecular dynamics simulation of entropy driven ligand escape process in heme pocket.
|
| |
J Chem Phys,
122,
104905.
|
 |
|
|
|
|
 |
A.Pesce,
M.Nardini,
P.Ascenzi,
E.Geuens,
S.Dewilde,
L.Moens,
M.Bolognesi,
A.F.Riggs,
A.Hale,
P.Deng,
G.U.Nienhaus,
J.S.Olson,
and
K.Nienhaus
(2004).
Thr-E11 regulates O2 affinity in Cerebratulus lacteus mini-hemoglobin.
|
| |
J Biol Chem,
279,
33662-33672.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Tetreau,
Y.Blouquit,
E.Novikov,
E.Quiniou,
and
D.Lavalette
(2004).
Competition with xenon elicits ligand migration and escape pathways in myoglobin.
|
| |
Biophys J,
86,
435-447.
|
 |
|
|
|
|
 |
G.Hummer,
F.Schotte,
and
P.A.Anfinrud
(2004).
Unveiling functional protein motions with picosecond x-ray crystallography and molecular dynamics simulations.
|
| |
Proc Natl Acad Sci U S A,
101,
15330-15334.
|
 |
|
|
|
|
 |
K.Edman,
A.Royant,
G.Larsson,
F.Jacobson,
T.Taylor,
D.van der Spoel,
E.M.Landau,
E.Pebay-Peyroula,
and
R.Neutze
(2004).
Deformation of helix C in the low temperature L-intermediate of bacteriorhodopsin.
|
| |
J Biol Chem,
279,
2147-2158.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Levantino,
A.Cupane,
L.Zimányi,
and
P.Ormos
(2004).
Different relaxations in myoglobin after photolysis.
|
| |
Proc Natl Acad Sci U S A,
101,
14402-14407.
|
 |
|
|
|
|
 |
M.M.Teeter
(2004).
Myoglobin cavities provide interior ligand pathway.
|
| |
Protein Sci,
13,
313-318.
|
 |
|
|
|
|
 |
N.Agmon
(2004).
Coupling of protein relaxation to ligand binding and migration in myoglobin.
|
| |
Biophys J,
87,
1537-1543.
|
 |
|
|
|
|
 |
O.Pylypenko,
and
I.Schlichting
(2004).
Structural aspects of ligand binding to and electron transfer in bacterial and fungal P450s.
|
| |
Annu Rev Biochem,
73,
991.
|
 |
|
|
|
|
 |
Y.Wang,
J.S.Baskin,
T.Xia,
and
A.H.Zewail
(2004).
Human myoglobin recognition of oxygen: dynamics of the energy landscape.
|
| |
Proc Natl Acad Sci U S A,
101,
18000-18005.
|
 |
|
|
|
|
 |
D.Bourgeois,
B.Vallone,
F.Schotte,
A.Arcovito,
A.E.Miele,
G.Sciara,
M.Wulff,
P.Anfinrud,
and
M.Brunori
(2003).
Complex landscape of protein structural dynamics unveiled by nanosecond Laue crystallography.
|
| |
Proc Natl Acad Sci U S A,
100,
8704-8709.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.M.Copeland,
A.H.West,
and
G.B.Richter-Addo
(2003).
Crystal structures of ferrous horse heart myoglobin complexed with nitric oxide and nitrosoethane.
|
| |
Proteins,
53,
182-192.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
F.Schotte,
M.Lim,
T.A.Jackson,
A.V.Smirnov,
J.Soman,
J.S.Olson,
G.N.Phillips,
M.Wulff,
and
P.A.Anfinrud
(2003).
Watching a protein as it functions with 150-ps time-resolved x-ray crystallography.
|
| |
Science,
300,
1944-1947.
|
 |
|
|
|
|
 |
J.M.Kriegl,
K.Nienhaus,
P.Deng,
J.Fuchs,
and
G.U.Nienhaus
(2003).
Ligand dynamics in a protein internal cavity.
|
| |
Proc Natl Acad Sci U S A,
100,
7069-7074.
|
 |
|
|
|
|
 |
J.Miksovská,
J.H.Day,
and
R.W.Larsen
(2003).
Volume and enthalpy profiles of CO rebinding to horse heart myoglobin.
|
| |
J Biol Inorg Chem,
8,
621-625.
|
 |
|
|
|
|
 |
K.Nienhaus,
P.Deng,
J.S.Olson,
J.J.Warren,
and
G.U.Nienhaus
(2003).
Structural dynamics of myoglobin: ligand migration and binding in valine 68 mutants.
|
| |
J Biol Chem,
278,
42532-42544.
|
 |
|
|
|
|
 |
S.Herold,
and
G.Rock
(2003).
Reactions of deoxy-, oxy-, and methemoglobin with nitrogen monoxide. Mechanistic studies of the S-nitrosothiol formation under different mixing conditions.
|
| |
J Biol Chem,
278,
6623-6634.
|
 |
|
|
|
|
 |
S.Marchal,
H.M.Girvan,
A.C.Gorren,
B.Mayer,
A.W.Munro,
C.Balny,
and
R.Lange
(2003).
Formation of transient oxygen complexes of cytochrome p450 BM3 and nitric oxide synthase under high pressure.
|
| |
Biophys J,
85,
3303-3309.
|
 |
|
|
|
|
 |
U.Samuni,
D.Dantsker,
A.Ray,
J.B.Wittenberg,
B.A.Wittenberg,
S.Dewilde,
L.Moens,
Y.Ouellet,
M.Guertin,
and
J.M.Friedman
(2003).
Kinetic modulation in carbonmonoxy derivatives of truncated hemoglobins: the role of distal heme pocket residues and extended apolar tunnel.
|
| |
J Biol Chem,
278,
27241-27250.
|
 |
|
|
|
|
 |
C.M.Wilmot,
and
A.R.Pearson
(2002).
Cryocrystallography of metalloprotein reaction intermediates.
|
| |
Curr Opin Chem Biol,
6,
202-207.
|
 |
|
|
|
|
 |
C.Tetreau,
E.Novikov,
M.Tourbez,
and
D.Lavalette
(2002).
Kinetic evidence for three photolyzable taxonomic conformational substates in oxymyoglobin.
|
| |
Biophys J,
82,
2148-2155.
|
 |
|
|
|
|
 |
D.C.Lamb,
K.Nienhaus,
A.Arcovito,
F.Draghi,
A.E.Miele,
M.Brunori,
and
G.U.Nienhaus
(2002).
Structural dynamics of myoglobin: ligand migration among protein cavities studied by Fourier transform infrared/temperature derivative spectroscopy.
|
| |
J Biol Chem,
277,
11636-11644.
|
 |
|
|
|
|
 |
K.Edman,
A.Royant,
P.Nollert,
C.A.Maxwell,
E.Pebay-Peyroula,
J.Navarro,
R.Neutze,
and
E.M.Landau
(2002).
Early structural rearrangements in the photocycle of an integral membrane sensory receptor.
|
| |
Structure,
10,
473-482.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Nienhaus,
D.C.Lamb,
P.Deng,
and
G.U.Nienhaus
(2002).
The effect of ligand dynamics on heme electronic transition band III in myoglobin.
|
| |
Biophys J,
82,
1059-1067.
|
 |
|
|
|
|
 |
M.L.Groot,
M.H.Vos,
I.Schlichting,
F.van Mourik,
M.Joffre,
J.C.Lambry,
and
J.L.Martin
(2002).
Coherent infrared emission from myoglobin crystals: an electric field measurement.
|
| |
Proc Natl Acad Sci U S A,
99,
1323-1328.
|
 |
|
|
|
|
 |
M.Sakakura,
I.Morishima,
and
M.Terazima
(2002).
Structural dynamics of distal histidine replaced mutants of myoglobin accompanied with the photodissociation reaction of the ligand.
|
| |
Biochemistry,
41,
4837-4846.
|
 |
|
|
|
|
 |
P.W.Fenimore,
H.Frauenfelder,
B.H.McMahon,
and
F.G.Parak
(2002).
Slaving: solvent fluctuations dominate protein dynamics and functions.
|
| |
Proc Natl Acad Sci U S A,
99,
16047-16051.
|
 |
|
|
|
|
 |
T.Ursby,
M.Weik,
E.Fioravanti,
M.Delarue,
M.Goeldner,
and
D.Bourgeois
(2002).
Cryophotolysis of caged compounds: a technique for trapping intermediate states in protein crystals.
|
| |
Acta Crystallogr D Biol Crystallogr,
58,
607-614.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
U.Samuni,
D.Dantsker,
I.Khan,
A.J.Friedman,
E.Peterson,
and
J.M.Friedman
(2002).
Spectroscopically and kinetically distinct conformational populations of sol-gel-encapsulated carbonmonoxy myoglobin. A comparison with hemoglobin.
|
| |
J Biol Chem,
277,
25783-25790.
|
 |
|
|
|
|
 |
A.Royant,
K.Edman,
T.Ursby,
E.Pebay-Peyroula,
E.M.Landau,
and
R.Neutze
(2001).
Spectroscopic characterization of bacteriorhodopsin's L-intermediate in 3D crystals cooled to 170 K.
|
| |
Photochem Photobiol,
74,
794-804.
|
 |
|
|
|
|
 |
G.Dadusc,
J.P.Ogilvie,
P.Schulenberg,
U.Marvet,
and
R.J.Miller
(2001).
Diffractive optics-based heterodyne-detected four-wave mixing signals of protein motion: from "protein quakes" to ligand escape for myoglobin.
|
| |
Proc Natl Acad Sci U S A,
98,
6110-6115.
|
 |
|
|
|
|
 |
H.Frauenfelder,
B.H.McMahon,
R.H.Austin,
K.Chu,
and
J.T.Groves
(2001).
The role of structure, energy landscape, dynamics, and allostery in the enzymatic function of myoglobin.
|
| |
Proc Natl Acad Sci U S A,
98,
2370-2374.
|
 |
|
|
|
|
 |
H.Hanzawa,
K.Inomata,
H.Kinoshita,
T.Kakiuchi,
K.P.Jayasundera,
D.Sawamoto,
A.Ohta,
K.Uchida,
K.Wada,
and
M.Furuya
(2001).
In vitro assembly of phytochrome B apoprotein with synthetic analogs of the phytochrome chromophore.
|
| |
Proc Natl Acad Sci U S A,
98,
3612-3617.
|
 |
|
|
|
|
 |
H.Ishikawa,
T.Uchida,
S.Takahashi,
K.Ishimori,
and
I.Morishima
(2001).
Ligand migration in human myoglobin: steric effects of isoleucine 107(G8) on O(2) and CO binding.
|
| |
Biophys J,
80,
1507-1517.
|
 |
|
|
|
|
 |
M.Brunori,
and
Q.H.Gibson
(2001).
Cavities and packing defects in the structural dynamics of myoglobin.
|
| |
EMBO Rep,
2,
674-679.
|
 |
|
|
|
|
 |
W.Melik-Adamyan,
J.Bravo,
X.Carpena,
J.Switala,
M.J.Maté,
I.Fita,
and
P.C.Loewen
(2001).
Substrate flow in catalases deduced from the crystal structures of active site variants of HPII from Escherichia coli.
|
| |
Proteins,
44,
270-281.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Pesce,
M.Couture,
S.Dewilde,
M.Guertin,
K.Yamauchi,
P.Ascenzi,
L.Moens,
and
M.Bolognesi
(2000).
A novel two-over-two alpha-helical sandwich fold is characteristic of the truncated hemoglobin family.
|
| |
EMBO J,
19,
2424-2434.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Jung
(2000).
Insight into protein structure and protein-ligand recognition by Fourier transform infrared spectroscopy.
|
| |
J Mol Recognit,
13,
325-351.
|
 |
|
|
|
|
 |
C.Tetreau,
M.Tourbez,
and
D.Lavalette
(2000).
Conformational relaxation in hemoproteins: the cytochrome P-450cam case.
|
| |
Biochemistry,
39,
14219-14231.
|
 |
|
|
|
|
 |
D.M.Lawson,
C.E.Stevenson,
C.R.Andrew,
and
R.R.Eady
(2000).
Unprecedented proximal binding of nitric oxide to heme: implications for guanylate cyclase.
|
| |
EMBO J,
19,
5661-5671.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.Schlichting,
and
K.Chu
(2000).
Trapping intermediates in the crystal: ligand binding to myoglobin.
|
| |
Curr Opin Struct Biol,
10,
744-752.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |