spacer
spacer

PDBsum entry 1tcc

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Hydrolase(carboxylic esterase) PDB id
1tcc

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
317 a.a. *
Ligands
NAG-NAG
BOG
Waters ×159
* Residue conservation analysis
PDB id:
1tcc
Name: Hydrolase(carboxylic esterase)
Title: The sequence, crystal structure determination and refinement of two crystal forms of lipase b from candida antarctica
Structure: Lipase. Chain: a, b. Engineered: yes
Source: Candida antarctica. Ascomycetes. Organism_taxid: 34362
Resolution:
2.50Å     R-factor:   0.196    
Authors: J.Uppenberg,T.A.Jones
Key ref:
J.Uppenberg et al. (1994). The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure, 2, 293-308. PubMed id: 8087556 DOI: 10.1016/S0969-2126(00)00031-9
Date:
28-Feb-94     Release date:   31-May-94    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P41365  (LIPB_PSEA2) -  Lipase B from Pseudozyma antarctica
Seq:
Struc:
342 a.a.
317 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.1.1.3  - triacylglycerol lipase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a triacylglycerol + H2O = a diacylglycerol + a fatty acid + H+
triacylglycerol
+ H2O
= diacylglycerol
+ fatty acid
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1016/S0969-2126(00)00031-9 Structure 2:293-308 (1994)
PubMed id: 8087556  
 
 
The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica.
J.Uppenberg, M.T.Hansen, S.Patkar, T.A.Jones.
 
  ABSTRACT  
 
BACKGROUND: Lipases constitute a family of enzymes that hydrolyze triglycerides. They occur in many organisms and display a wide variety of substrate specificities. In recent years, much progress has been made towards explaining the mechanism of these enzymes and their ability to hydrolyze their substrates at an oil-water interface. RESULTS: We have determined the DNA and amino acid sequences for lipase B from the yeast Candida antarctica. The primary sequence has no significant homology to any other known lipase and deviates from the consensus sequence around the active site serine that is found in other lipases. We have determined the crystal structure of this enzyme using multiple isomorphous replacement methods for two crystal forms. Models for the orthorhombic and monoclinic crystal forms of the enzyme have been refined to 1.55 A and 2.1 A resolution, respectively. Lipase B is an alpha/beta type protein that has many features in common with previously determined lipase structures and other related enzymes. In the monoclinic crystal form, lipid-like molecules, most likely beta-octyl glucoside, can be seen close to the active site. The behaviour of these lipid molecules in the crystal structure has been studied at different pH values. CONCLUSION: The structure of Candida antarctica lipase B shows that the enzyme has a Ser-His-Asp catalytic triad in its active site. The structure appears to be in an 'open' conformation with a rather restricted entrance to the active site. We believe that this accounts for the substrate specificity and high degree of stereospecificity of this lipase.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. Stereo drawing of the Cα trace of CALB. The structure is coloured red at the amino terminus, then orange, light green, dark green, pale blue, and finally dark blue at the carboxyl terminus. Figure 2. Stereo drawing of the Cα trace of CALB. The structure is coloured red at the amino terminus, then orange, light green, dark green, pale blue, and finally dark blue at the carboxyl terminus.
Figure 7.
Figure 7. A stereo picture of the RML-phosphonate inhibitor complex and an alignment with CALB in this region. All residues believed to make up the oxyanion hole have a similar conformation in the two enzymes. Hypothetical hydrogen bonds from the inhibitor to CALB are indicated by dashed lines. RML is shown in black, CALB in the colour scheme used for Figure 5. Figure 7. A stereo picture of the RML-phosphonate inhibitor complex and an alignment with CALB in this region. All residues believed to make up the oxyanion hole have a similar conformation in the two enzymes. Hypothetical hydrogen bonds from the inhibitor to CALB are indicated by dashed lines. RML is shown in black, CALB in the colour scheme used for [3]Figure 5.
 
  The above figures are reprinted by permission from Cell Press: Structure (1994, 2, 293-308) copyright 1994.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21438054 D.Popescu, H.Keul, and M.Moeller (2011).
Poly(meth)acrylates obtained by cascade reaction.
  Macromol Rapid Commun, 32, 559-572.  
21472986 K.Loegering, C.Mueller, J.P.Voss, C.Wagenfuehrer, D.Zahn, H.P.Bertelsen, U.Scheffler, and R.Luttmann (2011).
An integrated scale-down plant for optimal recombinant enzyme production by Pichia pastoris.
  Biotechnol J, 6, 428-436.  
21132189 M.Klähn, G.S.Lim, A.Seduraman, and P.Wu (2011).
On the different roles of anions and cations in the solvation of enzymes in ionic liquids.
  Phys Chem Chem Phys, 13, 1649-1662.  
20209560 D.Liu, P.Trodler, S.Eiben, K.Koschorreck, M.Müller, J.Pleiss, S.C.Maurer, C.Branneby, R.D.Schmid, and B.Hauer (2010).
Rational design of Pseudozyma antarctica lipase B yielding a general esterification catalyst.
  Chembiochem, 11, 789-795.  
20431819 N.Budisa, W.Wenger, and B.Wiltschi (2010).
Residue-specific global fluorination of Candida antarctica lipase B in Pichia pastoris.
  Mol Biosyst, 6, 1630-1639.  
20431260 S.Kobayashi (2010).
Lipase-catalyzed polyester synthesis--a green polymer chemistry.
  Proc Jpn Acad Ser B Phys Biol Sci, 86, 338-365.  
19575372 E.García-Urdiales, N.Ríos-Lombardía, J.Mangas-Sánchez, V.Gotor-Fernández, and V.Gotor (2009).
Influence of the nucleophile on the Candida antarctica lipase B-catalysed resolution of a chiral acyl donor.
  Chembiochem, 10, 1830-1838.  
19156649 M.Skjøt, L.De Maria, R.Chatterjee, A.Svendsen, S.A.Patkar, P.R.Ostergaard, and J.Brask (2009).
Understanding the plasticity of the alpha/beta hydrolase fold: lid swapping on the Candida antarctica lipase B results in chimeras with interesting biocatalytic properties.
  Chembiochem, 10, 520-527.  
19542329 N.Narayanan, and C.P.Chou (2009).
Alleviation of proteolytic sensitivity to enhance recombinant lipase production in Escherichia coli.
  Appl Environ Microbiol, 75, 5424-5427.  
19847841 R.J.Branco, M.Graber, V.Denis, and J.Pleiss (2009).
Molecular mechanism of the hydration of Candida antarctica lipase B in the gas phase: Water adsorption isotherms and molecular dynamics simulations.
  Chembiochem, 10, 2913-2919.  
19695105 T.Xu, L.Zhang, X.Wang, D.Wei, and T.Li (2009).
Structure-based substrate screening for an enzyme.
  BMC Bioinformatics, 10, 257.  
19683009 Z.Qian, J.R.Horton, X.Cheng, and S.Lutz (2009).
Structural redesign of lipase B from Candida antarctica by circular permutation and incremental truncation.
  J Mol Biol, 393, 191-201.
PDB codes: 3icv 3icw
18421597 A.I.Brígida, A.D.Pinheiro, A.L.Ferreira, and L.R.Gonçalves (2008).
Immobilization of Candida antarctica lipase B by adsorption to green coconut fiber.
  Appl Biochem Biotechnol, 146, 173-187.  
18655082 J.Nyhlén, B.Martín-Matute, A.G.Sandström, M.Bocola, and J.E.Bäckvall (2008).
Influence of delta-functional groups on the enantiorecognition of secondary alcohols by Candida antarctica lipase B.
  Chembiochem, 9, 1968-1974.  
18076040 L.Mandrich, V.Menchise, V.Alterio, G.De Simone, C.Pedone, M.Rossi, and G.Manco (2008).
Functional and structural features of the oxyanion hole in a thermophilic esterase from Alicyclobacillus acidocaldarius.
  Proteins, 71, 1721-1731.
PDB code: 2hm7
18154980 P.Trodler, J.Nieveler, M.Rusnak, R.D.Schmid, and J.Pleiss (2008).
Rational design of a new one-step purification strategy for Candida antarctica lipase B by ion-exchange chromatography.
  J Chromatogr A, 1179, 161-167.  
18254946 P.Trodler, and J.Pleiss (2008).
Modeling structure and flexibility of Candida antarctica lipase B in organic solvents.
  BMC Struct Biol, 8, 9.  
17985077 S.Jung, and S.Park (2008).
Improving the expression yield of Candida antarctica lipase B in Escherichia coli by mutagenesis.
  Biotechnol Lett, 30, 717-722.  
17631665 A.Kasrayan, M.Bocola, A.G.Sandström, G.Lavén, and J.E.Bäckvall (2007).
Prediction of the Candida antarctica lipase A protein structure by comparative modeling and site-directed mutagenesis.
  Chembiochem, 8, 1409-1415.  
17266732 J.Thongekkaew, and C.Boonchird (2007).
Molecular cloning and functional expression of a novel extracellular lipase from the thermotolerant yeast Candida thermophila.
  FEMS Yeast Res, 7, 232-243.  
17262207 M.Kato, J.Fuchimoto, T.Tanino, A.Kondo, H.Fukuda, and M.Ueda (2007).
Preparation of a whole-cell biocatalyst of mutated Candida antarctica lipase B (mCALB) by a yeast molecular display system and its practical properties.
  Appl Microbiol Biotechnol, 75, 549-555.  
17225093 S.Tamalampudi, M.M.Talukder, S.Hama, T.Tanino, Y.Suzuki, A.Kondo, and H.Fukuda (2007).
Development of recombinant Aspergillus oryzae whole-cell biocatalyst expressing lipase-encoding gene from Candida antarctica.
  Appl Microbiol Biotechnol, 75, 387-395.  
17406864 T.Tanino, T.Ohno, T.Aoki, H.Fukuda, and A.Kondo (2007).
Development of yeast cells displaying Candida antarctica lipase B and their application to ester synthesis reaction.
  Appl Microbiol Biotechnol, 75, 1319-1325.  
17328021 V.Léonard, L.Fransson, S.Lamare, K.Hult, and M.Graber (2007).
A water molecule in the stereospecificity pocket of Candida antarctica lipase B enhances enantioselectivity towards pentan-2-ol.
  Chembiochem, 8, 662-667.  
17876754 Z.Qian, C.J.Fields, and S.Lutz (2007).
Investigating the structural and functional consequences of circular permutation on lipase B from Candida antarctica.
  Chembiochem, 8, 1989-1996.  
17183507 Z.Qian, C.J.Fields, Y.Yu, and S.Lutz (2007).
Recent progress in engineering alpha/beta hydrolase-fold family members.
  Biotechnol J, 2, 192-200.  
16703321 D.Liu, R.D.Schmid, and M.Rusnak (2006).
Functional expression of Candida antarctica lipase B in the Escherichia coli cytoplasm--a screening system for a frequently used biocatalyst.
  Appl Microbiol Biotechnol, 72, 1024-1032.  
16551354 G.Schneider, G.Neuberger, M.Wildpaner, S.Tian, I.Berezovsky, and F.Eisenhaber (2006).
Application of a sensitive collection heuristic for very large protein families: evolutionary relationship between adipose triglyceride lipase (ATGL) and classic mammalian lipases.
  BMC Bioinformatics, 7, 164.  
16133338 J.Narita, K.Okano, T.Tateno, T.Tanino, T.Sewaki, M.H.Sung, H.Fukuda, and A.Kondo (2006).
Display of active enzymes on the cell surface of Escherichia coli using PgsA anchor protein and their application to bioconversion.
  Appl Microbiol Biotechnol, 70, 564-572.  
16756497 K.S.Siddiqui, and R.Cavicchioli (2006).
Cold-adapted enzymes.
  Annu Rev Biochem, 75, 403-433.  
16373477 R.Schwartz, and J.King (2006).
Frequencies of hydrophobic and hydrophilic runs and alternations in proteins of known structure.
  Protein Sci, 15, 102-112.  
17022668 W.R.Berendsen, A.Lapin, and M.Reuss (2006).
Investigations of reaction kinetics for immobilized enzymes--identification of parameters in the presence of diffusion limitation.
  Biotechnol Prog, 22, 1305-1312.  
15883973 A.O.Magnusson, J.C.Rotticci-Mulder, A.Santagostino, and K.Hult (2005).
Creating space for large secondary alcohols by rational redesign of Candida antarctica lipase B.
  Chembiochem, 6, 1051-1056.  
15942926 E.Böer, H.P.Mock, R.Bode, G.Gellissen, and G.Kunze (2005).
An extracellular lipase from the dimorphic yeast Arxula adeninivorans: molecular cloning of the ALIP1 gene and characterization of the purified recombinant enzyme.
  Yeast, 22, 523-535.  
15977272 I.Lavandera, S.Fernández, J.Magdalena, M.Ferrero, R.J.Kazlauskas, and V.Gotor (2005).
An inverse substrate orientation for the regioselective acylation of 3',5'-diaminonucleosides catalyzed by Candida antarctica lipase B?
  Chembiochem, 6, 1381-1390.  
15999221 K.S.Siddiqui, and R.Cavicchioli (2005).
Improved thermal stability and activity in the cold-adapted lipase B from Candida antarctica following chemical modification with oxidized polysaccharides.
  Extremophiles, 9, 471-476.  
15619259 K.Velonia, O.Flomenbom, D.Loos, S.Masuo, M.Cotlet, Y.Engelborghs, J.Hofkens, A.E.Rowan, J.Klafter, R.J.Nolte, and F.C.de Schryver (2005).
Single-enzyme kinetics of CALB-catalyzed hydrolysis.
  Angew Chem Int Ed Engl, 44, 560-564.  
15281117 A.Barzilai, S.Kumar, H.Wolfson, and R.Nussinov (2004).
Potential folding-function interrelationship in proteins.
  Proteins, 56, 635-649.  
15159570 I.Janda, Y.Devedjiev, D.Cooper, M.Chruszcz, U.Derewenda, A.Gabrys, W.Minor, A.Joachimiak, and Z.S.Derewenda (2004).
Harvesting the high-hanging fruit: the structure of the YdeN gene product from Bacillus subtilis at 1.8 angstroms resolution.
  Acta Crystallogr D Biol Crystallogr, 60, 1101-1107.
PDB code: 1uxo
12557186 S.C.Lovell, I.W.Davis, W.B.Arendall, P.I.de Bakker, J.M.Word, M.G.Prisant, J.S.Richardson, and D.C.Richardson (2003).
Structure validation by Calpha geometry: phi,psi and Cbeta deviation.
  Proteins, 50, 437-450.  
12021445 J.Ottosson, L.Fransson, and K.Hult (2002).
Substrate entropy in enzyme enantioselectivity: an experimental and molecular modeling study of a lipase.
  Protein Sci, 11, 1462-1471.  
11255163 F.Secundo, G.Carrea, C.Soregaroli, D.Varinelli, and R.Morrone (2001).
Activity of different Candida antarctica lipase B formulations in organic solvents.
  Biotechnol Bioeng, 73, 157-163.  
11258933 H.González-Navarro, M.C.Bañó, and C.Abad (2001).
The closed/open model for lipase activation. Addressing intermediate active forms of fungal enzymes by trapping of conformers in water-restricted environments.
  Biochemistry, 40, 3174-3183.  
11745131 P.Pepin, and R.Lortie (2001).
Influence of water activity on the enantioselective esterification of (R,S)-ibuprofen by crosslinked crystals of Candida antarctica lipase B in organic solvent media.
  Biotechnol Bioeng, 75, 559-562.  
11150608 A.Svendsen (2000).
Lipase protein engineering.
  Biochim Biophys Acta, 1543, 223-238.  
10673439 J.Zou, B.M.Hallberg, T.Bergfors, F.Oesch, M.Arand, S.L.Mowbray, and T.A.Jones (2000).
Structure of Aspergillus niger epoxide hydrolase at 1.8 A resolution: implications for the structure and function of the mammalian microsomal class of epoxide hydrolases.
  Structure, 8, 111-122.
PDB code: 1qo7
10089342 G.J.Kleywegt, and T.A.Jones (1999).
Software for handling macromolecular envelopes.
  Acta Crystallogr D Biol Crystallogr, 55, 941-944.  
10531486 G.J.Kleywegt (1999).
Experimental assessment of differences between related protein crystal structures.
  Acta Crystallogr D Biol Crystallogr, 55, 1878-1884.  
10404234 G.Vecchio, F.Zambianchi, P.Zacchetti, F.Secundo, and G.Carrea (1999).
Fourier-transform infrared spectroscopy study of dehydrated lipases from candida antarctica B and pseudomonas cepacia
  Biotechnol Bioeng, 64, 545-551.  
10547694 K.E.Jaeger, B.W.Dijkstra, and M.T.Reetz (1999).
Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases.
  Annu Rev Microbiol, 53, 315-351.  
10570246 S.Longhi, and C.Cambillau (1999).
Structure-activity of cutinase, a small lipolytic enzyme.
  Biochim Biophys Acta, 1441, 185-196.  
9512023 F.Haeffner, T.Norin, and K.Hult (1998).
Molecular modeling of the enantioselectivity in lipase-catalyzed transesterification reactions.
  Biophys J, 74, 1251-1262.  
9818717 M.W.Horsted, E.S.Dey, S.Holmberg, and M.C.Kielland-Brandt (1998).
A novel esterase from Saccharomyces carlsbergensis, a possible function for the yeast TIP1 gene.
  Yeast, 14, 793-803.  
9720252 S.Patkar, J.Vind, E.Kelstrup, M.W.Christensen, A.Svendsen, K.Borch, and O.Kirk (1998).
Effect of mutations in Candida antarctica B lipase.
  Chem Phys Lipids, 93, 95.  
9720259 T.Anthonsen, and B.H.Hoff (1998).
Resolution of derivatives of 1,2-propanediol with lipase B from Candida antarctica. Effect of substrate structure, medium, water activity and acyl donor on enantiomeric ratio.
  Chem Phys Lipids, 93, 199-207.  
18634074 A.O.Triantafyllou, E.Wehtje, P.Adlercreutz, and B.Mattiasson (1997).
How do additives affect enzyme activity and stability in nonaqueous media?
  Biotechnol Bioeng, 54, 67-76.  
9032073 K.K.Kim, H.K.Song, D.H.Shin, K.Y.Hwang, and S.W.Suh (1997).
The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor.
  Structure, 5, 173-185.
PDB code: 1oil
  9041628 S.Longhi, M.Mannesse, H.M.Verheij, G.H.De Haas, M.Egmond, E.Knoops-Mouthuy, and C.Cambillau (1997).
Crystal structure of cutinase covalently inhibited by a triglyceride analogue.
  Protein Sci, 6, 275-286.
PDB code: 1oxm
9331420 X.Wang, C.S.Wang, J.Tang, F.Dyda, and X.C.Zhang (1997).
The crystal structure of bovine bile salt activated lipase: insights into the bile salt activation mechanism.
  Structure, 5, 1209-1218.
PDB codes: 1akn 1aql
8555209 A.Nicolas, M.Egmond, C.T.Verrips, J.de Vlieg, S.Longhi, C.Cambillau, and C.Martinez (1996).
Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state.
  Biochemistry, 35, 398-410.
PDB codes: 1ffa 1ffb 1ffc 1ffd 1ffe
8940153 J.A.Contreras, M.Karlsson, T.Osterlund, H.Laurell, A.Svensson, and C.Holm (1996).
Hormone-sensitive lipase is structurally related to acetylcholinesterase, bile salt-stimulated lipase, and several fungal lipases. Building of a three-dimensional model for the catalytic domain of hormone-sensitive lipase.
  J Biol Chem, 271, 31426-31430.  
9022707 J.W.Simons, H.Adams, R.C.Cox, N.Dekker, F.Götz, A.J.Slotboom, and H.M.Verheij (1996).
The lipase from Staphylococcus aureus. Expression in Escherichia coli, large-scale purification and comparison of substrate specificity to Staphylococcus hyicus lipase.
  Eur J Biochem, 242, 760-769.  
8743049 K.Gulomova, E.Ziomek, J.D.Schrag, K.Davranov, and M.Cygler (1996).
Purification and characterization of a Penicillium sp. lipase which discriminates against diglycerides.
  Lipids, 31, 379-384.  
7788294 D.Ghosh, Z.Wawrzak, V.Z.Pletnev, N.Li, R.Kaiser, W.Pangborn, H.Jörnvall, M.Erman, and W.L.Duax (1995).
Structure of uncomplexed and linoleate-bound Candida cylindracea cholesterol esterase.
  Structure, 3, 279-288.
PDB code: 1cle
7592717 L.W.Tjoelker, C.Eberhardt, J.Unger, H.L.Trong, G.A.Zimmerman, T.M.McIntyre, D.M.Stafforini, S.M.Prescott, and P.W.Gray (1995).
Plasma platelet-activating factor acetylhydrolase is a secreted phospholipase A2 with a catalytic triad.
  J Biol Chem, 270, 25481-25487.  
7634094 B.Rubin (1994).
Grease pit chemistry exposed.
  Nat Struct Biol, 1, 568-572.  
7858978 F.Björkling, A.Dahl, S.Patkar, and M.Zundel (1994).
Inhibition of lipases by phosphonates.
  Bioorg Med Chem, 2, 697-705.  
7765546 R.J.Kazlauskas (1994).
Elucidating structure-mechanism relationships in lipases: prospects for predicting and engineering catalytic properties.
  Trends Biotechnol, 12, 464-472.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer