spacer
spacer

PDBsum entry 1r3p

Go to PDB code: 
protein ligands links
Transport protein PDB id
1r3p

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
228 a.a.
Ligands
RET
Waters ×30
Superseded by: 1vjm
PDB id:
1r3p
Name: Transport protein
Title: Deformation of helix c in the low-temperature l- intermediate of bacteriorhyodopsin
Structure: Bacteriorhodopsin. Chain: a. Synonym: br
Source: Halobacterium sp.. Archaea. Strain: s9
Biol. unit: Trimer (from PQS)
Resolution:
2.30Å     R-factor:   0.252     R-free:   0.298
Authors: K.Edman,A.Royant,G.Larsson,F.Jacobson,T.Taylor,D.Van Der Spoel,E.M.Landau,E.Pebay-Peyroula,R.Neutze
Key ref:
K.Edman et al. (2004). Deformation of helix C in the low temperature L-intermediate of bacteriorhodopsin. J Biol Chem, 279, 2147-2158. PubMed id: 14532280 DOI: 10.1074/jbc.M300709200
Date:
02-Oct-03     Release date:   27-Jan-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P02945  (BACR_HALSA) -  Bacteriorhodopsin from Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1)
Seq:
Struc:
262 a.a.
228 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1074/jbc.M300709200 J Biol Chem 279:2147-2158 (2004)
PubMed id: 14532280  
 
 
Deformation of helix C in the low temperature L-intermediate of bacteriorhodopsin.
K.Edman, A.Royant, G.Larsson, F.Jacobson, T.Taylor, D.van der Spoel, E.M.Landau, E.Pebay-Peyroula, R.Neutze.
 
  ABSTRACT  
 
X-ray and electron diffraction studies of specific reaction intermediates, or reaction intermediate analogues, have produced a consistent picture of the structural mechanism of light-driven proton pumping by bacteriorhodopsin. Of central importance within this picture is the structure of the L-intermediate, which follows the retinal all-trans to 13-cis photoisomerization step of the K-intermediate and sets the stage for the primary proton transfer event from the positively charged Schiff base to the negatively charged Asp-85. Here we report the structural changes in bacteriorhodopsin following red light illumination at 150 K. Single crystal microspectrophotometry showed that only the L-intermediate is populated in three-dimensional crystals under these conditions. The experimental difference Fourier electron density map and refined crystallographic structure were consistent with those previously presented (Royant, A., Edman, K., Ursby, T., Pebay-Peyroula, E., Landau, E. M., and Neutze, R. (2000) Nature 406, 645-648; Royant, A., Edman, K., Ursby, T., Pebay-Peyroula, E., Landau, E. M., and Neutze, R. (2001) Photochem. Photobiol. 74, 794-804). Based on the refined crystallographic structures, molecular dynamic simulations were used to examine the influence of the conformational change of the protein that is associated with the K-to-L transition on retinal dynamics. Implications regarding the structural mechanism for proton pumping by bacteriorhodopsin are discussed.
 
  Selected figure(s)  
 
Figure 2.
FIG. 2. Long distance overview of the F[exc]-F[gnd] difference Fourier electron density maps resulting from green light illumination at 110 K contoured at 4.0 (a), red light illumination at 150 K contoured at 3.2 (b), and green light illumination at 170 K contoured at 3.4 (c). Positive electron density changes are colored blue, and negative electron density changes are colored yellow. More details of the trapping protocols are given in the text. Overviews of the difference density maps depicted in a and c can be found in stereo in Refs. 10 and 1, respectively.
Figure 6.
FIG. 6. Light-induced changes in the EC H-bond network. a, the location of water molecules in bR. b, the location of water molecules in L[LT]. Figs. 2, 3, 4, 5, 6 were drawn using the Swiss PDB Viewer (102).
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (2004, 279, 2147-2158) copyright 2004.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21525643 A.M.Orville, R.Buono, M.Cowan, A.Héroux, G.Shea-McCarthy, D.K.Schneider, J.M.Skinner, M.J.Skinner, D.Stoner-Ma, and R.M.Sweet (2011).
Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C.
  J Synchrotron Radiat, 18, 358-366.  
21113780 A.N.Bondar, S.Fischer, and J.C.Smith (2011).
Water pathways in the bacteriorhodopsin proton pump.
  J Membr Biol, 239, 73-84.  
20164644 S.Westenhoff, E.Nazarenko, E.Malmerberg, J.Davidsson, G.Katona, and R.Neutze (2010).
Time-resolved structural studies of protein reaction dynamics: a smorgasbord of X-ray approaches.
  Acta Crystallogr A, 66, 207-219.  
20057046 V.Borshchevskiy, R.Efremov, E.Moiseeva, G.Büldt, and V.Gordeliy (2010).
Overcoming merohedral twinning in crystals of bacteriorhodopsin grown in lipidic mesophase.
  Acta Crystallogr D Biol Crystallogr, 66, 26-32.  
19364848 C.R.Bourne, R.A.Bunce, P.C.Bourne, K.D.Berlin, E.W.Barrow, and W.W.Barrow (2009).
Crystal structure of Bacillus anthracis dihydrofolate reductase with the dihydrophthalazine-based trimethoprim derivative RAB1 provides a structural explanation of potency and selectivity.
  Antimicrob Agents Chemother, 53, 3065-3073.
PDB codes: 3fl8 3fl9
19222799 R.Tóth-Boconádi, A.Dér, L.Fábián, S.G.Taneva, and L.Keszthelyi (2009).
Excitation of the m intermediates of bacteriorhodopsin.
  Photochem Photobiol, 85, 609-613.  
18704943 T.A.Wassenaar, X.Daura, E.Padrós, and A.E.Mark (2009).
Calcium binding to the purple membrane: A molecular dynamics study.
  Proteins, 74, 669-681.  
19488399 T.Hirai, and S.Subramaniam (2009).
Protein conformational changes in the bacteriorhodopsin photocycle: comparison of findings from electron and X-ray crystallographic analyses.
  PLoS One, 4, e5769.  
19643594 T.Hirai, S.Subramaniam, and J.K.Lanyi (2009).
Structural snapshots of conformational changes in a seven-helix membrane protein: lessons from bacteriorhodopsin.
  Curr Opin Struct Biol, 19, 433-439.  
18184580 M.Andersson, J.Vincent, D.van der Spoel, J.Davidsson, and R.Neutze (2008).
A proposed time-resolved X-ray scattering approach to track local and global conformational changes in membrane transport proteins.
  Structure, 16, 21-28.  
19064907 P.Phatak, N.Ghosh, H.Yu, Q.Cui, and M.Elstner (2008).
Amino acids with an intermolecular proton bond as proton storage site in bacteriorhodopsin.
  Proc Natl Acad Sci U S A, 105, 19672-19677.  
18621842 R.Hagedorn, D.Gradmann, and P.Hegemann (2008).
Dynamics of voltage profile in enzymatic ion transporters, demonstrated in electrokinetics of proton pumping rhodopsin.
  Biophys J, 95, 5005-5013.  
17186234 B.P.Kietis, P.Saudargas, G.Vàró, and L.Valkunas (2007).
External electric control of the proton pumping in bacteriorhodopsin.
  Eur Biophys J, 36, 199-211.  
17141271 J.K.Lanyi, and B.Schobert (2007).
Structural changes in the L photointermediate of bacteriorhodopsin.
  J Mol Biol, 365, 1379-1392.
PDB codes: 2ntu 2ntw
16761083 A.N.Bondar, J.C.Smith, and S.Fischer (2006).
Structural and energetic determinants of primary proton transfer in bacteriorhodopsin.
  Photochem Photobiol Sci, 5, 547-552.  
16908857 H.Nakamichi, and T.Okada (2006).
Local peptide movement in the photoreaction intermediate of rhodopsin.
  Proc Natl Acad Sci U S A, 103, 12729-12734.
PDB code: 2hpy
16399840 R.Tóth-Boconádi, A.Dér, S.G.Taneva, and L.Keszthelyi (2006).
Excitation of the L intermediate of bacteriorhodopsin: electric responses to test x-ray structures.
  Biophys J, 90, 2651-2655.  
15837200 A.D.Gruia, A.N.Bondar, J.C.Smith, and S.Fischer (2005).
Mechanism of a molecular valve in the halorhodopsin chloride pump.
  Structure, 13, 617-627.  
16129597 D.Bourgeois, and A.Royant (2005).
Advances in kinetic protein crystallography.
  Curr Opin Struct Biol, 15, 538-547.  
16211538 D.Van Der Spoel, E.Lindahl, B.Hess, G.Groenhof, A.E.Mark, and H.J.Berendsen (2005).
GROMACS: fast, flexible, and free.
  J Comput Chem, 26, 1701-1718.  
15242586 M.Gutman (2004).
Intra-protein proton transfer; presentation of the most massive flux in the biosphere at quantum chemistry resolution.
  Structure, 12, 1123-1125.  
15362229 M.T.Facciotti, S.Rouhani-Manshadi, and R.M.Glaeser (2004).
Energy transduction in transmembrane ion pumps.
  Trends Biochem Sci, 29, 445-451.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer