spacer
spacer

PDBsum entry 1a94

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Hydrolase/hydrolase inhibitor PDB id
1a94

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
99 a.a. *
Ligands
0Q4 ×2
Waters ×543
* Residue conservation analysis
PDB id:
1a94
Name: Hydrolase/hydrolase inhibitor
Title: Structural basis for specificity of retroviral proteases
Structure: Protease. Chain: a, b, d, e. Engineered: yes. Mutation: yes
Source: Human immunodeficiency virus 1. Organism_taxid: 11676. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Homo-Dimer (from PDB file)
Resolution:
2.00Å     R-factor:   0.182     R-free:   0.281
Authors: J.Wu,J.M.Adomat,T.W.Ridky,J.M.Louis,J.Leis,R.W.Harrison,I.T.Weber
Key ref:
J.Wu et al. (1998). Structural basis for specificity of retroviral proteases. Biochemistry, 37, 4518-4526. PubMed id: 9521772 DOI: 10.1021/bi972183g
Date:
16-Apr-98     Release date:   13-Jan-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P03367  (POL_HV1BR) -  Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate BRU/LAI)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1447 a.a.
99 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 6 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 1: E.C.2.7.7.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 2: E.C.2.7.7.49  - RNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 3: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 4: E.C.3.1.-.-
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 5: E.C.3.1.13.2  - exoribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Exonucleolytic cleavage to 5'-phosphomonoester oligonucleotides in both 5'- to 3'- and 3'- to 5'-directions.
   Enzyme class 6: E.C.3.1.26.13  - retroviral ribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 7: E.C.3.4.23.16  - HIV-1 retropepsin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/bi972183g Biochemistry 37:4518-4526 (1998)
PubMed id: 9521772  
 
 
Structural basis for specificity of retroviral proteases.
J.Wu, J.M.Adomat, T.W.Ridky, J.M.Louis, J.Leis, R.W.Harrison, I.T.Weber.
 
  ABSTRACT  
 
The Rous sarcoma virus (RSV) protease S9 variant has been engineered to exhibit high affinity for HIV-1 protease substrates and inhibitors in order to verify the residues deduced to be critical for the specificity differences. The variant has 9 substitutions (S38T, I42D, I44V, M73V, A100L, V104T, R105P, G106V, and S107N) of structurally equivalent residues from HIV-1 protease. Unlike the wild-type enzyme, RSV S9 protease hydrolyzes peptides representing the HIV-1 protease polyprotein cleavage sites. The crystal structure of RSV S9 protease with the inhibitor, Arg-Val-Leu-r-Phe-Glu-Ala-Nle-NH2, a reduced peptide analogue of the HIV-1 CA-p2 cleavage site, has been refined to an R factor of 0.175 at 2.4-A resolution. The structure shows flap residues that were not visible in the previous crystal structure of unliganded wild-type enzyme. Flap residues 64-76 are structurally similar to residues 47-59 of HIV-1 protease. However, residues 61-63 form unique loops at the base of the flaps. Mutational analysis indicates that these loop residues are essential for catalytic activity. Side chains of flap residues His 65 and Gln 63' make hydrogen bond interactions with the inhibitor P3 amide and P4' carbonyl oxygen, respectively. Other interactions of RSV S9 protease with the CA-p2 analogue are very similar to those observed in the crystal structure of HIV-1 protease with the same inhibitor. This is the first crystal structure of an avian retroviral protease in complex with an inhibitor, and it verifies our knowledge of the molecular basis for specificity differences between RSV and HIV-1 proteases.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
17910057 A.Amini, P.J.Shrimpton, S.H.Muggleton, and M.J.Sternberg (2007).
A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming.
  Proteins, 69, 823-831.  
17352531 A.Kontijevskis, P.Prusis, R.Petrovska, S.Yahorava, F.Mutulis, I.Mutule, J.Komorowski, and J.E.Wikberg (2007).
A look inside HIV resistance through retroviral protease interaction maps.
  PLoS Comput Biol, 3, e48.  
16941468 H.B.Thorsteinsdottir, T.Schwede, V.Zoete, and M.Meuwly (2006).
How inaccuracies in protein structure models affect estimates of protein-ligand interactions: computational analysis of HIV-I protease inhibitor binding.
  Proteins, 65, 407-423.  
16352712 M.Li, G.S.Laco, M.Jaskolski, J.Rozycki, J.Alexandratos, A.Wlodawer, and A.Gustchina (2005).
Crystal structure of human T cell leukemia virus protease, a novel target for anticancer drug design.
  Proc Natl Acad Sci U S A, 102, 18332-18337.
PDB code: 2b7f
15767422 P.Bagossi, T.Sperka, A.Fehér, J.Kádas, G.Zahuczky, G.Miklóssy, P.Boross, and J.Tözsér (2005).
Amino acid preferences for a critical substrate binding subsite of retroviral proteases in type 1 cleavage sites.
  J Virol, 79, 4213-4218.  
  15831103 P.Marmey, A.Rojas-Mendoza, A.de Kochko, R.N.Beachy, and C.M.Fauquet (2005).
Characterization of the protease domain of Rice tungro bacilliform virus responsible for the processing of the capsid protein from the polyprotein.
  Virol J, 2, 33.  
15714296 S.Avram, C.Bologa, and M.L.Flonta (2005).
Quantitative structure-activity relationship by CoMFA for cyclic urea and nonpeptide-cyclic cyanoguanidine derivatives on wild type and mutant HIV-1 protease.
  J Mol Model, 11, 105-115.  
12631281 M.Kumar, and M.V.Hosur (2003).
Adaptability and flexibility of HIV-1 protease.
  Eur J Biochem, 270, 1231-1239.  
12770819 S.B.Shuker, V.L.Mariani, B.E.Herger, and K.J.Dennison (2003).
Understanding HTLV-I protease.
  Chem Biol, 10, 373-380.  
12012342 B.Mahalingam, P.Boross, Y.F.Wang, J.M.Louis, C.C.Fischer, J.Tozser, R.W.Harrison, and I.T.Weber (2002).
Combining mutations in HIV-1 protease to understand mechanisms of resistance.
  Proteins, 48, 107-116.
PDB codes: 1k1t 1k1u 1k2b 1k2c
12169210 S.Avram, L.Movileanu, D.Mihailescu, and M.L.Flonta (2002).
Comparative study of some energetic and steric parameters of the wild type and mutants HIV-1 protease: a way to explain the viral resistance.
  J Cell Mol Med, 6, 251-260.  
11340661 B.Mahalingam, J.M.Louis, J.Hung, R.W.Harrison, and I.T.Weber (2001).
Structural implications of drug-resistant mutants of HIV-1 protease: high-resolution crystal structures of the mutant protease/substrate analogue complexes.
  Proteins, 43, 455-464.
PDB codes: 1fej 1ff0 1fff 1ffi 1fg6 1fg8 1fgc
11012683 J.Tözsér, G.Zahuczky, P.Bagossi, J.M.Louis, T.D.Copeland, S.Oroszlan, R.W.Harrison, and I.T.Weber (2000).
Comparison of the substrate specificity of the human T-cell leukemia virus and human immunodeficiency virus proteinases.
  Eur J Biochem, 267, 6287-6295.  
10429209 B.Mahalingam, J.M.Louis, C.C.Reed, J.M.Adomat, J.Krouse, Y.F.Wang, R.W.Harrison, and I.T.Weber (1999).
Structural and kinetic analysis of drug resistant mutants of HIV-1 protease.
  Eur J Biochem, 263, 238-245.
PDB codes: 1daz 1dw6 1ebk
10438521 J.M.Louis, E.M.Wondrak, A.R.Kimmel, P.T.Wingfield, and N.T.Nashed (1999).
Proteolytic processing of HIV-1 protease precursor, kinetics and mechanism.
  J Biol Chem, 274, 23437-23442.  
10037763 J.M.Louis, S.Oroszlan, and J.Tözsér (1999).
Stabilization from autoproteolysis and kinetic characterization of the human T-cell leukemia virus type 1 proteinase.
  J Biol Chem, 274, 6660-6666.  
10491141 P.Boross, P.Bagossi, T.D.Copeland, S.Oroszlan, J.M.Louis, and J.Tözsér (1999).
Effect of substrate residues on the P2' preference of retroviral proteinases.
  Eur J Biochem, 264, 921-929.  
  9827997 J.Kervinen, J.Lubkowski, A.Zdanov, D.Bhatt, B.M.Dunn, K.Y.Hui, D.J.Powell, J.Kay, A.Wlodawer, and A.Gustchina (1998).
Toward a universal inhibitor of retroviral proteases: comparative analysis of the interactions of LP-130 complexed with proteases from HIV-1, FIV, and EIAV.
  Protein Sci, 7, 2314-2323.
PDB codes: 1ody 2fmb 4fiv
9753473 T.W.Ridky, A.Kikonyogo, J.Leis, S.Gulnik, T.Copeland, J.Erickson, A.Wlodawer, I.Kurinov, R.W.Harrison, and I.T.Weber (1998).
Drug-resistant HIV-1 proteases identify enzyme residues important for substrate selection and catalytic rate.
  Biochemistry, 37, 13835-13845.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer