 |
PDBsum entry 1a4h
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Cell
90:65-75
(1997)
|
|
PubMed id:
|
|
|
|
|
| |
|
Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone.
|
|
C.Prodromou,
S.M.Roe,
R.O'Brien,
J.E.Ladbury,
P.W.Piper,
L.H.Pearl.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Hsp90 molecular chaperones in eukaryotic cells play essential roles in the
folding and activation of a range of client proteins involved in cell cycle
regulation, steroid hormone responsiveness, and signal transduction. The
biochemical mechanism of Hsp90 is poorly understood, and the involvement of ATP
in particular is controversial. Crystal structures of complexes between the
N-terminal domain of the yeast Hsp90 chaperone and ADP/ATP unambiguously
identify a specific adenine nucleotide binding site homologous to the
ATP-binding site of DNA gyrase B. This site is the same as that identified for
the antitumor agent geldanamycin, suggesting that geldanamycin acts by blocking
the binding of nucleotides to Hsp90 and not the binding of incompletely folded
client polypeptides as previously suggested. These results finally resolve the
question of the direct involvement of ATP in Hsp90 function.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Figure 3. Comparison of Bound Nucleotide Conformations in
Hsc70 and Hsp90Conformations of ADP bound to (a) Hsc70 ([13])
and (b) Hsp90. The N1, N6, which make specific contacts in the
ADP/ATP-binding pocket, are indicated, as is the adenine base C8
atom, which is unhindered in the Hsc70-bound conformation but
hindered in the Hsp90-bound conformation.
|
 |
Figure 6.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Cell
(1997,
90,
65-75)
copyright 1997.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.Allegra,
E.Sant'antonio,
G.Penna,
A.Alonci,
A.D'Angelo,
S.Russo,
A.Cannavò,
D.Gerace,
and
C.Musolino
(2011).
Novel therapeutic strategies in multiple myeloma: role of the heat shock protein inhibitors.
|
| |
Eur J Haematol,
86,
93.
|
 |
|
|
|
|
 |
J.King-Scott,
P.V.Konarev,
S.Panjikar,
R.Jordanova,
D.I.Svergun,
and
P.A.Tucker
(2011).
Structural characterization of the multidomain regulatory protein Rv1364c from Mycobacterium tuberculosis.
|
| |
Structure,
19,
56-69.
|
 |
|
|
|
|
 |
K.A.Krukenberg,
T.O.Street,
L.A.Lavery,
and
D.A.Agard
(2011).
Conformational dynamics of the molecular chaperone Hsp90.
|
| |
Q Rev Biophys,
44,
229-255.
|
 |
|
|
|
|
 |
L.García-Descalzo,
A.Alcazar,
F.Baquero,
and
C.Cid
(2011).
Identification of in vivo HSP90-interacting proteins reveals modularity of HSP90 complexes is dependent on the environment in psychrophilic bacteria.
|
| |
Cell Stress Chaperones,
16,
203-218.
|
 |
|
|
|
|
 |
M.T.Guarnieri,
B.S.Blagg,
and
R.Zhao
(2011).
A high-throughput TNP-ATP displacement assay for screening inhibitors of ATP-binding in bacterial histidine kinases.
|
| |
Assay Drug Dev Technol,
9,
174-183.
|
 |
|
|
|
|
 |
N.Wang,
I.Whang,
J.S.Lee,
and
J.Lee
(2011).
Molecular characterization and expression analysis of a heat shock protein 90 gene from disk abalone (Haliotis discus).
|
| |
Mol Biol Rep,
38,
3055-3060.
|
 |
|
|
|
|
 |
S.Minagawa,
Y.Kondoh,
K.Sueoka,
H.Osada,
and
H.Nakamoto
(2011).
Cyclic lipopeptide antibiotics bind to the N-terminal domain of the prokaryotic Hsp90 to inhibit the chaperone activity.
|
| |
Biochem J,
435,
237-246.
|
 |
|
|
|
|
 |
W.Zhao,
L.Chen,
J.Qin,
P.Wu,
F.Zhang,
E.Li,
and
B.Tang
(2011).
MnHSP90 cDNA characterization and its expression during the ovary development in oriental river prawn, Macrobrachium nipponense.
|
| |
Mol Biol Rep,
38,
1399-1406.
|
 |
|
|
|
|
 |
A.Chadli,
S.J.Felts,
Q.Wang,
W.P.Sullivan,
M.V.Botuyan,
A.Fauq,
M.Ramirez-Alvarado,
and
G.Mer
(2010).
Celastrol inhibits Hsp90 chaperoning of steroid receptors by inducing fibrillization of the Co-chaperone p23.
|
| |
J Biol Chem,
285,
4224-4231.
|
 |
|
|
|
|
 |
A.Giménez Ortiz,
and
J.Montalar Salcedo
(2010).
Heat shock proteins as targets in oncology.
|
| |
Clin Transl Oncol,
12,
166-173.
|
 |
|
|
|
|
 |
A.K.Mandal,
P.A.Gibney,
N.B.Nillegoda,
M.A.Theodoraki,
A.J.Caplan,
and
K.A.Morano
(2010).
Hsp110 chaperones control client fate determination in the hsp70-Hsp90 chaperone system.
|
| |
Mol Biol Cell,
21,
1439-1448.
|
 |
|
|
|
|
 |
A.Orthwein,
A.M.Patenaude,
e.l. .B.Affar,
A.Lamarre,
J.C.Young,
and
J.M.Di Noia
(2010).
Regulation of activation-induced deaminase stability and antibody gene diversification by Hsp90.
|
| |
J Exp Med,
207,
2751-2765.
|
 |
|
|
|
|
 |
C.S.Chua,
H.Low,
K.S.Goo,
and
T.S.Sim
(2010).
Characterization of Plasmodium falciparum co-chaperone p23: its intrinsic chaperone activity and interaction with Hsp90.
|
| |
Cell Mol Life Sci,
67,
1675-1686.
|
 |
|
|
|
|
 |
I.E.Wrona,
A.Gozman,
T.Taldone,
G.Chiosis,
and
J.S.Panek
(2010).
Synthesis of reblastatin, autolytimycin, and non-benzoquinone analogues: potent inhibitors of heat shock protein 90.
|
| |
J Org Chem,
75,
2820-2835.
|
 |
|
|
|
|
 |
J.E.Day,
S.Y.Sharp,
M.G.Rowlands,
W.Aherne,
P.Workman,
and
C.J.Moody
(2010).
Targeting the Hsp90 chaperone: synthesis of novel resorcylic acid macrolactone inhibitors of Hsp90.
|
| |
Chemistry,
16,
2758-2763.
|
 |
|
|
|
|
 |
J.E.Day,
S.Y.Sharp,
M.G.Rowlands,
W.Aherne,
W.Lewis,
S.M.Roe,
C.Prodromou,
L.H.Pearl,
P.Workman,
and
C.J.Moody
(2010).
Inhibition of Hsp90 with resorcylic acid macrolactones: synthesis and binding studies.
|
| |
Chemistry,
16,
10366-10372.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.R.Porter,
C.C.Fritz,
and
K.M.Depew
(2010).
Discovery and development of Hsp90 inhibitors: a promising pathway for cancer therapy.
|
| |
Curr Opin Chem Biol,
14,
412-420.
|
 |
|
|
|
|
 |
K.D.Corbett,
and
J.M.Berger
(2010).
Structure of the ATP-binding domain of Plasmodium falciparum Hsp90.
|
| |
Proteins,
78,
2738-2744.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.Moleda,
L.Jurzik,
M.Froh,
E.Gäbele,
C.Hellerbrand,
R.H.Straub,
J.Schölmerich,
and
R.Wiest
(2010).
Role of HSP-90 for increased nNOS-mediated vasodilation in mesenteric arteries in portal hypertension.
|
| |
World J Gastroenterol,
16,
1837-1844.
|
 |
|
|
|
|
 |
L.Vozzolo,
B.Loh,
P.J.Gane,
M.Tribak,
L.Zhou,
I.Anderson,
E.Nyakatura,
R.G.Jenner,
D.Selwood,
and
A.Fassati
(2010).
Gyrase B inhibitor impairs HIV-1 replication by targeting Hsp90 and the capsid protein.
|
| |
J Biol Chem,
285,
39314-39328.
|
 |
|
|
|
|
 |
M.Mollapour,
S.Tsutsumi,
A.C.Donnelly,
K.Beebe,
M.J.Tokita,
M.J.Lee,
S.Lee,
G.Morra,
D.Bourboulia,
B.T.Scroggins,
G.Colombo,
B.S.Blagg,
B.Panaretou,
W.G.Stetler-Stevenson,
J.B.Trepel,
P.W.Piper,
C.Prodromou,
L.H.Pearl,
and
L.Neckers
(2010).
Swe1Wee1-dependent tyrosine phosphorylation of Hsp90 regulates distinct facets of chaperone function.
|
| |
Mol Cell,
37,
333-343.
|
 |
|
|
|
|
 |
M.Taipale,
D.F.Jarosz,
and
S.Lindquist
(2010).
HSP90 at the hub of protein homeostasis: emerging mechanistic insights.
|
| |
Nat Rev Mol Cell Biol,
11,
515-528.
|
 |
|
|
|
|
 |
M.Zhang,
Y.Kadota,
C.Prodromou,
K.Shirasu,
and
L.H.Pearl
(2010).
Structural basis for assembly of Hsp90-Sgt1-CHORD protein complexes: implications for chaperoning of NLR innate immunity receptors.
|
| |
Mol Cell,
39,
269-281.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Boufaied,
M.A.Wioland,
P.Falardeau,
and
H.Gourdeau
(2010).
TLN-4601, a novel anticancer agent, inhibits Ras signaling post Ras prenylation and before MEK activation.
|
| |
Anticancer Drugs,
21,
543-552.
|
 |
|
|
|
|
 |
P.Fadden,
K.H.Huang,
J.M.Veal,
P.M.Steed,
A.F.Barabasz,
B.Foley,
M.Hu,
J.M.Partridge,
J.Rice,
A.Scott,
L.G.Dubois,
T.A.Freed,
M.A.Silinski,
T.E.Barta,
P.F.Hughes,
A.Ommen,
W.Ma,
E.D.Smith,
A.W.Spangenberg,
J.Eaves,
G.J.Hanson,
L.Hinkley,
M.Jenks,
M.Lewis,
J.Otto,
G.J.Pronk,
K.Verleysen,
T.A.Haystead,
and
S.E.Hall
(2010).
Application of chemoproteomics to drug discovery: identification of a clinical candidate targeting hsp90.
|
| |
Chem Biol,
17,
686-694.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Zhao,
E.Leung,
S.Grüner,
M.Schapira,
and
W.A.Houry
(2010).
Tamoxifen enhances the Hsp90 molecular chaperone ATPase activity.
|
| |
PLoS One,
5,
e9934.
|
 |
|
|
|
|
 |
V.Kvardova,
R.Hrstka,
D.Walerych,
P.Muller,
E.Matoulkova,
V.Hruskova,
D.Stelclova,
P.Sova,
and
B.Vojtesek
(2010).
The new platinum(IV) derivative LA-12 shows stronger inhibitory effect on Hsp90 function compared to cisplatin.
|
| |
Mol Cancer,
9,
147.
|
 |
|
|
|
|
 |
W.B.Pratt,
Y.Morishima,
H.M.Peng,
and
Y.Osawa
(2010).
Proposal for a role of the Hsp90/Hsp70-based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage.
|
| |
Exp Biol Med (Maywood),
235,
278-289.
|
 |
|
|
|
|
 |
X.Sun,
E.A.Barlow,
S.Ma,
S.R.Hagemeier,
S.J.Duellman,
R.R.Burgess,
J.Tellam,
R.Khanna,
and
S.C.Kenney
(2010).
Hsp90 inhibitors block outgrowth of EBV-infected malignant cells in vitro and in vivo through an EBNA1-dependent mechanism.
|
| |
Proc Natl Acad Sci U S A,
107,
3146-3151.
|
 |
|
|
|
|
 |
X.Sun,
and
S.C.Kenney
(2010).
Hsp90 inhibitors: a potential treatment for latent EBV infection?
|
| |
Cell Cycle,
9,
1665-1666.
|
 |
|
|
|
|
 |
X.Wang,
D.M.Heuvelman,
J.A.Carroll,
D.R.Dufield,
and
J.L.Masferrer
(2010).
Geldanamycin-induced PCNA degradation in isolated Hsp90 complex from cancer cells.
|
| |
Cancer Invest,
28,
635-641.
|
 |
|
|
|
|
 |
Y.Yu,
A.Hamza,
T.Zhang,
M.Gu,
P.Zou,
B.Newman,
Y.Li,
A.A.Gunatilaka,
C.G.Zhan,
and
D.Sun
(2010).
Withaferin A targets heat shock protein 90 in pancreatic cancer cells.
|
| |
Biochem Pharmacol,
79,
542-551.
|
 |
|
|
|
|
 |
A.Ito,
H.Saito,
K.Mitobe,
Y.Minamiya,
N.Takahashi,
K.Maruyama,
S.Motoyama,
Y.Katayose,
and
J.Ogawa
(2009).
Inhibition of heat shock protein 90 sensitizes melanoma cells to thermosensitive ferromagnetic particle-mediated hyperthermia with low Curie temperature.
|
| |
Cancer Sci,
100,
558-564.
|
 |
|
|
|
|
 |
B.H.Kang,
and
D.C.Altieri
(2009).
Compartmentalized cancer drug discovery targeting mitochondrial Hsp90 chaperones.
|
| |
Oncogene,
28,
3681-3688.
|
 |
|
|
|
|
 |
B.T.Scroggins,
and
L.Neckers
(2009).
Just say NO: nitric oxide regulation of Hsp90.
|
| |
EMBO Rep,
10,
1093-1094.
|
 |
|
|
|
|
 |
C.B.Clark,
M.J.Rane,
D.El Mehdi,
C.J.Miller,
L.R.Sachleben,
and
E.Gozal
(2009).
Role of oxidative stress in geldanamycin-induced cytotoxicity and disruption of Hsp90 signaling complex.
|
| |
Free Radic Biol Med,
47,
1440-1449.
|
 |
|
|
|
|
 |
C.Graf,
M.Stankiewicz,
G.Kramer,
and
M.P.Mayer
(2009).
Spatially and kinetically resolved changes in the conformational dynamics of the Hsp90 chaperone machine.
|
| |
EMBO J,
28,
602-613.
|
 |
|
|
|
|
 |
C.K.Vaughan,
P.W.Piper,
L.H.Pearl,
and
C.Prodromou
(2009).
A common conformationally coupled ATPase mechanism for yeast and human cytoplasmic HSP90s.
|
| |
FEBS J,
276,
199-209.
|
 |
|
|
|
|
 |
D.A.Hubert,
Y.He,
B.C.McNulty,
P.Tornero,
and
J.L.Dangl
(2009).
Specific Arabidopsis HSP90.2 alleles recapitulate RAR1 cochaperone function in plant NB-LRR disease resistance protein regulation.
|
| |
Proc Natl Acad Sci U S A,
106,
9556-9563.
|
 |
|
|
|
|
 |
E.S.Ehrlich,
T.Wang,
K.Luo,
Z.Xiao,
A.M.Niewiadomska,
T.Martinez,
W.Xu,
L.Neckers,
and
X.F.Yu
(2009).
Regulation of Hsp90 client proteins by a Cullin5-RING E3 ubiquitin ligase.
|
| |
Proc Natl Acad Sci U S A,
106,
20330-20335.
|
 |
|
|
|
|
 |
F.Cervantes-Gomez,
R.Nimmanapalli,
and
V.Gandhi
(2009).
Transcription inhibition of heat shock proteins: a strategy for combination of 17-allylamino-17-demethoxygeldanamycin and actinomycin d.
|
| |
Cancer Res,
69,
3947-3954.
|
 |
|
|
|
|
 |
M.W.Amolins,
and
B.S.Blagg
(2009).
Natural product inhibitors of Hsp90: potential leads for drug discovery.
|
| |
Mini Rev Med Chem,
9,
140-152.
|
 |
|
|
|
|
 |
R.L.van Montfort,
and
P.Workman
(2009).
Structure-based design of molecular cancer therapeutics.
|
| |
Trends Biotechnol,
27,
315-328.
|
 |
|
|
|
|
 |
S.Eichner,
H.G.Floss,
F.Sasse,
and
A.Kirschning
(2009).
New, highly active nonbenzoquinone geldanamycin derivatives by using mutasynthesis.
|
| |
Chembiochem,
10,
1801-1805.
|
 |
|
|
|
|
 |
S.Jiang,
L.Qiu,
F.Zhou,
J.Huang,
Y.Guo,
and
K.Yang
(2009).
Molecular cloning and expression analysis of a heat shock protein (Hsp90) gene from black tiger shrimp (Penaeus monodon).
|
| |
Mol Biol Rep,
36,
127-134.
|
 |
|
|
|
|
 |
T.Taldone,
W.Sun,
and
G.Chiosis
(2009).
Discovery and development of heat shock protein 90 inhibitors.
|
| |
Bioorg Med Chem,
17,
2225-2235.
|
 |
|
|
|
|
 |
T.Wenyong,
L.Lu,
C.Daozhen,
Y.Weidong,
and
H.Ying
(2009).
An experimental study on the antitumor effect of (131)I-17-AAG in vitro and in vivo.
|
| |
Ann Nucl Med,
23,
113-122.
|
 |
|
|
|
|
 |
T.Zhang,
Y.Li,
Y.Yu,
P.Zou,
Y.Jiang,
and
D.Sun
(2009).
Characterization of celastrol to inhibit hsp90 and cdc37 interaction.
|
| |
J Biol Chem,
284,
35381-35389.
|
 |
|
|
|
|
 |
X.Chen,
H.Kang,
and
F.Zou
(2009).
Low concentration of GA activates a preconditioning response in HepG2 cells during oxidative stress-roles of Hsp90 and vimentin.
|
| |
Cell Stress Chaperones,
14,
381-389.
|
 |
|
|
|
|
 |
Y.Li,
T.Zhang,
S.J.Schwartz,
and
D.Sun
(2009).
New developments in Hsp90 inhibitors as anti-cancer therapeutics: mechanisms, clinical perspective and more potential.
|
| |
Drug Resist Updat,
12,
17-27.
|
 |
|
|
|
|
 |
Y.Li,
T.Zhang,
Y.Jiang,
H.F.Lee,
S.J.Schwartz,
and
D.Sun
(2009).
(-)-Epigallocatechin-3-gallate inhibits Hsp90 function by impairing Hsp90 association with cochaperones in pancreatic cancer cell line Mia Paca-2.
|
| |
Mol Pharm,
6,
1152-1159.
|
 |
|
|
|
|
 |
Z.Chang
(2009).
Posttranslational modulation on the biological activities of molecular chaperones.
|
| |
Sci China C Life Sci,
52,
515-520.
|
 |
|
|
|
|
 |
A.Donnelly,
and
B.S.Blagg
(2008).
Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket.
|
| |
Curr Med Chem,
15,
2702-2717.
|
 |
|
|
|
|
 |
A.K.McCollum,
C.J.TenEyck,
B.Stensgard,
B.W.Morlan,
K.V.Ballman,
R.B.Jenkins,
D.O.Toft,
and
C.Erlichman
(2008).
P-Glycoprotein-mediated resistance to Hsp90-directed therapy is eclipsed by the heat shock response.
|
| |
Cancer Res,
68,
7419-7427.
|
 |
|
|
|
|
 |
A.K.McCollum,
K.B.Lukasiewicz,
C.J.Teneyck,
W.L.Lingle,
D.O.Toft,
and
C.Erlichman
(2008).
Cisplatin abrogates the geldanamycin-induced heat shock response.
|
| |
Mol Cancer Ther,
7,
3256-3264.
|
 |
|
|
|
|
 |
A.Leskovar,
H.Wegele,
N.D.Werbeck,
J.Buchner,
and
J.Reinstein
(2008).
The ATPase cycle of the mitochondrial Hsp90 analog Trap1.
|
| |
J Biol Chem,
283,
11677-11688.
|
 |
|
|
|
|
 |
A.M.Nicola,
R.V.Andrade,
A.S.Dantas,
P.A.Andrade,
F.B.Arraes,
L.Fernandes,
I.Silva-Pereira,
and
M.S.Felipe
(2008).
The stress responsive and morphologically regulated hsp90 gene from Paracoccidioides brasiliensis is essential to cell viability.
|
| |
BMC Microbiol,
8,
158.
|
 |
|
|
|
|
 |
A.Yan,
G.H.Grant,
and
W.G.Richards
(2008).
Dynamics of conserved waters in human Hsp90: implications for drug design.
|
| |
J R Soc Interface,
5,
S199-S205.
|
 |
|
|
|
|
 |
C.Liu,
C.Erlichman,
C.J.McDonald,
J.N.Ingle,
P.Zollman,
I.Iankov,
S.J.Russell,
and
E.Galanis
(2008).
Heat shock protein inhibitors increase the efficacy of measles virotherapy.
|
| |
Gene Ther,
15,
1024-1034.
|
 |
|
|
|
|
 |
D.R.Southworth,
and
D.A.Agard
(2008).
Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle.
|
| |
Mol Cell,
32,
631-640.
|
 |
|
|
|
|
 |
D.Y.He,
and
D.Ron
(2008).
Glial cell line-derived neurotrophic factor reverses ethanol-mediated increases in tyrosine hydroxylase immunoreactivity via altering the activity of heat shock protein 90.
|
| |
J Biol Chem,
283,
12811-12818.
|
 |
|
|
|
|
 |
E.I.Heath,
D.W.Hillman,
U.Vaishampayan,
S.Sheng,
F.Sarkar,
F.Harper,
M.Gaskins,
H.C.Pitot,
W.Tan,
S.P.Ivy,
R.Pili,
M.A.Carducci,
C.Erlichman,
and
G.Liu
(2008).
A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer.
|
| |
Clin Cancer Res,
14,
7940-7946.
|
 |
|
|
|
|
 |
K.Lee,
J.S.Ryu,
Y.Jin,
W.Kim,
N.Kaur,
S.J.Chung,
Y.J.Jeon,
J.T.Park,
J.S.Bang,
H.S.Lee,
T.Y.Kim,
J.J.Lee,
and
Y.S.Hong
(2008).
Synthesis and anticancer activity of geldanamycin derivatives derived from biosynthetically generated metabolites.
|
| |
Org Biomol Chem,
6,
340-348.
|
 |
|
|
|
|
 |
K.Sugimoto,
M.Sasaki,
Y.Isobe,
M.Tsutsui,
H.Suto,
J.Ando,
K.Tamayose,
M.Ando,
and
K.Oshimi
(2008).
Hsp90-inhibitor geldanamycin abrogates G2 arrest in p53-negative leukemia cell lines through the depletion of Chk1.
|
| |
Oncogene,
27,
3091-3101.
|
 |
|
|
|
|
 |
L.Liu,
R.Srikakulam,
and
D.A.Winkelmann
(2008).
Unc45 activates Hsp90-dependent folding of the myosin motor domain.
|
| |
J Biol Chem,
283,
13185-13193.
|
 |
|
|
|
|
 |
M.Futami,
T.Hatano,
Y.Soda,
S.Kobayashi,
M.Miyagishi,
and
A.Tojo
(2008).
RNAi-mediated silencing of p190Bcr-Abl inactivates Stat5 and cooperates with imatinib mesylate and 17-allylamino-17-demetoxygeldanamycin in selective killing of p190Bcr-Abl-expressing leukemia cells.
|
| |
Leukemia,
22,
1131-1138.
|
 |
|
|
|
|
 |
M.Imoto
(2008).
[Bioprobe generation from microbial origin for chemical biology study]
|
| |
Nippon Yakurigaku Zasshi,
132,
26-30.
|
 |
|
|
|
|
 |
M.Kosmaoglou,
N.Schwarz,
J.S.Bett,
and
M.E.Cheetham
(2008).
Molecular chaperones and photoreceptor function.
|
| |
Prog Retin Eye Res,
27,
434-449.
|
 |
|
|
|
|
 |
M.Sgobba,
G.Degliesposti,
A.M.Ferrari,
and
G.Rastelli
(2008).
Structural models and binding site prediction of the C-terminal domain of human Hsp90: a new target for anticancer drugs.
|
| |
Chem Biol Drug Des,
71,
420-433.
|
 |
|
|
|
|
 |
M.Zhang,
M.Botër,
K.Li,
Y.Kadota,
B.Panaretou,
C.Prodromou,
K.Shirasu,
and
L.H.Pearl
(2008).
Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes.
|
| |
EMBO J,
27,
2789-2798.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.L.Yeyati,
and
V.van Heyningen
(2008).
Incapacitating the evolutionary capacitor: Hsp90 modulation of disease.
|
| |
Curr Opin Genet Dev,
18,
264-272.
|
 |
|
|
|
|
 |
S.K.Wandinger,
K.Richter,
and
J.Buchner
(2008).
The Hsp90 chaperone machinery.
|
| |
J Biol Chem,
283,
18473-18477.
|
 |
|
|
|
|
 |
T.Ganesh,
P.Thepchatri,
L.Li,
Y.Du,
H.Fu,
J.P.Snyder,
and
A.Sun
(2008).
Synthesis and SAR study of N-(4-hydroxy-3-(2-hydroxynaphthalene-1-yl)phenyl)-arylsulfonamides: heat shock protein 90 (Hsp90) inhibitors with submicromolar activity in an in vitro assay.
|
| |
Bioorg Med Chem Lett,
18,
4982-4987.
|
 |
|
|
|
|
 |
T.Kobayakawa,
S.Yamada,
A.Mizuno,
and
T.K.Nemoto
(2008).
Substitution of only two residues of human Hsp90alpha causes impeded dimerization of Hsp90beta.
|
| |
Cell Stress Chaperones,
13,
97.
|
 |
|
|
|
|
 |
U.Banerji,
N.Sain,
S.Y.Sharp,
M.Valenti,
Y.Asad,
R.Ruddle,
F.Raynaud,
M.Walton,
S.A.Eccles,
I.Judson,
A.L.Jackman,
and
P.Workman
(2008).
An in vitro and in vivo study of the combination of the heat shock protein inhibitor 17-allylamino-17-demethoxygeldanamycin and carboplatin in human ovarian cancer models.
|
| |
Cancer Chemother Pharmacol,
62,
769-778.
|
 |
|
|
|
|
 |
W.He,
J.Lei,
Y.Liu,
and
Y.Wang
(2008).
The LuxR family members GdmRI and GdmRII are positive regulators of geldanamycin biosynthesis in Streptomyces hygroscopicus 17997.
|
| |
Arch Microbiol,
189,
501-510.
|
 |
|
|
|
|
 |
Y.Peng,
X.Liu,
and
D.R.Schoenberg
(2008).
The 90-kDa Heat Shock Protein Stabilizes the Polysomal Ribonuclease 1 mRNA Endonuclease to Degradation by the 26S Proteasome.
|
| |
Mol Biol Cell,
19,
546-552.
|
 |
|
|
|
|
 |
A.Dey,
and
A.I.Cederbaum
(2007).
Geldanamycin, an inhibitor of Hsp90 increases cytochrome P450 2E1 mediated toxicity in HepG2 cells through sustained activation of the p38MAPK pathway.
|
| |
Arch Biochem Biophys,
461,
275-286.
|
 |
|
|
|
|
 |
C.A.Kyratsous,
and
S.J.Silverstein
(2007).
BAG3, a host cochaperone, facilitates varicella-zoster virus replication.
|
| |
J Virol,
81,
7491-7503.
|
 |
|
|
|
|
 |
C.S.McErlean,
N.Proisy,
C.J.Davis,
N.A.Boland,
S.Y.Sharp,
K.Boxall,
A.M.Slawin,
P.Workman,
and
C.J.Moody
(2007).
Synthetic ansamycins prepared by a ring-expanding Claisen rearrangement. Synthesis and biological evaluation of ring and conformational analogues of the Hsp90 molecular chaperone inhibitor geldanamycin.
|
| |
Org Biomol Chem,
5,
531-546.
|
 |
|
|
|
|
 |
D.E.Dollins,
J.J.Warren,
R.M.Immormino,
and
D.T.Gewirth
(2007).
Structures of GRP94-nucleotide complexes reveal mechanistic differences between the hsp90 chaperones.
|
| |
Mol Cell,
28,
41-56.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Matei,
M.Satpathy,
L.Cao,
Y.C.Lai,
H.Nakshatri,
and
D.B.Donner
(2007).
The platelet-derived growth factor receptor alpha is destabilized by geldanamycins in cancer cells.
|
| |
J Biol Chem,
282,
445-453.
|
 |
|
|
|
|
 |
H.Zhang,
Y.C.Yang,
L.Zhang,
J.Fan,
D.Chung,
D.Choi,
R.Grecko,
G.Timony,
P.Karjian,
M.Boehm,
and
F.Burrows
(2007).
Dimeric ansamycins--a new class of antitumor Hsp90 modulators with prolonged inhibitory activity.
|
| |
Int J Cancer,
120,
918-926.
|
 |
|
|
|
|
 |
J.R.Huth,
C.Park,
A.M.Petros,
A.R.Kunzer,
M.D.Wendt,
X.Wang,
C.L.Lynch,
J.C.Mack,
K.M.Swift,
R.A.Judge,
J.Chen,
P.L.Richardson,
S.Jin,
S.K.Tahir,
E.D.Matayoshi,
S.A.Dorwin,
U.S.Ladror,
J.M.Severin,
K.A.Walter,
D.M.Bartley,
S.W.Fesik,
S.W.Elmore,
and
P.J.Hajduk
(2007).
Discovery and design of novel HSP90 inhibitors using multiple fragment-based design strategies.
|
| |
Chem Biol Drug Des,
70,
1.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Galam,
M.K.Hadden,
Z.Ma,
Q.Z.Ye,
B.G.Yun,
B.S.Blagg,
and
R.L.Matts
(2007).
High-throughput assay for the identification of Hsp90 inhibitors based on Hsp90-dependent refolding of firefly luciferase.
|
| |
Bioorg Med Chem,
15,
1939-1946.
|
 |
|
|
|
|
 |
N.Wayne,
and
D.N.Bolon
(2007).
Dimerization of Hsp90 is required for in vivo function. Design and analysis of monomers and dimers.
|
| |
J Biol Chem,
282,
35386-35395.
|
 |
|
|
|
|
 |
P.L.Yeyati,
R.M.Bancewicz,
J.Maule,
and
V.van Heyningen
(2007).
Hsp90 selectively modulates phenotype in vertebrate development.
|
| |
PLoS Genet,
3,
e43.
|
 |
|
|
|
|
 |
S.Frey,
A.Leskovar,
J.Reinstein,
and
J.Buchner
(2007).
The ATPase cycle of the endoplasmic chaperone Grp94.
|
| |
J Biol Chem,
282,
35612-35620.
|
 |
|
|
|
|
 |
T.A.Sangster,
A.Bahrami,
A.Wilczek,
E.Watanabe,
K.Schellenberg,
C.McLellan,
A.Kelley,
S.W.Kong,
C.Queitsch,
and
S.Lindquist
(2007).
Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels.
|
| |
PLoS ONE,
2,
e648.
|
 |
|
|
|
|
 |
W.Kim,
J.S.Lee,
D.Lee,
X.F.Cai,
J.C.Shin,
K.Lee,
C.H.Lee,
S.Ryu,
S.G.Paik,
J.J.Lee,
and
Y.S.Hong
(2007).
Mutasynthesis of geldanamycin by the disruption of a gene producing starter unit: generation of structural diversity at the benzoquinone ring.
|
| |
Chembiochem,
8,
1491-1494.
|
 |
|
|
|
|
 |
A.C.Fan,
M.K.Bhangoo,
and
J.C.Young
(2006).
Hsp90 functions in the targeting and outer membrane translocation steps of Tom70-mediated mitochondrial import.
|
| |
J Biol Chem,
281,
33313-33324.
|
 |
|
|
|
|
 |
A.K.Shiau,
S.F.Harris,
D.R.Southworth,
and
D.A.Agard
(2006).
Structural Analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements.
|
| |
Cell,
127,
329-340.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.R.Keppler,
A.T.Grady,
and
M.B.Jarstfer
(2006).
The biochemical role of the heat shock protein 90 chaperone complex in establishing human telomerase activity.
|
| |
J Biol Chem,
281,
19840-19848.
|
 |
|
|
|
|
 |
B.S.Blagg,
and
T.D.Kerr
(2006).
Hsp90 inhibitors: small molecules that transform the Hsp90 protein folding machinery into a catalyst for protein degradation.
|
| |
Med Res Rev,
26,
310-338.
|
 |
|
|
|
|
 |
C.K.Vaughan,
U.Gohlke,
F.Sobott,
V.M.Good,
M.M.Ali,
C.Prodromou,
C.V.Robinson,
H.R.Saibil,
and
L.H.Pearl
(2006).
Structure of an Hsp90-Cdc37-Cdk4 complex.
|
| |
Mol Cell,
23,
697-707.
|
 |
|
|
|
|
 |
C.W.Olanow,
and
K.S.McNaught
(2006).
Ubiquitin-proteasome system and Parkinson's disease.
|
| |
Mov Disord,
21,
1806-1823.
|
 |
|
|
|
|
 |
C.Y.Chen,
and
W.E.Balch
(2006).
The Hsp90 chaperone complex regulates GDI-dependent Rab recycling.
|
| |
Mol Biol Cell,
17,
3494-3507.
|
 |
|
|
|
|
 |
D.Fedunová,
and
M.Antalík
(2006).
Prevention of thermal induced aggregation of cytochrome c at isoelectric pH values by polyanions.
|
| |
Biotechnol Bioeng,
93,
485-493.
|
 |
|
|
|
|
 |
D.G.Nagle,
and
Y.D.Zhou
(2006).
Natural product-based inhibitors of hypoxia-inducible factor-1 (HIF-1).
|
| |
Curr Drug Targets,
7,
355-369.
|
 |
|
|
|
|
 |
D.Rajagopal,
V.Bal,
S.Mayor,
A.George,
and
S.Rath
(2006).
A role for the Hsp90 molecular chaperone family in antigen presentation to T lymphocytes via major histocompatibility complex class II molecules.
|
| |
Eur J Immunol,
36,
828-841.
|
 |
|
|
|
|
 |
F.Chu,
J.C.Maynard,
G.Chiosis,
C.V.Nicchitta,
and
A.L.Burlingame
(2006).
Identification of novel quaternary domain interactions in the Hsp90 chaperone, GRP94.
|
| |
Protein Sci,
15,
1260-1269.
|
 |
|
|
|
|
 |
F.Shinozaki,
M.Minami,
T.Chiba,
M.Suzuki,
K.Yoshimatsu,
Y.Ichikawa,
K.Terasawa,
Y.Emori,
K.Matsumoto,
T.Kurosaki,
A.Nakai,
K.Tanaka,
and
Y.Minami
(2006).
Depletion of hsp90beta induces multiple defects in B cell receptor signaling.
|
| |
J Biol Chem,
281,
16361-16369.
|
 |
|
|
|
|
 |
J.Moreno-Farre,
Y.Asad,
S.Pacey,
P.Workman,
and
F.I.Raynaud
(2006).
Development and validation of a liquid chromatography/tandem mass spectrometry method for the determination of the novel anticancer agent 17-DMAG in human plasma.
|
| |
Rapid Commun Mass Spectrom,
20,
2845-2850.
|
 |
|
|
|
|
 |
K.Richter,
S.Moser,
F.Hagn,
R.Friedrich,
O.Hainzl,
M.Heller,
S.Schlee,
H.Kessler,
J.Reinstein,
and
J.Buchner
(2006).
Intrinsic inhibition of the Hsp90 ATPase activity.
|
| |
J Biol Chem,
281,
11301-11311.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.S.McNaught,
and
C.W.Olanow
(2006).
Protein aggregation in the pathogenesis of familial and sporadic Parkinson's disease.
|
| |
Neurobiol Aging,
27,
530-545.
|
 |
|
|
|
|
 |
K.Terasawa,
K.Yoshimatsu,
S.Iemura,
T.Natsume,
K.Tanaka,
and
Y.Minami
(2006).
Cdc37 interacts with the glycine-rich loop of Hsp90 client kinases.
|
| |
Mol Cell Biol,
26,
3378-3389.
|
 |
|
|
|
|
 |
K.Yang,
H.Shi,
R.Qi,
S.Sun,
Y.Tang,
B.Zhang,
and
C.Wang
(2006).
Hsp90 regulates activation of interferon regulatory factor 3 and TBK-1 stabilization in Sendai virus-infected cells.
|
| |
Mol Biol Cell,
17,
1461-1471.
|
 |
|
|
|
|
 |
L.Fang,
R.F.Battisti,
H.Cheng,
P.Reigan,
Y.Xin,
J.Shen,
D.Ross,
K.K.Chan,
E.W.Martin,
P.G.Wang,
and
D.Sun
(2006).
Enzyme specific activation of benzoquinone ansamycin prodrugs using HuCC49DeltaCH2-beta-galactosidase conjugates.
|
| |
J Med Chem,
49,
6290-6297.
|
 |
|
|
|
|
 |
L.H.Pearl,
and
C.Prodromou
(2006).
Structure and mechanism of the Hsp90 molecular chaperone machinery.
|
| |
Annu Rev Biochem,
75,
271-294.
|
 |
|
|
|
|
 |
L.T.Gooljarsingh,
C.Fernandes,
K.Yan,
H.Zhang,
M.Grooms,
K.Johanson,
R.H.Sinnamon,
R.B.Kirkpatrick,
J.Kerrigan,
T.Lewis,
M.Arnone,
A.J.King,
Z.Lai,
R.A.Copeland,
and
P.J.Tummino
(2006).
A biochemical rationale for the anticancer effects of Hsp90 inhibitors: slow, tight binding inhibition by geldanamycin and its analogues.
|
| |
Proc Natl Acad Sci U S A,
103,
7625-7630.
|
 |
|
|
|
|
 |
M.A.Fares,
and
S.A.Travers
(2006).
A novel method for detecting intramolecular coevolution: adding a further dimension to selective constraints analyses.
|
| |
Genetics,
173,
9.
|
 |
|
|
|
|
 |
M.A.Martinez-Yamout,
R.P.Venkitakrishnan,
N.E.Preece,
G.Kroon,
P.E.Wright,
and
H.J.Dyson
(2006).
Localization of sites of interaction between p23 and Hsp90 in solution.
|
| |
J Biol Chem,
281,
14457-14464.
|
 |
|
|
|
|
 |
M.A.Theodoraki,
and
A.C.Mintzas
(2006).
cDNA cloning, heat shock regulation and developmental expression of the hsp83 gene in the Mediterranean fruit fly Ceratitis capitata.
|
| |
Insect Mol Biol,
15,
839-852.
|
 |
|
|
|
|
 |
M.D.Amaral
(2006).
Therapy through chaperones: sense or antisense? Cystic fibrosis as a model disease.
|
| |
J Inherit Metab Dis,
29,
477-487.
|
 |
|
|
|
|
 |
M.G.Catlett,
and
K.B.Kaplan
(2006).
Sgt1p is a unique co-chaperone that acts as a client adaptor to link Hsp90 to Skp1p.
|
| |
J Biol Chem,
281,
33739-33748.
|
 |
|
|
|
|
 |
M.M.Ali,
S.M.Roe,
C.K.Vaughan,
P.Meyer,
B.Panaretou,
P.W.Piper,
C.Prodromou,
and
L.H.Pearl
(2006).
Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex.
|
| |
Nature,
440,
1013-1017.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.W.Graner,
and
D.D.Bigner
(2006).
Therapeutic aspects of chaperones/heat-shock proteins in neuro-oncology.
|
| |
Expert Rev Anticancer Ther,
6,
679-695.
|
 |
|
|
|
|
 |
M.Waza,
H.Adachi,
M.Katsuno,
M.Minamiyama,
F.Tanaka,
M.Doyu,
and
G.Sobue
(2006).
Modulation of Hsp90 function in neurodegenerative disorders: a molecular-targeted therapy against disease-causing protein.
|
| |
J Mol Med,
84,
635-646.
|
 |
|
|
|
|
 |
P.Hawle,
M.Siepmann,
A.Harst,
M.Siderius,
H.P.Reusch,
and
W.M.Obermann
(2006).
The middle domain of Hsp90 acts as a discriminator between different types of client proteins.
|
| |
Mol Cell Biol,
26,
8385-8395.
|
 |
|
|
|
|
 |
R.K.Allan,
D.Mok,
B.K.Ward,
and
T.Ratajczak
(2006).
Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization.
|
| |
J Biol Chem,
281,
7161-7171.
|
 |
|
|
|
|
 |
S.Chaudhury,
T.R.Welch,
and
B.S.Blagg
(2006).
Hsp90 as a target for drug development.
|
| |
ChemMedChem,
1,
1331-1340.
|
 |
|
|
|
|
 |
S.Cotesta,
and
M.Stahl
(2006).
The environment of amide groups in protein-ligand complexes: H-bonds and beyond.
|
| |
J Mol Model,
12,
436-444.
|
 |
|
|
|
|
 |
T.S.Kim,
C.Y.Jang,
H.D.Kim,
J.Y.Lee,
B.Y.Ahn,
and
J.Kim
(2006).
Interaction of Hsp90 with ribosomal proteins protects from ubiquitination and proteasome-dependent degradation.
|
| |
Mol Biol Cell,
17,
824-833.
|
 |
|
|
|
|
 |
V.Barresi,
C.G.Fortuna,
R.Garozzo,
G.Musumarra,
S.Scirè,
and
D.F.Condorelli
(2006).
Identification of genes involved in the sensitivity to antitumour drug 17-allylamino,17-demethoxygeldanamycin (17AAG).
|
| |
Mol Biosyst,
2,
231-239.
|
 |
|
|
|
|
 |
V.Debat,
C.C.Milton,
S.Rutherford,
C.P.Klingenberg,
and
A.A.Hoffmann
(2006).
Hsp90 and the quantitative variation of wing shape in Drosophila melanogaster.
|
| |
Evolution Int J Org Evolution,
60,
2529-2538.
|
 |
|
|
|
|
 |
Y.Niikura,
S.Ohta,
K.J.Vandenbeldt,
R.Abdulle,
B.F.McEwen,
and
K.Kitagawa
(2006).
17-AAG, an Hsp90 inhibitor, causes kinetochore defects: a novel mechanism by which 17-AAG inhibits cell proliferation.
|
| |
Oncogene,
25,
4133-4146.
|
 |
|
|
|
|
 |
A.Bracher,
and
F.U.Hartl
(2005).
Towards a complete structure of Hsp90.
|
| |
Structure,
13,
501-502.
|
 |
|
|
|
|
 |
A.Hardcastle,
K.Boxall,
J.Richards,
P.Tomlin,
S.Sharp,
P.Clarke,
P.Workman,
and
W.Aherne
(2005).
Solid-phase immunoassays in mechanism-based drug discovery: their application in the development of inhibitors of the molecular chaperone heat-shock protein 90.
|
| |
Assay Drug Dev Technol,
3,
273-285.
|
 |
|
|
|
|
 |
A.M.Skantar,
K.Agama,
S.L.Meyer,
L.K.Carta,
and
B.T.Vinyard
(2005).
Effects of geldanamycin on hatching and juvenile motility in Caenorhabditis elegans and Heterodera glycines.
|
| |
J Chem Ecol,
31,
2481-2491.
|
 |
|
|
|
|
 |
C.Sõti,
E.Nagy,
Z.Giricz,
L.Vígh,
P.Csermely,
and
P.Ferdinandy
(2005).
Heat shock proteins as emerging therapeutic targets.
|
| |
Br J Pharmacol,
146,
769-780.
|
 |
|
|
|
|
 |
D.Gadelle,
C.Bocs,
M.Graille,
and
P.Forterre
(2005).
Inhibition of archaeal growth and DNA topoisomerase VI activities by the Hsp90 inhibitor radicicol.
|
| |
Nucleic Acids Res,
33,
2310-2317.
|
 |
|
|
|
|
 |
H.Machida,
S.Nakajima,
N.Shikano,
J.Nishio,
S.Okada,
M.Asayama,
M.Shirai,
and
N.Kubota
(2005).
Heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin potentiates the radiation response of tumor cells grown as monolayer cultures and spheroids by inducing apoptosis.
|
| |
Cancer Sci,
96,
911-917.
|
 |
|
|
|
|
 |
J.Kishimoto,
Y.Fukuma,
A.Mizuno,
and
T.K.Nemoto
(2005).
Identification of the pentapeptide constituting a dominant epitope common to all eukaryotic heat shock protein 90 molecular chaperones.
|
| |
Cell Stress Chaperones,
10,
296-311.
|
 |
|
|
|
|
 |
J.L.Eiseman,
J.Lan,
T.F.Lagattuta,
D.R.Hamburger,
E.Joseph,
J.M.Covey,
and
M.J.Egorin
(2005).
Pharmacokinetics and pharmacodynamics of 17-demethoxy 17-[[(2-dimethylamino)ethyl]amino]geldanamycin (17DMAG, NSC 707545) in C.B-17 SCID mice bearing MDA-MB-231 human breast cancer xenografts.
|
| |
Cancer Chemother Pharmacol,
55,
21-32.
|
 |
|
|
|
|
 |
K.D.Corbett,
and
J.M.Berger
(2005).
Structural dissection of ATP turnover in the prototypical GHL ATPase TopoVI.
|
| |
Structure,
13,
873-882.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.H.Pearl
(2005).
Hsp90 and Cdc37 -- a chaperone cancer conspiracy.
|
| |
Curr Opin Genet Dev,
15,
55-61.
|
 |
|
|
|
|
 |
L.Whitesell,
and
S.L.Lindquist
(2005).
HSP90 and the chaperoning of cancer.
|
| |
Nat Rev Cancer,
5,
761-772.
|
 |
|
|
|
|
 |
M.Kato,
J.L.Chuang,
S.C.Tso,
R.M.Wynn,
and
D.T.Chuang
(2005).
Crystal structure of pyruvate dehydrogenase kinase 3 bound to lipoyl domain 2 of human pyruvate dehydrogenase complex.
|
| |
EMBO J,
24,
1763-1774.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.W.Graner,
and
D.D.Bigner
(2005).
Chaperone proteins and brain tumors: potential targets and possible therapeutics.
|
| |
Neuro Oncol,
7,
260-278.
|
 |
|
|
|
|
 |
P.A.Konstantinopoulos,
and
A.G.Papavassiliou
(2005).
17-AAG: mechanisms of antitumour activity.
|
| |
Expert Opin Investig Drugs,
14,
1471-1474.
|
 |
|
|
|
|
 |
P.J.Muchowski,
and
J.L.Wacker
(2005).
Modulation of neurodegeneration by molecular chaperones.
|
| |
Nat Rev Neurosci,
6,
11-22.
|
 |
|
|
|
|
 |
P.J.Murphy,
Y.Morishima,
J.J.Kovacs,
T.P.Yao,
and
W.B.Pratt
(2005).
Regulation of the dynamics of hsp90 action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone.
|
| |
J Biol Chem,
280,
33792-33799.
|
 |
|
|
|
|
 |
P.Workman
(2005).
Drugging the cancer kinome: progress and challenges in developing personalized molecular cancer therapeutics.
|
| |
Cold Spring Harb Symp Quant Biol,
70,
499-515.
|
 |
|
|
|
|
 |
Q.Huai,
H.Wang,
Y.Liu,
H.Y.Kim,
D.Toft,
and
H.Ke
(2005).
Structures of the N-terminal and middle domains of E. coli Hsp90 and conformation changes upon ADP binding.
|
| |
Structure,
13,
579-590.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.F.Duncan
(2005).
Inhibition of Hsp90 function delays and impairs recovery from heat shock.
|
| |
FEBS J,
272,
5244-5256.
|
 |
|
|
|
|
 |
R.Zhang,
D.Luo,
R.Miao,
L.Bai,
Q.Ge,
W.C.Sessa,
and
W.Min
(2005).
Hsp90-Akt phosphorylates ASK1 and inhibits ASK1-mediated apoptosis.
|
| |
Oncogene,
24,
3954-3963.
|
 |
|
|
|
|
 |
R.Zhao,
and
W.A.Houry
(2005).
Hsp90: a chaperone for protein folding and gene regulation.
|
| |
Biochem Cell Biol,
83,
703-710.
|
 |
|
|
|
|
 |
S.H.Millson,
A.W.Truman,
V.King,
C.Prodromou,
L.H.Pearl,
and
P.W.Piper
(2005).
A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p).
|
| |
Eukaryot Cell,
4,
849-860.
|
 |
|
|
|
|
 |
V.Smith,
E.A.Sausville,
R.F.Camalier,
H.H.Fiebig,
and
A.M.Burger
(2005).
Comparison of 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17DMAG) and 17-allylamino-17-demethoxygeldanamycin (17AAG) in vitro: effects on Hsp90 and client proteins in melanoma models.
|
| |
Cancer Chemother Pharmacol,
56,
126-137.
|
 |
|
|
|
|
 |
Y.Matsumoto,
H.Machida,
and
N.Kubota
(2005).
Preferential sensitization of tumor cells to radiation by heat shock protein 90 inhibitor geldanamycin.
|
| |
J Radiat Res (Tokyo),
46,
215-221.
|
 |
|
|
|
|
 |
A.Kamal,
M.F.Boehm,
and
F.J.Burrows
(2004).
Therapeutic and diagnostic implications of Hsp90 activation.
|
| |
Trends Mol Med,
10,
283-290.
|
 |
|
|
|
|
 |
A.R.Buskirk,
Y.C.Ong,
Z.J.Gartner,
and
D.R.Liu
(2004).
Directed evolution of ligand dependence: small-molecule-activated protein splicing.
|
| |
Proc Natl Acad Sci U S A,
101,
10505-10510.
|
 |
|
|
|
|
 |
C.Elbi,
D.A.Walker,
G.Romero,
W.P.Sullivan,
D.O.Toft,
G.L.Hager,
and
D.B.DeFranco
(2004).
Molecular chaperones function as steroid receptor nuclear mobility factors.
|
| |
Proc Natl Acad Sci U S A,
101,
2876-2881.
|
 |
|
|
|
|
 |
E.Pedone,
B.Ren,
R.Ladenstein,
M.Rossi,
and
S.Bartolucci
(2004).
Functional properties of the protein disulfide oxidoreductase from the archaeon Pyrococcus furiosus: a member of a novel protein family related to protein disulfide-isomerase.
|
| |
Eur J Biochem,
271,
3437-3448.
|
 |
|
|
|
|
 |
G.Chiosis,
M.Vilenchik,
J.Kim,
and
D.Solit
(2004).
Hsp90: the vulnerable chaperone.
|
| |
Drug Discov Today,
9,
881-888.
|
 |
|
|
|
|
 |
G.Siligardi,
B.Hu,
B.Panaretou,
P.W.Piper,
L.H.Pearl,
and
C.Prodromou
(2004).
Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle.
|
| |
J Biol Chem,
279,
51989-51998.
|
 |
|
|
|
|
 |
J.S.Bell,
T.I.Harvey,
A.M.Sims,
and
R.McCulloch
(2004).
Characterization of components of the mismatch repair machinery in Trypanosoma brucei.
|
| |
Mol Microbiol,
51,
159-173.
|
 |
|
|
|
|
 |
J.S.Isaacs,
Y.J.Jung,
and
L.Neckers
(2004).
Aryl hydrocarbon nuclear translocator (ARNT) promotes oxygen-independent stabilization of hypoxia-inducible factor-1alpha by modulating an Hsp90-dependent regulatory pathway.
|
| |
J Biol Chem,
279,
16128-16135.
|
 |
|
|
|
|
 |
L.Müller,
A.Schaupp,
D.Walerych,
H.Wegele,
and
J.Buchner
(2004).
Hsp90 regulates the activity of wild type p53 under physiological and elevated temperatures.
|
| |
J Biol Chem,
279,
48846-48854.
|
 |
|
|
|
|
 |
L.Yan,
R.L.Cerny,
and
J.D.Cirillo
(2004).
Evidence that hsp90 is involved in the altered interactions of Acanthamoeba castellanii variants with bacteria.
|
| |
Eukaryot Cell,
3,
567-578.
|
 |
|
|
|
|
 |
L.Zhong,
K.Qing,
Y.Si,
L.Chen,
M.Tan,
and
A.Srivastava
(2004).
Heat-shock treatment-mediated increase in transduction by recombinant adeno-associated virus 2 vectors is independent of the cellular heat-shock protein 90.
|
| |
J Biol Chem,
279,
12714-12723.
|
 |
|
|
|
|
 |
M.Bedin,
A.M.Gaben,
C.Saucier,
and
J.Mester
(2004).
Geldanamycin, an inhibitor of the chaperone activity of HSP90, induces MAPK-independent cell cycle arrest.
|
| |
Int J Cancer,
109,
643-652.
|
 |
|
|
|
|
 |
M.Schroda
(2004).
The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast.
|
| |
Photosynth Res,
82,
221-240.
|
 |
|
|
|
|
 |
N.Tahbaz,
F.A.Kolb,
H.Zhang,
K.Jaronczyk,
W.Filipowicz,
and
T.C.Hobman
(2004).
Characterization of the interactions between mammalian PAZ PIWI domain proteins and Dicer.
|
| |
EMBO Rep,
5,
189-194.
|
 |
|
|
|
|
 |
P.E.Carrigan,
G.M.Nelson,
P.J.Roberts,
J.Stoffer,
D.L.Riggs,
and
D.F.Smith
(2004).
Multiple domains of the co-chaperone Hop are important for Hsp70 binding.
|
| |
J Biol Chem,
279,
16185-16193.
|
 |
|
|
|
|
 |
P.Meyer,
C.Prodromou,
C.Liao,
B.Hu,
S.Mark Roe,
C.K.Vaughan,
I.Vlasic,
B.Panaretou,
P.W.Piper,
and
L.H.Pearl
(2004).
Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery.
|
| |
EMBO J,
23,
511-519.
|
 |
|
|
|
|
 |
R.M.Immormino,
D.E.Dollins,
P.L.Shaffer,
K.L.Soldano,
M.A.Walker,
and
D.T.Gewirth
(2004).
Ligand-induced conformational shift in the N-terminal domain of GRP94, an Hsp90 chaperone.
|
| |
J Biol Chem,
279,
46162-46171.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Bellon,
J.D.Parsons,
Y.Wei,
K.Hayakawa,
L.L.Swenson,
P.S.Charifson,
J.A.Lippke,
R.Aldape,
and
C.H.Gross
(2004).
Crystal structures of Escherichia coli topoisomerase IV ParE subunit (24 and 43 kilodaltons): a single residue dictates differences in novobiocin potency against topoisomerase IV and DNA gyrase.
|
| |
Antimicrob Agents Chemother,
48,
1856-1864.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.F.Harris,
A.K.Shiau,
and
D.A.Agard
(2004).
The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site.
|
| |
Structure,
12,
1087-1097.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.S.Billecke,
D.I.Draganov,
Y.Morishima,
P.J.Murphy,
A.Y.Dunbar,
W.B.Pratt,
and
Y.Osawa
(2004).
The role of hsp90 in heme-dependent activation of apo-neuronal nitric-oxide synthase.
|
| |
J Biol Chem,
279,
30252-30258.
|
 |
|
|
|
|
 |
T.Gidalevitz,
C.Biswas,
H.Ding,
D.Schneidman-Duhovny,
H.J.Wolfson,
F.Stevens,
S.Radford,
and
Y.Argon
(2004).
Identification of the N-terminal peptide binding site of glucose-regulated protein 94.
|
| |
J Biol Chem,
279,
16543-16552.
|
 |
|
|
|
|
 |
T.Prince,
and
R.L.Matts
(2004).
Definition of protein kinase sequence motifs that trigger high affinity binding of Hsp90 and Cdc37.
|
| |
J Biol Chem,
279,
39975-39981.
|
 |
|
|
|
|
 |
Y.H.Li,
P.Z.Tao,
Y.Z.Liu,
and
J.D.Jiang
(2004).
Geldanamycin, a ligand of heat shock protein 90, inhibits the replication of herpes simplex virus type 1 in vitro.
|
| |
Antimicrob Agents Chemother,
48,
867-872.
|
 |
|
|
|
|
 |
Y.Zhang,
J.S.Wang,
L.L.Chen,
Y.Zhang,
X.K.Cheng,
F.Y.Heng,
N.H.Wu,
and
Y.F.Shen
(2004).
Repression of hsp90beta gene by p53 in UV irradiation-induced apoptosis of Jurkat cells.
|
| |
J Biol Chem,
279,
42545-42551.
|
 |
|
|
|
|
 |
A.Dehner,
J.Furrer,
K.Richter,
I.Schuster,
J.Buchner,
and
H.Kessler
(2003).
NMR chemical shift perturbation study of the N-terminal domain of Hsp90 upon binding of ADP, AMP-PNP, geldanamycin, and radicicol.
|
| |
Chembiochem,
4,
870-877.
|
 |
|
|
|
|
 |
A.J.Caplan,
S.Jackson,
and
D.Smith
(2003).
Hsp90 reaches new heights. Conference on the Hsp90 chaperone machine.
|
| |
EMBO Rep,
4,
126-130.
|
 |
|
|
|
|
 |
A.Kamal,
L.Thao,
J.Sensintaffar,
L.Zhang,
M.F.Boehm,
L.C.Fritz,
and
F.J.Burrows
(2003).
A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors.
|
| |
Nature,
425,
407-410.
|
 |
|
|
|
|
 |
B.T.Scroggins,
T.Prince,
J.Shao,
S.Uma,
W.Huang,
Y.Guo,
B.G.Yun,
K.Hedman,
R.L.Matts,
and
S.D.Hartson
(2003).
High affinity binding of Hsp90 is triggered by multiple discrete segments of its kinase clients.
|
| |
Biochemistry,
42,
12550-12561.
|
 |
|
|
|
|
 |
C.L.David,
H.E.Smith,
D.A.Raynes,
E.J.Pulcini,
and
L.Whitesell
(2003).
Expression of a unique drug-resistant Hsp90 ortholog by the nematode Caenorhabditis elegans.
|
| |
Cell Stress Chaperones,
8,
93.
|
 |
|
|
|
|
 |
C.Soti,
A.Vermes,
T.A.Haystead,
and
P.Csermely
(2003).
Comparative analysis of the ATP-binding sites of Hsp90 by nucleotide affinity cleavage: a distinct nucleotide specificity of the C-terminal ATP-binding site.
|
| |
Eur J Biochem,
270,
2421-2428.
|
 |
|
|
|
|
 |
D.A.Hubert,
P.Tornero,
Y.Belkhadir,
P.Krishna,
A.Takahashi,
K.Shirasu,
and
J.L.Dangl
(2003).
Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein.
|
| |
EMBO J,
22,
5679-5689.
|
 |
|
|
|
|
 |
D.Gadelle,
J.Filée,
C.Buhler,
and
P.Forterre
(2003).
Phylogenomics of type II DNA topoisomerases.
|
| |
Bioessays,
25,
232-242.
|
 |
|
|
|
|
 |
G.P.Lotz,
H.Lin,
A.Harst,
and
W.M.Obermann
(2003).
Aha1 binds to the middle domain of Hsp90, contributes to client protein activation, and stimulates the ATPase activity of the molecular chaperone.
|
| |
J Biol Chem,
278,
17228-17235.
|
 |
|
|
|
|
 |
H.Ecroyd,
R.C.Jones,
and
R.J.Aitken
(2003).
Tyrosine phosphorylation of HSP-90 during mammalian sperm capacitation.
|
| |
Biol Reprod,
69,
1801-1807.
|
 |
|
|
|
|
 |
H.Ishiwatari-Hayasaka,
M.Maruya,
A.S.Sreedhar,
T.K.Nemoto,
P.Csermely,
and
I.Yahara
(2003).
Interaction of neuropeptide Y and Hsp90 through a novel peptide binding region.
|
| |
Biochemistry,
42,
12972-12980.
|
 |
|
|
|
|
 |
H.Wegele,
P.Muschler,
M.Bunck,
J.Reinstein,
and
J.Buchner
(2003).
Dissection of the contribution of individual domains to the ATPase mechanism of Hsp90.
|
| |
J Biol Chem,
278,
39303-39310.
|
 |
|
|
|
|
 |
J.S.Isaacs,
W.Xu,
and
L.Neckers
(2003).
Heat shock protein 90 as a molecular target for cancer therapeutics.
|
| |
Cancer Cell,
3,
213-217.
|
 |
|
|
|
|
 |
K.F.Winklhofer,
U.Heller,
A.Reintjes,
and
J.Tatzelt
(2003).
Inhibition of complex glycosylation increases the formation of PrPsc.
|
| |
Traffic,
4,
313-322.
|
 |
|
|
|
|
 |
K.L.Soldano,
A.Jivan,
C.V.Nicchitta,
and
D.T.Gewirth
(2003).
Structure of the N-terminal domain of GRP94. Basis for ligand specificity and regulation.
|
| |
J Biol Chem,
278,
48330-48338.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.N.Kinch,
Y.Qi,
T.J.Hubbard,
and
N.V.Grishin
(2003).
CASP5 target classification.
|
| |
Proteins,
53,
340-351.
|
 |
|
|
|
|
 |
L.Wang,
W.Sullivan,
D.Toft,
and
R.Weinshilboum
(2003).
Thiopurine S-methyltransferase pharmacogenetics: chaperone protein association and allozyme degradation.
|
| |
Pharmacogenetics,
13,
555-564.
|
 |
|
|
|
|
 |
P.Fortugno,
E.Beltrami,
J.Plescia,
J.Fontana,
D.Pradhan,
P.C.Marchisio,
W.C.Sessa,
and
D.C.Altieri
(2003).
Regulation of survivin function by Hsp90.
|
| |
Proc Natl Acad Sci U S A,
100,
13791-13796.
|
 |
|
|
|
|
 |
P.Meyer,
C.Prodromou,
B.Hu,
C.Vaughan,
S.M.Roe,
B.Panaretou,
P.W.Piper,
and
L.H.Pearl
(2003).
Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions.
|
| |
Mol Cell,
11,
647-658.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.W.Piper,
S.H.Millson,
M.Mollapour,
B.Panaretou,
G.Siligardi,
L.H.Pearl,
and
C.Prodromou
(2003).
Sensitivity to Hsp90-targeting drugs can arise with mutation to the Hsp90 chaperone, cochaperones and plasma membrane ATP binding cassette transporters of yeast.
|
| |
Eur J Biochem,
270,
4689-4695.
|
 |
|
|
|
|
 |
P.de Candia,
D.B.Solit,
D.Giri,
E.Brogi,
P.M.Siegel,
A.B.Olshen,
W.J.Muller,
N.Rosen,
and
R.Benezra
(2003).
Angiogenesis impairment in Id-deficient mice cooperates with an Hsp90 inhibitor to completely suppress HER2/neu-dependent breast tumors.
|
| |
Proc Natl Acad Sci U S A,
100,
12337-12342.
|
 |
|
|
|
|
 |
R.Kumar,
A.Musiyenko,
and
S.Barik
(2003).
The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin.
|
| |
Malar J,
2,
30.
|
 |
|
|
|
|
 |
S.Bandhakavi,
R.O.McCann,
D.E.Hanna,
and
C.V.Glover
(2003).
A positive feedback loop between protein kinase CKII and Cdc37 promotes the activity of multiple protein kinases.
|
| |
J Biol Chem,
278,
2829-2836.
|
 |
|
|
|
|
 |
S.J.Arlander,
A.K.Eapen,
B.T.Vroman,
R.J.McDonald,
D.O.Toft,
and
L.M.Karnitz
(2003).
Hsp90 inhibition depletes Chk1 and sensitizes tumor cells to replication stress.
|
| |
J Biol Chem,
278,
52572-52577.
|
 |
|
|
|
|
 |
S.Yamada,
T.Ono,
A.Mizuno,
and
T.K.Nemoto
(2003).
A hydrophobic segment within the C-terminal domain is essential for both client-binding and dimer formation of the HSP90-family molecular chaperone.
|
| |
Eur J Biochem,
270,
146-154.
|
 |
|
|
|
|
 |
T.Vanden Berghe,
M.Kalai,
G.van Loo,
W.Declercq,
and
P.Vandenabeele
(2003).
Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis.
|
| |
J Biol Chem,
278,
5622-5629.
|
 |
|
|
|
|
 |
Y.Hiromasa,
and
T.E.Roche
(2003).
Facilitated interaction between the pyruvate dehydrogenase kinase isoform 2 and the dihydrolipoyl acetyltransferase.
|
| |
J Biol Chem,
278,
33681-33693.
|
 |
|
|
|
|
 |
Y.Miyata
(2003).
[Molecular chaperone HSP90 as a novel target for cancer chemotherapy]
|
| |
Nippon Yakurigaku Zasshi,
121,
33-42.
|
 |
|
|
|
|
 |
A.D.Basso,
D.B.Solit,
G.Chiosis,
B.Giri,
P.Tsichlis,
and
N.Rosen
(2002).
Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function.
|
| |
J Biol Chem,
277,
39858-39866.
|
 |
|
|
|
|
 |
A.Maloney,
and
P.Workman
(2002).
HSP90 as a new therapeutic target for cancer therapy: the story unfolds.
|
| |
Expert Opin Biol Ther,
2,
3.
|
 |
|
|
|
|
 |
B.A.Owen,
W.P.Sullivan,
S.J.Felts,
and
D.O.Toft
(2002).
Regulation of heat shock protein 90 ATPase activity by sequences in the carboxyl terminus.
|
| |
J Biol Chem,
277,
7086-7091.
|
 |
|
|
|
|
 |
B.Panaretou,
G.Siligardi,
P.Meyer,
A.Maloney,
J.K.Sullivan,
S.Singh,
S.H.Millson,
P.A.Clarke,
S.Naaby-Hansen,
R.Stein,
R.Cramer,
M.Mollapour,
P.Workman,
P.W.Piper,
L.H.Pearl,
and
C.Prodromou
(2002).
Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1.
|
| |
Mol Cell,
10,
1307-1318.
|
 |
|
|
|
|
 |
C.Garnier,
D.Lafitte,
P.O.Tsvetkov,
P.Barbier,
J.Leclerc-Devin,
J.M.Millot,
C.Briand,
A.A.Makarov,
M.G.Catelli,
and
V.Peyrot
(2002).
Binding of ATP to heat shock protein 90: evidence for an ATP-binding site in the C-terminal domain.
|
| |
J Biol Chem,
277,
12208-12214.
|
 |
|
|
|
|
 |
C.Söti,
A.Rácz,
and
P.Csermely
(2002).
A Nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket.
|
| |
J Biol Chem,
277,
7066-7075.
|
 |
|
|
|
|
 |
C.Welz-Voegele,
J.E.Stone,
P.T.Tran,
H.M.Kearney,
R.M.Liskay,
T.D.Petes,
and
S.Jinks-Robertson
(2002).
Alleles of the yeast Pms1 mismatch-repair gene that differentially affect recombination- and replication-related processes.
|
| |
Genetics,
162,
1131-1145.
|
 |
|
|
|
|
 |
D.Liu,
O.C.Hutchinson,
S.Osman,
P.Price,
P.Workman,
and
E.O.Aboagye
(2002).
Use of radiolabelled choline as a pharmacodynamic marker for the signal transduction inhibitor geldanamycin.
|
| |
Br J Cancer,
87,
783-789.
|
 |
|
|
|
|
 |
E.A.Campbell,
S.Masuda,
J.L.Sun,
O.Muzzin,
C.A.Olson,
S.Wang,
and
S.A.Darst
(2002).
Crystal structure of the Bacillus stearothermophilus anti-sigma factor SpoIIAB with the sporulation sigma factor sigmaF.
|
| |
Cell,
108,
795-807.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.C.Baker-LePain,
M.Sarzotti,
T.A.Fields,
C.Y.Li,
and
C.V.Nicchitta
(2002).
GRP94 (gp96) and GRP94 N-terminal geldanamycin binding domain elicit tissue nonrestricted tumor suppression.
|
| |
J Exp Med,
196,
1447-1459.
|
 |
|
|
|
|
 |
J.Hu,
D.Toft,
D.Anselmo,
and
X.Wang
(2002).
In vitro reconstitution of functional hepadnavirus reverse transcriptase with cellular chaperone proteins.
|
| |
J Virol,
76,
269-279.
|
 |
|
|
|
|
 |
J.J.Hung,
C.S.Chung,
and
W.Chang
(2002).
Molecular chaperone Hsp90 is important for vaccinia virus growth in cells.
|
| |
J Virol,
76,
1379-1390.
|
 |
|
|
|
|
 |
J.S.Isaacs,
Y.J.Jung,
E.G.Mimnaugh,
A.Martinez,
F.Cuttitta,
and
L.M.Neckers
(2002).
Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway.
|
| |
J Biol Chem,
277,
29936-29944.
|
 |
|
|
|
|
 |
J.Trojan,
S.Zeuzem,
A.Randolph,
C.Hemmerle,
A.Brieger,
J.Raedle,
G.Plotz,
J.Jiricny,
and
G.Marra
(2002).
Functional analysis of hMLH1 variants and HNPCC-related mutations using a human expression system.
|
| |
Gastroenterology,
122,
211-219.
|
 |
|
|
|
|
 |
K.C.Kanelakis,
D.S.Shewach,
and
W.B.Pratt
(2002).
Nucleotide binding states of hsp70 and hsp90 during sequential steps in the process of glucocorticoid receptor.hsp90 heterocomplex assembly.
|
| |
J Biol Chem,
277,
33698-33703.
|
 |
|
|
|
|
 |
K.Richter,
J.Reinstein,
and
J.Buchner
(2002).
N-terminal residues regulate the catalytic efficiency of the Hsp90 ATPase cycle.
|
| |
J Biol Chem,
277,
44905-44910.
|
 |
|
|
|
|
 |
L.Neckers
(2002).
Hsp90 inhibitors as novel cancer chemotherapeutic agents.
|
| |
Trends Mol Med,
8,
S55-S61.
|
 |
|
|
|
|
 |
M.E.Britton,
and
M.Kapoor
(2002).
The oligomeric state, complex formation, and chaperoning activity of hsp70 and hsp80 of Neurospora crassa.
|
| |
Biochem Cell Biol,
80,
797-809.
|
 |
|
|
|
|
 |
M.Räschle,
P.Dufner,
G.Marra,
and
J.Jiricny
(2002).
Mutations within the hMLH1 and hPMS2 subunits of the human MutLalpha mismatch repair factor affect its ATPase activity, but not its ability to interact with hMutSalpha.
|
| |
J Biol Chem,
277,
21810-21820.
|
 |
|
|
|
|
 |
P.Chène
(2002).
ATPases as drug targets: learning from their structure.
|
| |
Nat Rev Drug Discov,
1,
665-673.
|
 |
|
|
|
|
 |
P.Srivastava
(2002).
Roles of heat-shock proteins in innate and adaptive immunity.
|
| |
Nat Rev Immunol,
2,
185-194.
|
 |
|
|
|
|
 |
P.Srivastava
(2002).
Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses.
|
| |
Annu Rev Immunol,
20,
395-425.
|
 |
|
|
|
|
 |
S.Matsumoto,
E.Tanaka,
T.K.Nemoto,
T.Ono,
T.Takagi,
J.Imai,
Y.Kimura,
I.Yahara,
T.Kobayakawa,
T.Ayuse,
K.Oi,
and
A.Mizuno
(2002).
Interaction between the N-terminal and middle regions is essential for the in vivo function of HSP90 molecular chaperone.
|
| |
J Biol Chem,
277,
34959-34966.
|
 |
|
|
|
|
 |
S.Vogen,
T.Gidalevitz,
C.Biswas,
B.B.Simen,
E.Stein,
F.Gulmen,
and
Y.Argon
(2002).
Radicicol-sensitive peptide binding to the N-terminal portion of GRP94.
|
| |
J Biol Chem,
277,
40742-40750.
|
 |
|
|
|
|
 |
S.Walter,
and
J.Buchner
(2002).
Molecular chaperones--cellular machines for protein folding.
|
| |
Angew Chem Int Ed Engl,
41,
1098-1113.
|
 |
|
|
|
|
 |
T.Sakisaka,
T.Meerlo,
J.Matteson,
H.Plutner,
and
W.E.Balch
(2002).
Rab-alphaGDI activity is regulated by a Hsp90 chaperone complex.
|
| |
EMBO J,
21,
6125-6135.
|
 |
|
|
|
|
 |
T.Yamano,
S.Murata,
N.Shimbara,
N.Tanaka,
T.Chiba,
K.Tanaka,
K.Yui,
and
H.Udono
(2002).
Two distinct pathways mediated by PA28 and hsp90 in major histocompatibility complex class I antigen processing.
|
| |
J Exp Med,
196,
185-196.
|
 |
|
|
|
|
 |
A.Guarné,
M.S.Junop,
and
W.Yang
(2001).
Structure and function of the N-terminal 40 kDa fragment of human PMS2: a monomeric GHL ATPase.
|
| |
EMBO J,
20,
5521-5531.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.H.West,
and
A.M.Stock
(2001).
Histidine kinases and response regulator proteins in two-component signaling systems.
|
| |
Trends Biochem Sci,
26,
369-376.
|
 |
|
|
|
|
 |
A.P.Demchenko
(2001).
Recognition between flexible protein molecules: induced and assisted folding.
|
| |
J Mol Recognit,
14,
42-61.
|
 |
|
|
|
|
 |
C.D.Bishop,
W.R.Bates,
and
B.P.Brandhorst
(2001).
Regulation of metamorphosis in ascidians involves NO/cGMP signaling and HSP90.
|
| |
J Exp Zool,
289,
374-384.
|
 |
|
|
|
|
 |
C.Garnier,
D.Lafitte,
T.J.Jorgensen,
O.N.Jensen,
C.Briand,
and
V.Peyrot
(2001).
Phosphorylation and oligomerization states of native pig brain HSP90 studied by mass spectrometry.
|
| |
Eur J Biochem,
268,
2402-2407.
|
 |
|
|
|
|
 |
C.N.Steussy,
K.M.Popov,
M.M.Bowker-Kinley,
R.B.Sloan,
R.A.Harris,
and
J.A.Hamilton
(2001).
Structure of pyruvate dehydrogenase kinase. Novel folding pattern for a serine protein kinase.
|
| |
J Biol Chem,
276,
37443-37450.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Tanaka,
T.K.Nemoto,
and
T.Ono
(2001).
Liberation of the intramolecular interaction as the mechanism of heat-induced activation of HSP90 molecular chaperone.
|
| |
Eur J Biochem,
268,
5270-5277.
|
 |
|
|
|
|
 |
F.Randow,
and
B.Seed
(2001).
Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability.
|
| |
Nat Cell Biol,
3,
891-896.
|
 |
|
|
|
|
 |
F.S.Goes,
and
J.Martin
(2001).
Hsp90 chaperone complexes are required for the activity and stability of yeast protein kinases Mik1, Wee1 and Swe1.
|
| |
Eur J Biochem,
268,
2281-2289.
|
 |
|
|
|
|
 |
G.Chiosis,
M.N.Timaul,
B.Lucas,
P.N.Munster,
F.F.Zheng,
L.Sepp-Lorenzino,
and
N.Rosen
(2001).
A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells.
|
| |
Chem Biol,
8,
289-299.
|
 |
|
|
|
|
 |
G.de Cárcer,
M.do Carmo Avides,
M.J.Lallena,
D.M.Glover,
and
C.González
(2001).
Requirement of Hsp90 for centrosomal function reflects its regulation of Polo kinase stability.
|
| |
EMBO J,
20,
2878-2884.
|
 |
|
|
|
|
 |
H.J.Ochel,
K.Eichhorn,
and
G.Gademann
(2001).
Geldanamycin: the prototype of a class of antitumor drugs targeting the heat shock protein 90 family of molecular chaperones.
|
| |
Cell Stress Chaperones,
6,
105-112.
|
 |
|
|
|
|
 |
H.Singh-Jasuja,
N.Hilf,
D.Arnold-Schild,
and
H.Schild
(2001).
The role of heat shock proteins and their receptors in the activation of the immune system.
|
| |
Biol Chem,
382,
629-636.
|
 |
|
|
|
|
 |
J.C.Young,
I.Moarefi,
and
F.U.Hartl
(2001).
Hsp90: a specialized but essential protein-folding tool.
|
| |
J Cell Biol,
154,
267-273.
|
 |
|
|
|
|
 |
J.Frankel,
N.E.Williams,
E.M.Nelsen,
and
P.J.Keeling
(2001).
An evaluation of Hsp90 as a mediator of cortical patterning in Tetrahymena.
|
| |
J Eukaryot Microbiol,
48,
147-160.
|
 |
|
|
|
|
 |
J.Frydman
(2001).
Folding of newly translated proteins in vivo: the role of molecular chaperones.
|
| |
Annu Rev Biochem,
70,
603-647.
|
 |
|
|
|
|
 |
K.Richter,
and
J.Buchner
(2001).
Hsp90: chaperoning signal transduction.
|
| |
J Cell Physiol,
188,
281-290.
|
 |
|
|
|
|
 |
L.Bouhouche-Chatelier,
A.Chadli,
and
M.G.Catelli
(2001).
The N-terminal adenosine triphosphate binding domain of Hsp90 is necessary and sufficient for interaction with estrogen receptor.
|
| |
Cell Stress Chaperones,
6,
297-305.
|
 |
|
|
|
|
 |
L.Waxman,
M.Whitney,
B.A.Pollok,
L.C.Kuo,
and
P.L.Darke
(2001).
Host cell factor requirement for hepatitis C virus enzyme maturation.
|
| |
Proc Natl Acad Sci U S A,
98,
13931-13935.
|
 |
|
|
|
|
 |
M.C.Rosenhagen,
J.C.Young,
G.M.Wochnik,
A.S.Herr,
U.Schmidt,
F.U.Hartl,
F.Holsboer,
and
T.Rein
(2001).
Synergistic inhibition of the glucocorticoid receptor by radicicol and benzoquinone ansamycins.
|
| |
Biol Chem,
382,
499-504.
|
 |
|
|
|
|
 |
M.Minami,
M.Nakamura,
Y.Emori,
and
Y.Minami
(2001).
Both the N- and C-terminal chaperone sites of Hsp90 participate in protein refolding.
|
| |
Eur J Biochem,
268,
2520-2524.
|
 |
|
|
|
|
 |
N.A.Linderoth,
M.N.Simon,
N.A.Rodionova,
M.Cadene,
W.R.Laws,
B.T.Chait,
and
S.Sastry
(2001).
Biophysical analysis of the endoplasmic reticulum-resident chaperone/heat shock protein gp96/GRP94 and its complex with peptide antigen.
|
| |
Biochemistry,
40,
1483-1495.
|
 |
|
|
|
|
 |
P.T.Tran,
J.A.Simon,
and
R.M.Liskay
(2001).
Interactions of Exo1p with components of MutLalpha in Saccharomyces cerevisiae.
|
| |
Proc Natl Acad Sci U S A,
98,
9760-9765.
|
 |
|
|
|
|
 |
R.Vaiskunaite,
T.Kozasa,
and
T.A.Voyno-Yasenetskaya
(2001).
Interaction between the G alpha subunit of heterotrimeric G(12) protein and Hsp90 is required for G alpha(12) signaling.
|
| |
J Biol Chem,
276,
46088-46093.
|
 |
|
|
|
|
 |
S.Basu,
R.J.Binder,
T.Ramalingam,
and
P.K.Srivastava
(2001).
CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin.
|
| |
Immunity,
14,
303-313.
|
 |
|
|
|
|
 |
S.D.Catz,
J.L.Johnson,
and
B.M.Babior
(2001).
Characterization of the nucleotide-binding capacity and the ATPase activity of the PIP3-binding protein JFC1.
|
| |
Proc Natl Acad Sci U S A,
98,
11230-11235.
|
 |
|
|
|
|
 |
S.W.Fewell,
K.J.Travers,
J.S.Weissman,
and
J.L.Brodsky
(2001).
The action of molecular chaperones in the early secretory pathway.
|
| |
Annu Rev Genet,
35,
149-191.
|
 |
|
|
|
|
 |
T.Iwamura,
M.Yoneyama,
K.Yamaguchi,
W.Suhara,
W.Mori,
K.Shiota,
Y.Okabe,
H.Namiki,
and
T.Fujita
(2001).
Induction of IRF-3/-7 kinase and NF-kappaB in response to double-stranded RNA and virus infection: common and unique pathways.
|
| |
Genes Cells,
6,
375-388.
|
 |
|
|
|
|
 |
T.K.Nemoto,
T.Ono,
T.Kobayakawa,
E.Tanaka,
T.T.Baba,
K.Tanaka,
T.Takagi,
and
T.Gotoh
(2001).
Domain-domain interactions of HtpG, an Escherichia coli homologue of eukaryotic HSP90 molecular chaperone.
|
| |
Eur J Biochem,
268,
5258-5269.
|
 |
|
|
|
|
 |
A.Chadli,
I.Bouhouche,
W.Sullivan,
B.Stensgard,
N.McMahon,
M.G.Catelli,
and
D.O.Toft
(2000).
Dimerization and N-terminal domain proximity underlie the function of the molecular chaperone heat shock protein 90.
|
| |
Proc Natl Acad Sci U S A,
97,
12524-12529.
|
 |
|
|
|
|
 |
B.M.Lange,
A.Bachi,
M.Wilm,
and
C.González
(2000).
Hsp90 is a core centrosomal component and is required at different stages of the centrosome cycle in Drosophila and vertebrates.
|
| |
EMBO J,
19,
1252-1262.
|
 |
|
|
|
|
 |
C.Prodromou,
B.Panaretou,
S.Chohan,
G.Siligardi,
R.O'Brien,
J.E.Ladbury,
S.M.Roe,
P.W.Piper,
and
L.H.Pearl
(2000).
The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains.
|
| |
EMBO J,
19,
4383-4392.
|
 |
|
|
|
|
 |
C.Sarto,
P.A.Binz,
and
P.Mocarelli
(2000).
Heat shock proteins in human cancer.
|
| |
Electrophoresis,
21,
1218-1226.
|
 |
|
|
|
|
 |
C.Scheufler,
A.Brinker,
G.Bourenkov,
S.Pegoraro,
L.Moroder,
H.Bartunik,
F.U.Hartl,
and
I.Moarefi
(2000).
Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine.
|
| |
Cell,
101,
199-210.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Scholz,
S.D.Hartson,
K.Cartledge,
N.Hall,
J.Shao,
A.R.Dunn,
and
R.L.Matts
(2000).
p50(Cdc37) can buffer the temperature-sensitive properties of a mutant of Hck.
|
| |
Mol Cell Biol,
20,
6984-6995.
|
 |
|
|
|
|
 |
J.C.Young,
and
F.U.Hartl
(2000).
Polypeptide release by Hsp90 involves ATP hydrolysis and is enhanced by the co-chaperone p23.
|
| |
EMBO J,
19,
5930-5940.
|
 |
|
|
|
|
 |
J.Lewis,
A.Devin,
A.Miller,
Y.Lin,
Y.Rodriguez,
L.Neckers,
and
Z.G.Liu
(2000).
Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation.
|
| |
J Biol Chem,
275,
10519-10526.
|
 |
|
|
|
|
 |
K.S.Russell,
M.P.Haynes,
T.Caulin-Glaser,
J.Rosneck,
W.C.Sessa,
and
J.R.Bender
(2000).
Estrogen stimulates heat shock protein 90 binding to endothelial nitric oxide synthase in human vascular endothelial cells. Effects on calcium sensitivity and NO release.
|
| |
J Biol Chem,
275,
5026-5030.
|
 |
|
|
|
|
 |
L.H.Pearl,
and
C.Prodromou
(2000).
Structure and in vivo function of Hsp90.
|
| |
Curr Opin Struct Biol,
10,
46-51.
|
 |
|
|
|
|
 |
M.J.Bijlmakers,
and
M.Marsh
(2000).
Hsp90 is essential for the synthesis and subsequent membrane association, but not the maintenance, of the Src-kinase p56(lck).
|
| |
Mol Biol Cell,
11,
1585-1595.
|
 |
|
|
|
|
 |
P.T.Tran,
and
R.M.Liskay
(2000).
Functional studies on the candidate ATPase domains of Saccharomyces cerevisiae MutLalpha.
|
| |
Mol Cell Biol,
20,
6390-6398.
|
 |
|
|
|
|
 |
S.Basu,
and
P.K.Srivastava
(2000).
Heat shock proteins: the fountainhead of innate and adaptive immune responses.
|
| |
Cell Stress Chaperones,
5,
443-451.
|
 |
|
|
|
|
 |
S.D.Hartson,
A.D.Irwin,
J.Shao,
B.T.Scroggins,
L.Volk,
W.Huang,
and
R.L.Matts
(2000).
p50(cdc37) is a nonexclusive Hsp90 cohort which participates intimately in Hsp90-mediated folding of immature kinase molecules.
|
| |
Biochemistry,
39,
7631-7644.
|
 |
|
|
|
|
 |
S.J.Felts,
B.A.Owen,
P.Nguyen,
J.Trepel,
D.B.Donner,
and
D.O.Toft
(2000).
The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties.
|
| |
J Biol Chem,
275,
3305-3312.
|
 |
|
|
|
|
 |
S.Kimmins,
and
T.H.MacRae
(2000).
Maturation of steroid receptors: an example of functional cooperation among molecular chaperones and their associated proteins.
|
| |
Cell Stress Chaperones,
5,
76-86.
|
 |
|
|
|
|
 |
S.Sato,
N.Fujita,
and
T.Tsuruo
(2000).
Modulation of Akt kinase activity by binding to Hsp90.
|
| |
Proc Natl Acad Sci U S A,
97,
10832-10837.
|
 |
|
|
|
|
 |
T.Schnaider,
J.Somogyi,
P.Csermely,
and
M.Szamel
(2000).
The Hsp90-specific inhibitor geldanamycin selectively disrupts kinase-mediated signaling events of T-lymphocyte activation.
|
| |
Cell Stress Chaperones,
5,
52-61.
|
 |
|
|
|
|
 |
A.Carrello,
E.Ingley,
R.F.Minchin,
S.Tsai,
and
T.Ratajczak
(1999).
The common tetratricopeptide repeat acceptor site for steroid receptor-associated immunophilins and hop is located in the dimerization domain of Hsp90.
|
| |
J Biol Chem,
274,
2682-2689.
|
 |
|
|
|
|
 |
A.Chadli,
M.M.Ladjimi,
E.E.Baulieu,
and
M.G.Catelli
(1999).
Heat-induced oligomerization of the molecular chaperone Hsp90. Inhibition by ATP and geldanamycin and activation by transition metal oxyanions.
|
| |
J Biol Chem,
274,
4133-4139.
|
 |
|
|
|
|
 |
A.J.Caplan
(1999).
Hsp90's secrets unfold: new insights from structural and functional studies.
|
| |
Trends Cell Biol,
9,
262-268.
|
 |
|
|
|
|
 |
A.M.Bilwes,
L.A.Alex,
B.R.Crane,
and
M.I.Simon
(1999).
Structure of CheA, a signal-transducing histidine kinase.
|
| |
Cell,
96,
131-141.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Ban,
M.Junop,
and
W.Yang
(1999).
Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair.
|
| |
Cell,
97,
85-97.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Prodromou,
G.Siligardi,
R.O'Brien,
D.N.Woolfson,
L.Regan,
B.Panaretou,
J.E.Ladbury,
P.W.Piper,
and
L.H.Pearl
(1999).
Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones.
|
| |
EMBO J,
18,
754-762.
|
 |
|
|
|
|
 |
D.F.Nathan,
M.H.Vos,
and
S.Lindquist
(1999).
Identification of SSF1, CNS1, and HCH1 as multicopy suppressors of a Saccharomyces cerevisiae Hsp90 loss-of-function mutation.
|
| |
Proc Natl Acad Sci U S A,
96,
1409-1414.
|
 |
|
|
|
|
 |
J.Buchner
(1999).
Hsp90 & Co. - a holding for folding.
|
| |
Trends Biochem Sci,
24,
136-141.
|
 |
|
|
|
|
 |
J.P.Grenert,
B.D.Johnson,
and
D.O.Toft
(1999).
The importance of ATP binding and hydrolysis by hsp90 in formation and function of protein heterocomplexes.
|
| |
J Biol Chem,
274,
17525-17533.
|
 |
|
|
|
|
 |
K.A.Morano,
and
D.J.Thiele
(1999).
The Sch9 protein kinase regulates Hsp90 chaperone complex signal transduction activity in vivo.
|
| |
EMBO J,
18,
5953-5962.
|
 |
|
|
|
|
 |
K.A.Morano,
N.Santoro,
K.A.Koch,
and
D.J.Thiele
(1999).
A trans-activation domain in yeast heat shock transcription factor is essential for cell cycle progression during stress.
|
| |
Mol Cell Biol,
19,
402-411.
|
 |
|
|
|
|
 |
K.I.Kang,
X.Meng,
J.Devin-Leclerc,
I.Bouhouche,
A.Chadli,
F.Cadepond,
E.E.Baulieu,
and
M.G.Catelli
(1999).
The molecular chaperone Hsp90 can negatively regulate the activity of a glucocorticosteroid-dependent promoter.
|
| |
Proc Natl Acad Sci U S A,
96,
1439-1444.
|
 |
|
|
|
|
 |
L.Neckers,
E.Mimnaugh,
and
T.W.Schulte
(1999).
Hsp90 as an anti-cancer target.
|
| |
Drug Resist Updat,
2,
165-172.
|
 |
|
|
|
|
 |
L.R.Kelland,
S.Y.Sharp,
P.M.Rogers,
T.G.Myers,
and
P.Workman
(1999).
DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90.
|
| |
J Natl Cancer Inst,
91,
1940-1949.
|
 |
|
|
|
|
 |
L.Yue,
T.L.Karr,
D.F.Nathan,
H.Swift,
S.Srinivasan,
and
S.Lindquist
(1999).
Genetic analysis of viable Hsp90 alleles reveals a critical role in Drosophila spermatogenesis.
|
| |
Genetics,
151,
1065-1079.
|
 |
|
|
|
|
 |
M.D.Galigniana,
P.R.Housley,
D.B.DeFranco,
and
W.B.Pratt
(1999).
Inhibition of glucocorticoid receptor nucleocytoplasmic shuttling by okadaic acid requires intact cytoskeleton.
|
| |
J Biol Chem,
274,
16222-16227.
|
 |
|
|
|
|
 |
M.E.Cardenas,
M.C.Cruz,
M.Del Poeta,
N.Chung,
J.R.Perfect,
and
J.Heitman
(1999).
Antifungal activities of antineoplastic agents: Saccharomyces cerevisiae as a model system to study drug action.
|
| |
Clin Microbiol Rev,
12,
583-611.
|
 |
|
|
|
|
 |
M.J.Lees,
and
M.L.Whitelaw
(1999).
Multiple roles of ligand in transforming the dioxin receptor to an active basic helix-loop-helix/PAS transcription factor complex with the nuclear protein Arnt.
|
| |
Mol Cell Biol,
19,
5811-5822.
|
 |
|
|
|
|
 |
M.P.Mayer,
and
B.Bukau
(1999).
Molecular chaperones: the busy life of Hsp90.
|
| |
Curr Biol,
9,
R322-R325.
|
 |
|
|
|
|
 |
N.Grammatikakis,
J.H.Lin,
A.Grammatikakis,
P.N.Tsichlis,
and
B.H.Cochran
(1999).
p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function.
|
| |
Mol Cell Biol,
19,
1661-1672.
|
 |
|
|
|
|
 |
P.M.Ouimet,
and
M.Kapoor
(1999).
Nucleotide binding and hydrolysis properties of Neurospora crassa cytosolic molecular chaperones, Hsp70 and Hsp80, heat-inducible members of the eukaryotic stress-70 and stress-90 families.
|
| |
Biochem Cell Biol,
77,
89-99.
|
 |
|
|
|
|
 |
P.V.Shcherbakova,
and
T.A.Kunkel
(1999).
Mutator phenotypes conferred by MLH1 overexpression and by heterozygosity for mlh1 mutations.
|
| |
Mol Cell Biol,
19,
3177-3183.
|
 |
|
|
|
|
 |
R.Dutta,
L.Qin,
and
M.Inouye
(1999).
Histidine kinases: diversity of domain organization.
|
| |
Mol Microbiol,
34,
633-640.
|
 |
|
|
|
|
 |
R.J.Ellis,
and
F.U.Hartl
(1999).
Principles of protein folding in the cellular environment.
|
| |
Curr Opin Struct Biol,
9,
102-110.
|
 |
|
|
|
|
 |
R.J.Kaufman
(1999).
Molecular chaperones and the heat shock response. Sponsored by Cold Spring Harbor Laboratory, 6-10 May 1998.
|
| |
Biochim Biophys Acta,
1423,
R13-R27.
|
 |
|
|
|
|
 |
S.D.Hartson,
V.Thulasiraman,
W.Huang,
L.Whitesell,
and
R.L.Matts
(1999).
Molybdate inhibits hsp90, induces structural changes in its C-terminal domain, and alters its interactions with substrates.
|
| |
Biochemistry,
38,
3837-3849.
|
 |
|
|
|
|
 |
S.E.Holt,
D.L.Aisner,
J.Baur,
V.M.Tesmer,
M.Dy,
M.Ouellette,
J.B.Trager,
G.B.Morin,
D.O.Toft,
J.W.Shay,
W.E.Wright,
and
M.A.White
(1999).
Functional requirement of p23 and Hsp90 in telomerase complexes.
|
| |
Genes Dev,
13,
817-826.
|
 |
|
|
|
|
 |
T.Scheibel,
H.I.Siegmund,
R.Jaenicke,
P.Ganz,
H.Lilie,
and
J.Buchner
(1999).
The charged region of Hsp90 modulates the function of the N-terminal domain.
|
| |
Proc Natl Acad Sci U S A,
96,
1297-1302.
|
 |
|
|
|
|
 |
T.Scheibel,
T.Weikl,
R.Rimerman,
D.Smith,
S.Lindquist,
and
J.Buchner
(1999).
Contribution of N- and C-terminal domains to the function of Hsp90 in Saccharomyces cerevisiae.
|
| |
Mol Microbiol,
34,
701-713.
|
 |
|
|
|
|
 |
A.Ali,
S.Bharadwaj,
R.O'Carroll,
and
N.Ovsenek
(1998).
HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes.
|
| |
Mol Cell Biol,
18,
4949-4960.
|
 |
|
|
|
|
 |
A.M.Silverstein,
N.Grammatikakis,
B.H.Cochran,
M.Chinkers,
and
W.B.Pratt
(1998).
p50(cdc37) binds directly to the catalytic domain of Raf as well as to a site on hsp90 that is topologically adjacent to the tetratricopeptide repeat binding site.
|
| |
J Biol Chem,
273,
20090-20095.
|
 |
|
|
|
|
 |
B.B.Bartha,
K.Ajtai,
D.O.Toft,
and
T.P.Burghardt
(1998).
ATP sensitive tryptophans of hsp90.
|
| |
Biophys Chem,
72,
313-321.
|
 |
|
|
|
|
 |
B.Bukau,
and
A.L.Horwich
(1998).
The Hsp70 and Hsp60 chaperone machines.
|
| |
Cell,
92,
351-366.
|
 |
|
|
|
|
 |
B.D.Johnson,
R.J.Schumacher,
E.D.Ross,
and
D.O.Toft
(1998).
Hop modulates Hsp70/Hsp90 interactions in protein folding.
|
| |
J Biol Chem,
273,
3679-3686.
|
 |
|
|
|
|
 |
B.Gerhardt,
T.J.Kordas,
C.M.Thompson,
P.Patel,
and
T.Vida
(1998).
The vesicle transport protein Vps33p is an ATP-binding protein that localizes to the cytosol in an energy-dependent manner.
|
| |
J Biol Chem,
273,
15818-15829.
|
 |
|
|
|
|
 |
B.Panaretou,
C.Prodromou,
S.M.Roe,
R.O'Brien,
J.E.Ladbury,
P.W.Piper,
and
L.H.Pearl
(1998).
ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo.
|
| |
EMBO J,
17,
4829-4836.
|
 |
|
|
|
|
 |
C.Ban,
and
W.Yang
(1998).
Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis.
|
| |
Cell,
95,
541-552.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.V.Nicchitta
(1998).
Biochemical, cell biological and immunological issues surrounding the endoplasmic reticulum chaperone GRP94/gp96.
|
| |
Curr Opin Immunol,
10,
103-109.
|
 |
|
|
|
|
 |
H.Kosano,
B.Stensgard,
M.C.Charlesworth,
N.McMahon,
and
D.Toft
(1998).
The assembly of progesterone receptor-hsp90 complexes using purified proteins.
|
| |
J Biol Chem,
273,
32973-32979.
|
 |
|
|
|
|
 |
J.C.Milne,
A.C.Eliot,
N.L.Kelleher,
and
C.T.Walsh
(1998).
ATP/GTP hydrolysis is required for oxazole and thiazole biosynthesis in the peptide antibiotic microcin B17.
|
| |
Biochemistry,
37,
13250-13261.
|
 |
|
|
|
|
 |
J.C.Young,
W.M.Obermann,
and
F.U.Hartl
(1998).
Specific binding of tetratricopeptide repeat proteins to the C-terminal 12-kDa domain of hsp90.
|
| |
J Biol Chem,
273,
18007-18010.
|
 |
|
|
|
|
 |
J.M.Berger
(1998).
Type II DNA topoisomerases.
|
| |
Curr Opin Struct Biol,
8,
26-32.
|
 |
|
|
|
|
 |
K.D.Dittmar,
M.Banach,
M.D.Galigniana,
and
W.B.Pratt
(1998).
The role of DnaJ-like proteins in glucocorticoid receptor.hsp90 heterocomplex assembly by the reconstituted hsp90.p60.hsp70 foldosome complex.
|
| |
J Biol Chem,
273,
7358-7366.
|
 |
|
|
|
|
 |
K.M.Linnik,
and
H.Herscovitz
(1998).
Multiple molecular chaperones interact with apolipoprotein B during its maturation. The network of endoplasmic reticulum-resident chaperones (ERp72, GRP94, calreticulin, and BiP) interacts with apolipoprotein b regardless of its lipidation state.
|
| |
J Biol Chem,
273,
21368-21373.
|
 |
|
|
|
|
 |
L.Whitesell,
P.D.Sutphin,
E.J.Pulcini,
J.D.Martinez,
and
P.H.Cook
(1998).
The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an hsp90-binding agent.
|
| |
Mol Cell Biol,
18,
1517-1524.
|
 |
|
|
|
|
 |
M.A.Loo,
T.J.Jensen,
L.Cui,
Y.Hou,
X.B.Chang,
and
J.R.Riordan
(1998).
Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome.
|
| |
EMBO J,
17,
6879-6887.
|
 |
|
|
|
|
 |
P.A.Wearsch,
L.Voglino,
and
C.V.Nicchitta
(1998).
Structural transitions accompanying the activation of peptide binding to the endoplasmic reticulum Hsp90 chaperone GRP94.
|
| |
Biochemistry,
37,
5709-5719.
|
 |
|
|
|
|
 |
P.Csermely,
T.Schnaider,
C.Soti,
Z.Prohászka,
and
G.Nardai
(1998).
The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review.
|
| |
Pharmacol Ther,
79,
129-168.
|
 |
|
|
|
|
 |
P.K.Srivastava,
A.Menoret,
S.Basu,
R.J.Binder,
and
K.L.McQuade
(1998).
Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world.
|
| |
Immunity,
8,
657-665.
|
 |
|
|
|
|
 |
R.Jaenicke
(1998).
Protein self-organization in vitro and in vivo: partitioning between physical biochemistry and cell biology.
|
| |
Biol Chem,
379,
237-243.
|
 |
|
|
|
|
 |
S.Chen,
and
D.F.Smith
(1998).
Hop as an adaptor in the heat shock protein 70 (Hsp70) and hsp90 chaperone machinery.
|
| |
J Biol Chem,
273,
35194-35200.
|
 |
|
|
|
|
 |
S.P.Bohen
(1998).
Genetic and biochemical analysis of p23 and ansamycin antibiotics in the function of Hsp90-dependent signaling proteins.
|
| |
Mol Cell Biol,
18,
3330-3339.
|
 |
|
|
|
|
 |
T.Scheibel,
T.Weikl,
and
J.Buchner
(1998).
Two chaperone sites in Hsp90 differing in substrate specificity and ATP dependence.
|
| |
Proc Natl Acad Sci U S A,
95,
1495-1499.
|
 |
|
|
|
|
 |
V.Prapapanich,
S.Chen,
and
D.F.Smith
(1998).
Mutation of Hip's carboxy-terminal region inhibits a transitional stage of progesterone receptor assembly.
|
| |
Mol Cell Biol,
18,
944-952.
|
 |
|
|
|
|
 |
W.M.Obermann,
H.Sondermann,
A.A.Russo,
N.P.Pavletich,
and
F.U.Hartl
(1998).
In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis.
|
| |
J Cell Biol,
143,
901-910.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Fang,
A.E.Fliss,
J.Rao,
and
A.J.Caplan
(1998).
SBA1 encodes a yeast hsp90 cochaperone that is homologous to vertebrate p23 proteins.
|
| |
Mol Cell Biol,
18,
3727-3734.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |