 |
PDBsum entry 1cus
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Hydrolase(serine esterase)
|
PDB id
|
|
|
|
1cus
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.3.1.1.74
- cutinase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
cutin + H2O = cutin monomers
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
Nature
356:615-618
(1992)
|
|
PubMed id:
|
|
|
|
|
| |
|
Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent.
|
|
C.Martinez,
P.De Geus,
M.Lauwereys,
G.Matthyssens,
C.Cambillau.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Lipases belong to a class of esterases whose activity on triglycerides is
greatly enhanced at lipid-water interfaces. This phenomenon, called interfacial
activation, has a structural explanation: a hydrophobic lid, which at rest
covers the catalytic site, is displaced on substrate or inhibitor binding and
probably interacts with the lipid matrix. Fusarium solani pisi cutinase belongs
to a group of homologous enzymes of relative molecular mass 22-25K (ref. 7)
capable of degrading cutin, the insoluble lipid-polyester matrix covering the
surface of plants, and hydrolysing triglycerides. Cutinases differ from
classical lipases in that they do not exhibit interfacial activation; they are
active on soluble as well as on emulsified triglycerides. Cutinases therefore
establish a bridge between esterases and lipases. We report here the
three-dimensional structure of a recombinant cutinase from F. solani pisi,
expressed in Escherichia coli. Cutinase is an alpha-beta protein; the active
site is composed of the triad Ser 120, His 188 and Asp 175. Unlike other
lipases, the catalytic serine is not buried under surface loops, but is
accessible to solvent. This could explain why cutinase does not display
interfacial activation.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
H.Sahoo,
and
P.Schwille
(2011).
FRET and FCS-Friends or Foes?
|
| |
Chemphyschem,
12,
532-541.
|
 |
|
|
|
|
 |
J.Feng,
F.Wang,
G.R.Hughes,
S.Kaminskyj,
and
Y.Wei
(2011).
An important role for secreted esterase in disease establishment of the wheat powdery mildew fungus Blumeria graminis f. sp. tritici.
|
| |
Can J Microbiol,
57,
211-216.
|
 |
|
|
|
|
 |
J.Li,
S.Nayak,
and
M.Mrksich
(2010).
Rate enhancement of an interfacial biochemical reaction through localization of substrate and enzyme by an adaptor domain.
|
| |
J Phys Chem B,
114,
15113-15118.
|
 |
|
|
|
|
 |
M.Caspers,
U.Brockmeier,
C.Degering,
T.Eggert,
and
R.Freudl
(2010).
Improvement of Sec-dependent secretion of a heterologous model protein in Bacillus subtilis by saturation mutagenesis of the N-domain of the AmyE signal peptide.
|
| |
Appl Microbiol Biotechnol,
86,
1877-1885.
|
 |
|
|
|
|
 |
P.Sundaramurthy,
K.Shameer,
R.Sreenivasan,
S.Gakkhar,
and
R.Sowdhamini
(2010).
HORI: a web server to compute Higher Order Residue Interactions in protein structures.
|
| |
BMC Bioinformatics,
11,
S24.
|
 |
|
|
|
|
 |
H.Kontkanen,
A.Westerholm-Parvinen,
M.Saloheimo,
M.Bailey,
M.Rättö,
I.Mattila,
M.Mohsina,
N.Kalkkinen,
T.Nakari-Setälä,
and
J.Buchert
(2009).
Novel Coprinopsis cinerea polyesterase that hydrolyzes cutin and suberin.
|
| |
Appl Environ Microbiol,
75,
2148-2157.
|
 |
|
|
|
|
 |
I.T.Sousa,
L.Ruiu,
C.R.Lowe,
and
M.A.Taipa
(2009).
Synthetic affinity ligands as a novel tool to improve protein stability.
|
| |
J Mol Recognit,
22,
83-90.
|
 |
|
|
|
|
 |
M.Sunbul,
and
J.Yin
(2009).
Site specific protein labeling by enzymatic posttranslational modification.
|
| |
Org Biomol Chem,
7,
3361-3371.
|
 |
|
|
|
|
 |
Z.Liu,
Y.Gosser,
P.J.Baker,
Y.Ravee,
Z.Lu,
G.Alemu,
H.Li,
G.L.Butterfoss,
X.P.Kong,
R.Gross,
and
J.K.Montclare
(2009).
Structural and functional studies of Aspergillus oryzae cutinase: enhanced thermostability and hydrolytic activity of synthetic ester and polyester degradation.
|
| |
J Am Chem Soc,
131,
15711-15716.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.L.Rocha,
A.Di Pietro,
C.Ruiz-Roldán,
and
M.I.Roncero
(2008).
Ctf1, a transcriptional activator of cutinase and lipase genes in Fusarium oxysporum is dispensable for virulence.
|
| |
Mol Plant Pathol,
9,
293-304.
|
 |
|
|
|
|
 |
J.C.Marx,
J.Poncin,
J.P.Simorre,
P.W.Ramteke,
and
G.Feller
(2008).
The noncatalytic triad of alpha-amylases: a novel structural motif involved in conformational stability.
|
| |
Proteins,
70,
320-328.
|
 |
|
|
|
|
 |
J.S.Park,
K.Y.Han,
J.H.Lee,
J.A.Song,
K.Y.Ahn,
H.S.Seo,
S.J.Sim,
S.W.Kim,
and
J.Lee
(2008).
Solubility enhancement of aggregation-prone heterologous proteins by fusion expression using stress-responsive Escherichia coli protein, RpoS.
|
| |
BMC Biotechnol,
8,
15.
|
 |
|
|
|
|
 |
M.P.Nyon,
D.W.Rice,
J.M.Berrisford,
H.Huang,
A.J.Moir,
C.J.Craven,
S.Nathan,
N.M.Mahadi,
and
F.D.Abu Bakar
(2008).
Crystallization and preliminary X-ray analysis of recombinant Glomerella cingulata cutinase.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
64,
504-508.
|
 |
|
|
|
|
 |
H.S.Seo,
H.J.Um,
J.Min,
S.K.Rhee,
T.J.Cho,
Y.H.Kim,
and
J.Lee
(2007).
Pseudozyma jejuensis sp. nov., a novel cutinolytic ustilaginomycetous yeast species that is able to degrade plastic waste.
|
| |
FEMS Yeast Res,
7,
1035-1045.
|
 |
|
|
|
|
 |
M.A.Salameh,
and
J.Wiegel
(2007).
Purification and characterization of two highly thermophilic alkaline lipases from Thermosyntropha lipolytica.
|
| |
Appl Environ Microbiol,
73,
7725-7731.
|
 |
|
|
|
|
 |
Z.Chen,
C.F.Franco,
R.P.Baptista,
J.M.Cabral,
A.V.Coelho,
C.J.Rodrigues,
and
E.P.Melo
(2007).
Purification and identification of cutinases from Colletotrichum kahawae and Colletotrichum gloeosporioides.
|
| |
Appl Microbiol Biotechnol,
73,
1306-1313.
|
 |
|
|
|
|
 |
C.Y.Yang,
K.H.Chin,
C.C.Chou,
A.H.Wang,
and
S.H.Chou
(2006).
Structure of XC6422 from Xanthomonas campestris at 1.6 A resolution: a small serine alpha/beta-hydrolase.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
62,
498-503.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.Ruiu,
A.C.Roque,
M.A.Taipa,
and
C.R.Lowe
(2006).
De novo design, synthesis and screening of a combinatorial library of complementary ligands directed towards the surface of cutinase from Fusarium solani pisi.
|
| |
J Mol Recognit,
19,
372-378.
|
 |
|
|
|
|
 |
C.A.Kruithof,
M.A.Casado,
G.Guillena,
M.R.Egmond,
A.van der Kerk-van Hoof,
A.J.Heck,
R.J.Klein Gebbink,
and
G.van Koten
(2005).
Lipase active-site-directed anchoring of organometallics: metallopincer/protein hybrids.
|
| |
Chemistry,
11,
6869-6877.
|
 |
|
|
|
|
 |
H.Maeda,
Y.Yamagata,
K.Abe,
F.Hasegawa,
M.Machida,
R.Ishioka,
K.Gomi,
and
T.Nakajima
(2005).
Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae.
|
| |
Appl Microbiol Biotechnol,
67,
778-788.
|
 |
|
|
|
|
 |
O.Nord,
A.Gustrin,
and
P.A.Nygren
(2005).
Fluorescent detection of beta-lactamase activity in living Escherichia coli cells via esterase supplementation.
|
| |
FEMS Microbiol Lett,
242,
73-79.
|
 |
|
|
|
|
 |
S.Quevillon-Cheruel,
N.Leulliot,
M.Graille,
N.Hervouet,
F.Coste,
H.Bénédetti,
C.Zelwer,
J.Janin,
and
H.Van Tilbeurgh
(2005).
Crystal structure of yeast YHR049W/FSH1, a member of the serine hydrolase family.
|
| |
Protein Sci,
14,
1350-1356.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.D.Huang,
H.J.Matthies,
S.D.Speese,
M.A.Smith,
and
K.Broadie
(2004).
Rolling blackout, a newly identified PIP2-DAG pathway lipase required for Drosophila phototransduction.
|
| |
Nat Neurosci,
7,
1070-1078.
|
 |
|
|
|
|
 |
I.Janda,
Y.Devedjiev,
D.Cooper,
M.Chruszcz,
U.Derewenda,
A.Gabrys,
W.Minor,
A.Joachimiak,
and
Z.S.Derewenda
(2004).
Harvesting the high-hanging fruit: the structure of the YdeN gene product from Bacillus subtilis at 1.8 angstroms resolution.
|
| |
Acta Crystallogr D Biol Crystallogr,
60,
1101-1107.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Vidinha,
N.Harper,
N.M.Micaelo,
N.M.Lourenco,
M.D.da Silva,
J.M.Cabral,
C.A.Afonso,
C.M.Soares,
and
S.Barreiros
(2004).
Effect of immobilization support, water activity, and enzyme ionization state on cutinase activity and enantioselectivity in organic media.
|
| |
Biotechnol Bioeng,
85,
442-449.
|
 |
|
|
|
|
 |
J.M.Martinho,
A.M.Santos,
A.Fedorov,
R.P.Baptista,
M.A.Taipa,
and
J.M.Cabral
(2003).
Fluorescence of the single tryptophan of cutinase: temperature and pH effect on protein conformation and dynamics.
|
| |
Photochem Photobiol,
78,
15-22.
|
 |
|
|
|
|
 |
V.M.Gun'ko,
A.V.Klyueva,
Y.N.Levchuk,
and
R.Leboda
(2003).
Photon correlation spectroscopy investigations of proteins.
|
| |
Adv Colloid Interface Sci,
105,
201-328.
|
 |
|
|
|
|
 |
C.M.Sagt,
W.H.Müller,
L.van der Heide,
J.Boonstra,
A.J.Verkleij,
and
C.T.Verrips
(2002).
Impaired cutinase secretion in Saccharomyces cerevisiae induces irregular endoplasmic reticulum (ER) membrane proliferation, oxidative stress, and ER-associated degradation.
|
| |
Appl Environ Microbiol,
68,
2155-2160.
|
 |
|
|
|
|
 |
B.T.Hawthorne,
J.Rees-George,
and
R.N.Crowhurst
(2001).
Induction of cutinolytic esterase activity during saprophytic growth of cucurbit pathogens, Fusarium solani f. sp. cucurbitae races one and two (Nectria haematococca MPI and MPV, respectively).
|
| |
FEMS Microbiol Lett,
194,
135-141.
|
 |
|
|
|
|
 |
S.B.Petersen,
P.Fojan,
E.I.Petersen,
and
M.T.Petersen
(2001).
The Thermal Stability of the Fusarium solani pisi Cutinase as a Function of pH.
|
| |
J Biomed Biotechnol,
1,
62-69.
|
 |
|
|
|
|
 |
S.Fernandes,
G.Johansson,
and
R.Hatti-Kaul
(2001).
Purification of recombinant cutinase by extraction in an aqueous two-phase system facilitated by a fatty acid substrate.
|
| |
Biotechnol Bioeng,
73,
465-475.
|
 |
|
|
|
|
 |
A.Svendsen
(2000).
Lipase protein engineering.
|
| |
Biochim Biophys Acta,
1543,
223-238.
|
 |
|
|
|
|
 |
C.M.Sagt,
B.Kleizen,
R.Verwaal,
M.D.de Jong,
W.H.Müller,
A.Smits,
C.Visser,
J.Boonstra,
A.J.Verkleij,
and
C.T.Verrips
(2000).
Introduction of an N-glycosylation site increases secretion of heterologous proteins in yeasts.
|
| |
Appl Environ Microbiol,
66,
4940-4944.
|
 |
|
|
|
|
 |
K.Berggren,
M.R.Egmond,
and
F.Tjerneld
(2000).
Substitutions of surface amino acid residues of cutinase probed by aqueous two-phase partitioning.
|
| |
Biochim Biophys Acta,
1481,
317-327.
|
 |
|
|
|
|
 |
M.R.Egmond,
and
J.de Vlieg
(2000).
Fusarium solani pisi cutinase.
|
| |
Biochimie,
82,
1015-1021.
|
 |
|
|
|
|
 |
T.Verripsab,
P.Duboc,
C.Visser,
and
C.Sagt
(2000).
From gene to product in yeast: production of fungal cutinase.
|
| |
Enzyme Microb Technol,
26,
812-818.
|
 |
|
|
|
|
 |
Y.C.Lo,
Y.L.Lee,
J.F.Shaw,
and
Y.C.Liaw
(2000).
Crystallization and preliminary X-ray crystallographic analysis of thioesterase I from Escherichia coli.
|
| |
Acta Crystallogr D Biol Crystallogr,
56,
756-757.
|
 |
|
|
|
|
 |
C.M.Carvalho,
M.R.Aires-Barros,
and
J.M.Cabral
(1999).
Cutinase: from molecular level to bioprocess development.
|
| |
Biotechnol Bioeng,
66,
17-34.
|
 |
|
|
|
|
 |
G.Manco,
F.Febbraio,
E.Adinolfi,
and
M.Rossi
(1999).
Homology modeling and active-site residues probing of the thermophilic Alicyclobacillus acidocaldarius esterase 2.
|
| |
Protein Sci,
8,
1789-1796.
|
 |
|
|
|
|
 |
J.J.Prompers,
A.Groenewegen,
C.W.Hilbers,
and
H.A.Pepermans
(1999).
Backbone dynamics of Fusarium solani pisi cutinase probed by nuclear magnetic resonance: the lack of interfacial activation revisited.
|
| |
Biochemistry,
38,
5315-5327.
|
 |
|
|
|
|
 |
J.J.Prompers,
B.van Noorloos,
M.L.Mannesse,
A.Groenewegen,
M.R.Egmond,
H.M.Verheij,
C.W.Hilbers,
and
H.A.Pepermans
(1999).
NMR studies of Fusarium solani pisi cutinase in complex with phosphonate inhibitors.
|
| |
Biochemistry,
38,
5982-5994.
|
 |
|
|
|
|
 |
K.E.Jaeger,
B.W.Dijkstra,
and
M.T.Reetz
(1999).
Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases.
|
| |
Annu Rev Microbiol,
53,
315-351.
|
 |
|
|
|
|
 |
S.Longhi,
and
C.Cambillau
(1999).
Structure-activity of cutinase, a small lipolytic enzyme.
|
| |
Biochim Biophys Acta,
1441,
185-196.
|
 |
|
|
|
|
 |
A.Ibrik,
H.Chahinian,
N.Rugani,
L.Sarda,
and
L.C.Comeau
(1998).
Biochemical and structural characterization of triacylglycerol lipase from Penicillium cyclopium.
|
| |
Lipids,
33,
377-384.
|
 |
|
|
|
|
 |
C.M.Sagt,
W.H.Müller,
J.Boonstra,
A.J.Verkleij,
and
C.T.Verrips
(1998).
Impaired secretion of a hydrophobic cutinase by Saccharomyces cerevisiae correlates with an increased association with immunoglobulin heavy-chain binding protein (BiP).
|
| |
Appl Environ Microbiol,
64,
316-324.
|
 |
|
|
|
|
 |
E.P.Melo,
C.M.Carvalho,
M.R.Aires-Barros,
S.M.Costa,
and
J.M.Cabral
(1998).
Deactivation and conformational changes of cutinase in reverse micelles
|
| |
Biotechnol Bioeng,
58,
380-386.
|
 |
|
|
|
|
 |
F.Haeffner,
T.Norin,
and
K.Hult
(1998).
Molecular modeling of the enantioselectivity in lipase-catalyzed transesterification reactions.
|
| |
Biophys J,
74,
1251-1262.
|
 |
|
|
|
|
 |
I.A.van Gemeren,
A.Beijersbergen,
C.A.van den Hondel,
and
C.T.Verrips
(1998).
Expression and secretion of defined cutinase variants by Aspergillus awamori.
|
| |
Appl Environ Microbiol,
64,
2794-2799.
|
 |
|
|
|
|
 |
J.Pleiss,
M.Fischer,
and
R.D.Schmid
(1998).
Anatomy of lipase binding sites: the scissile fatty acid binding site.
|
| |
Chem Phys Lipids,
93,
67-80.
|
 |
|
|
|
|
 |
K.Weldingh,
I.Rosenkrands,
S.Jacobsen,
P.B.Rasmussen,
M.J.Elhay,
and
P.Andersen
(1998).
Two-dimensional electrophoresis for analysis of Mycobacterium tuberculosis culture filtrate and purification and characterization of six novel proteins.
|
| |
Infect Immun,
66,
3492-3500.
|
 |
|
|
|
|
 |
L.W.Schultz,
D.J.Quirk,
and
R.T.Raines
(1998).
His...Asp catalytic dyad of ribonuclease A: structure and function of the wild-type, D121N, and D121A enzymes.
|
| |
Biochemistry,
37,
8886-8898.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
X.Cousin,
T.Hotelier,
K.Giles,
J.P.Toutant,
and
A.Chatonnet
(1998).
aCHEdb: the database system for ESTHER, the alpha/beta fold family of proteins and the Cholinesterase gene server.
|
| |
Nucleic Acids Res,
26,
226-228.
|
 |
|
|
|
|
 |
C.J.van der Vlugt-Bergmans,
C.A.Wagemakers,
and
J.A.van Kan
(1997).
Cloning and expression of the cutinase A gene of Botrytis cinerea.
|
| |
Mol Plant Microbe Interact,
10,
21-29.
|
 |
|
|
|
|
 |
F.Carrière,
K.Thirstrup,
S.Hjorth,
F.Ferrato,
P.F.Nielsen,
C.Withers-Martinez,
C.Cambillau,
E.Boel,
L.Thim,
and
R.Verger
(1997).
Pancreatic lipase structure-function relationships by domain exchange.
|
| |
Biochemistry,
36,
239-248.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.D.Schrag,
Y.Li,
M.Cygler,
D.Lang,
T.Burgdorf,
H.J.Hecht,
R.Schmid,
D.Schomburg,
T.J.Rydel,
J.D.Oliver,
L.C.Strickland,
C.M.Dunaway,
S.B.Larson,
J.Day,
and
A.McPherson
(1997).
The open conformation of a Pseudomonas lipase.
|
| |
Structure,
5,
187-202.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.J.Prompers,
A.Groenewegen,
R.C.Van Schaik,
H.A.Pepermans,
and
C.W.Hilbers
(1997).
1H, 13C, and 15N resonance assignments of Fusarium solani pisi cutinase and preliminary features of the structure in solution.
|
| |
Protein Sci,
6,
2375-2384.
|
 |
|
|
|
|
 |
K.K.Kim,
H.K.Song,
D.H.Shin,
K.Y.Hwang,
and
S.W.Suh
(1997).
The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor.
|
| |
Structure,
5,
173-185.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.N.Crowhurst,
S.J.Binnie,
J.K.Bowen,
B.T.Hawthorne,
K.M.Plummer,
J.Rees-George,
E.H.Rikkerink,
and
M.D.Templeton
(1997).
Effect of disruption of a cutinase gene (cutA) on virulence and tissue specificity of Fusarium solani f. sp. cucurbitae race 2 toward Cucurbita maxima and C. moschata.
|
| |
Mol Plant Microbe Interact,
10,
355-368.
|
 |
|
|
|
|
 |
S.Lamare,
R.Lortie,
and
M.D.Legoy
(1997).
Kinetic studies of fusarium solani pisi cutinase used in a gas/solid system: Transesterification and hydrolysis reactions.
|
| |
Biotechnol Bioeng,
56,
1-8.
|
 |
|
|
|
|
 |
S.Longhi,
M.Mannesse,
H.M.Verheij,
G.H.De Haas,
M.Egmond,
E.Knoops-Mouthuy,
and
C.Cambillau
(1997).
Crystal structure of cutinase covalently inhibited by a triglyceride analogue.
|
| |
Protein Sci,
6,
275-286.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Z.Dauter,
V.S.Lamzin,
and
K.S.Wilson
(1997).
The benefits of atomic resolution.
|
| |
Curr Opin Struct Biol,
7,
681-688.
|
 |
|
|
|
|
 |
A.Kovac,
P.Stadler,
L.Haalck,
F.Spener,
and
F.Paltauf
(1996).
Hydrolysis and esterification of acylglycerols and analogs in aqueous medium catalyzed by microbial lipases.
|
| |
Biochim Biophys Acta,
1301,
57-66.
|
 |
|
|
|
|
 |
A.Nicolas,
M.Egmond,
C.T.Verrips,
J.de Vlieg,
S.Longhi,
C.Cambillau,
and
C.Martinez
(1996).
Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state.
|
| |
Biochemistry,
35,
398-410.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Torres,
S.M.Li,
S.Roussos,
and
M.Vert
(1996).
Screening of microorganisms for biodegradation of poly(lactic-acid) and lactic acid-containing polymers.
|
| |
Appl Environ Microbiol,
62,
2393-2397.
|
 |
|
|
|
|
 |
A.Tsuchiya,
H.Nakazawa,
J.Toida,
K.Ohnishi,
and
J.Sekiguchi
(1996).
Cloning and nucleotide sequence of the mono- and diacylglycerol lipase gene (mdlB) of Aspergillus oryzae.
|
| |
FEMS Microbiol Lett,
143,
63-67.
|
 |
|
|
|
|
 |
C.A.Murphy,
J.A.Cameron,
S.J.Huang,
and
R.T.Vinopal
(1996).
Fusarium polycaprolactone depolymerase is cutinase.
|
| |
Appl Environ Microbiol,
62,
456-460.
|
 |
|
|
|
|
 |
C.Sarazin,
F.Ergan,
J.P.Séguin,
G.Goethals,
M.D.Legoy,
and
J.N.Barbotin
(1996).
NMR on-line monitoring of esterification catalyzed by cutinase.
|
| |
Biotechnol Bioeng,
51,
636-644.
|
 |
|
|
|
|
 |
E.Margolles-Clark,
M.Tenkanen,
H.Söderlund,
and
M.Penttilä
(1996).
Acetyl xylan esterase from Trichoderma reesei contains an active-site serine residue and a cellulose-binding domain.
|
| |
Eur J Biochem,
237,
553-560.
|
 |
|
|
|
|
 |
M.Gerstein,
and
C.Chothia
(1996).
Packing at the protein-water interface.
|
| |
Proc Natl Acad Sci U S A,
93,
10167-10172.
|
 |
|
|
|
|
 |
M.P.Schreuder,
A.T.Mooren,
H.Y.Toschka,
C.T.Verrips,
and
F.M.Klis
(1996).
Immobilizing proteins on the surface of yeast cells.
|
| |
Trends Biotechnol,
14,
115-120.
|
 |
|
|
|
|
 |
P.C.Weisenborn,
H.Meder,
M.R.Egmond,
T.J.Visser,
and
A.van Hoek
(1996).
Photophysics of the single tryptophan residue in Fusarium solani Cutinase: evidence for the occurrence of conformational substates with unusual fluorescence behaviour.
|
| |
Biophys Chem,
58,
281-288.
|
 |
|
|
|
|
 |
T.Hisano,
Y.Hata,
T.Fujii,
J.Q.Liu,
T.Kurihara,
N.Esaki,
and
K.Soda
(1996).
Crystal structure of L-2-haloacid dehalogenase from Pseudomonas sp. YL. An alpha/beta hydrolase structure that is different from the alpha/beta hydrolase fold.
|
| |
J Biol Chem,
271,
20322-20330.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Ghosh,
Z.Wawrzak,
V.Z.Pletnev,
N.Li,
R.Kaiser,
W.Pangborn,
H.Jörnvall,
M.Erman,
and
W.L.Duax
(1995).
Structure of uncomplexed and linoleate-bound Candida cylindracea cholesterol esterase.
|
| |
Structure,
3,
279-288.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.P.Melo,
M.R.Aires-Barros,
and
J.M.Cabral
(1995).
Triglyceride hydrolysis and stability of a recombinant cutinase from Fusarium solani in AOT-iso-octane reversed micelles.
|
| |
Appl Biochem Biotechnol,
50,
45-56.
|
 |
|
|
|
|
 |
E.P.Melo,
S.M.Costa,
and
J.M.Cabral
(1995).
Structural effect of reversed micelles of AOT over a recombinant cutinase from Fusarium solani pisi. A steady state fluorescence study.
|
| |
Ann N Y Acad Sci,
750,
85-88.
|
 |
|
|
|
|
 |
G.Zandonella,
L.Haalck,
F.Spener,
K.Faber,
F.Paltauf,
and
A.Hermetter
(1995).
Inversion of lipase stereospecificity for fluorogenic alkyldiacyl glycerols. Effect of substrate solubilization.
|
| |
Eur J Biochem,
231,
50-55.
|
 |
|
|
|
|
 |
K.Ohnishi,
J.Toida,
H.Nakazawa,
and
J.Sekiguchi
(1995).
Genome structure and nucleotide sequence of a lipolytic enzyme gene of Aspergillus oryzae.
|
| |
FEMS Microbiol Lett,
126,
145-150.
|
 |
|
|
|
|
 |
L.W.Tjoelker,
C.Eberhardt,
J.Unger,
H.L.Trong,
G.A.Zimmerman,
T.M.McIntyre,
D.M.Stafforini,
S.M.Prescott,
and
P.W.Gray
(1995).
Plasma platelet-activating factor acetylhydrolase is a secreted phospholipase A2 with a catalytic triad.
|
| |
J Biol Chem,
270,
25481-25487.
|
 |
|
|
|
|
 |
M.Schiltz,
R.Fourme,
I.Broutin,
and
T.Prangé
(1995).
The catalytic site of serine proteinases as a specific binding cavity for xenon.
|
| |
Structure,
3,
309-316.
|
 |
|
|
|
|
 |
P.Stadler,
A.Kovac,
L.Haalck,
F.Spener,
and
F.Paltauf
(1995).
Stereoselectivity of microbial lipases. The substitution at position sn-2 of triacylglycerol analogs influences the stereoselectivity of different microbial lipases.
|
| |
Eur J Biochem,
227,
335-343.
|
 |
|
|
|
|
 |
S.R.Price,
and
K.Nagai
(1995).
Protein engineering as a tool for crystallography.
|
| |
Curr Opin Biotechnol,
6,
425-430.
|
 |
|
|
|
|
 |
J.Uppenberg,
M.T.Hansen,
S.Patkar,
and
T.A.Jones
(1994).
The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica.
|
| |
Structure,
2,
293-308.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.E.Jaeger,
S.Ransac,
B.W.Dijkstra,
C.Colson,
M.van Heuvel,
and
O.Misset
(1994).
Bacterial lipases.
|
| |
FEMS Microbiol Rev,
15,
29-63.
|
 |
|
|
|
|
 |
R.J.Kazlauskas
(1994).
Elucidating structure-mechanism relationships in lipases: prospects for predicting and engineering catalytic properties.
|
| |
Trends Biotechnol,
12,
464-472.
|
 |
|
|
|
|
 |
E.Lesuisse,
K.Schanck,
and
C.Colson
(1993).
Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pH-tolerant enzyme.
|
| |
Eur J Biochem,
216,
155-160.
|
 |
|
|
|
|
 |
E.Rogalska,
C.Cudrey,
F.Ferrato,
and
R.Verger
(1993).
Stereoselective hydrolysis of triglycerides by animal and microbial lipases.
|
| |
Chirality,
5,
24-30.
|
 |
|
|
|
|
 |
M.J.Sebastião,
J.M.Cabral,
and
M.R.Aires-Barros
(1993).
Synthesis of fatty acid esters by a recombinant cutinase in reversed micelles.
|
| |
Biotechnol Bioeng,
42,
326-332.
|
 |
|
|
|
|
 |
W.Schäfer
(1993).
The role of cutinase in fungal pathogenicity.
|
| |
Trends Microbiol,
1,
69-71.
|
 |
|
|
|
|
 |
Z.S.Derewenda,
and
A.M.Sharp
(1993).
News from the interface: the molecular structures of triacylglyceride lipases.
|
| |
Trends Biochem Sci,
18,
20-25.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |