spacer
spacer

PDBsum entry 1a0l

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Hydrolase/hydrolase inhibitor PDB id
1a0l

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
244 a.a. *
Ligands
APA ×4
Waters ×96
* Residue conservation analysis
PDB id:
1a0l
Name: Hydrolase/hydrolase inhibitor
Title: Human beta-tryptase: a ring-like tetramer with active sites facing a central pore
Structure: Beta-tryptase. Chain: a, b, c, d. Other_details: in complex with amidino phenyl pyruvic acid (appa), a synthetic inhibitor
Source: Homo sapiens. Human. Organism_taxid: 9606. Organ: lung. Cell: mast cell
Biol. unit: Tetramer (from PDB file)
Resolution:
3.00Å     R-factor:   0.197     R-free:   0.276
Authors: P.J.B.Pereira,A.Bergner,S.Macedo-Ribeiro,R.Huber,G.Matschiner, H.Fritz,C.P.Sommerhoff,W.Bode
Key ref:
P.J.Pereira et al. (1998). Human beta-tryptase is a ring-like tetramer with active sites facing a central pore. Nature, 392, 306-311. PubMed id: 9521329 DOI: 10.1038/32703
Date:
03-Dec-97     Release date:   23-Mar-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P20231  (TRYB2_HUMAN) -  Tryptase beta-2 from Homo sapiens
Seq:
Struc:
275 a.a.
244 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.3.4.21.59  - tryptase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Preferential cleavage: Arg-|-, Lys-|-, but with more restricted specificity than trypsin.

 

 
DOI no: 10.1038/32703 Nature 392:306-311 (1998)
PubMed id: 9521329  
 
 
Human beta-tryptase is a ring-like tetramer with active sites facing a central pore.
P.J.Pereira, A.Bergner, S.Macedo-Ribeiro, R.Huber, G.Matschiner, H.Fritz, C.P.Sommerhoff, W.Bode.
 
  ABSTRACT  
 
Human tryptase, a mast-cell-specific serine proteinase that may be involved in causing asthma and other allergic and inflammatory disorders, is unique in two respects: it is enzymatically active only as a heparin-stabilized tetramer, and it is resistant to all known endogenous proteinase inhibitors. The 3-A crystal structure of human beta-tryptase in a complex with 4-amidinophenyl pyruvic acid shows four quasi-equivalent monomers arranged in a square flat ring of pseudo 222 symmetry. Each monomer contacts its neighbours at two different interfaces through six loop segments. These loops are located around the active site of beta-tryptase and differ considerably in length and conformation from loops of other trypsin-like proteinases. The four active centres of the tetramer are directed towards an oval central pore, restricting access for macromolecular substrates and enzyme inhibitors. Heparin chains might stabilize the complex by binding to an elongated patch of positively charged residues spanning two adjacent monomers. The nature of this unique tetrameric architecture explains many of tryptase's biochemical properties and provides a basis for the rational design of monofunctional and bifunctional tryptase inhibitors.
 
  Selected figure(s)  
 
Figure 1.
Figure 1 Solid-surface representation of the tryptase tetramer. The colours indicate positive (blue) and negative (red) electrostatic potential at the molecular surface. Figures made with GRASP28. a, Front view. The four monomers (labelled A to D) are arranged at the corners of a flat square. Horizontal and vertical local two-fold symmetry axes, relating monomer A (or D) with B (or C), and monomer A (or B) with D (or C), respectively, run through the tetramer centre, as does a third, perpendicular, axis. The four monomers leave a central pore. Two of the four bound APPA molecules (yellow) are visible, whereas the two others are shielded by projecting flaps. The (blue) patches of positively charged residues at the surfaces of monomers B and D extend towards the A-B and C-D peripheries. b, Edge view towards the C-D dimer. The tetramer has been rotated around a vertical axis by almost 90° compared with a, clearing the view towards the peripheral sides of monomers C (bottom) and D (top). The positively charged patches on both monomers extend towards the front side (right) of D and the back side (left) of C. An extended heparin chain of almost 100 ? could span both patches, strengthening the small C-D and A-B contacts.
Figure 2.
Figure 2 Ribbon representation of one tryptase monomer in the standard orientation. Monomer A of Fig. 1a is shown after rotation around a vertical axis by 90° (the rotation used to create Fig. 1b). The view is towards the active centre (represented by Ser 195, His 57 and Asp 102 as yellow stick models), with the active-site cleft running from left to right; the APPA molecule interacts with Asp 189 (yellow stick models) in the S1 pocket. The six unique surface loops of tryptase surrounding the active site and engaged in intermonomer contacts are specifically coloured. The 147 loop is light blue; the 70-80 loop is yellow; the 37 loop is orange; the 60 loop is mauve; the 97 loop is green; and the 173 flap is red. All other tryptase segments are violet. Figure produced with Insight II (Biosym/MSI, San Diego).
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (1998, 392, 306-311) copyright 1998.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21326199 T.Clausen, M.Kaiser, R.Huber, and M.Ehrmann (2011).
HTRA proteases: regulated proteolysis in protein quality control.
  Nat Rev Mol Cell Biol, 12, 152-162.  
20233968 G.Pejler, E.Rönnberg, I.Waern, and S.Wernersson (2010).
Mast cell proteases: multifaceted regulators of inflammatory disease.
  Blood, 115, 4981-4990.  
20383634 J.M.Reimer, P.B.Samollow, and L.Hellman (2010).
High degree of conservation of the multigene tryptase locus over the past 150-200 million years of mammalian evolution.
  Immunogenetics, 62, 369-382.  
20615447 P.Goettig, V.Magdolen, and H.Brandstetter (2010).
Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs).
  Biochimie, 92, 1546-1567.  
19180666 E.Di Cera (2009).
Serine proteases.
  IUBMB Life, 61, 510-515.  
  19319847 G.Pejler, M.Abrink, and S.Wernersson (2009).
Serglycin proteoglycan: regulating the storage and activities of hematopoietic proteases.
  Biofactors, 35, 61-68.  
19388054 G.Spraggon, M.Hornsby, A.Shipway, D.C.Tully, B.Bursulaya, H.Danahay, J.L.Harris, and S.A.Lesley (2009).
Active site conformational changes of prostasin provide a new mechanism of protease regulation by divalent cations.
  Protein Sci, 18, 1081-1094.
PDB codes: 3e0n 3e1x 3fvf 3gyl 3gym
19748655 N.N.Trivedi, B.Tamraz, C.Chu, P.Y.Kwok, and G.H.Caughey (2009).
Human subjects are protected from mast cell tryptase deficiency despite frequent inheritance of loss-of-function mutations.
  J Allergy Clin Immunol, 124, 1099.  
18854315 N.E.Jackson, H.W.Wang, K.J.Bryant, H.P.McNeil, A.Husain, K.Liu, N.Tedla, P.S.Thomas, G.C.King, A.Hettiaratchi, J.Cairns, and J.E.Hunt (2008).
Alternate mRNA splicing in multiple human tryptase genes is predicted to regulate tetramer formation.
  J Biol Chem, 283, 34178-34187.  
18286181 S.Macedo-Ribeiro, C.Almeida, B.M.Calisto, T.Friedrich, R.Mentele, J.Stürzebecher, P.Fuentes-Prior, and P.J.Pereira (2008).
Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick.
  PLoS ONE, 3, e1624.
PDB code: 2ody
  18424754 Y.Fukuoka, H.Z.Xia, L.B.Sanchez-Muñoz, A.L.Dellinger, L.Escribano, and L.B.Schwartz (2008).
Generation of anaphylatoxins by human beta-tryptase from C3, C4, and C5.
  J Immunol, 180, 6307-6316.  
17504754 H.P.McNeil, R.Adachi, and R.L.Stevens (2007).
Mast cell-restricted tryptases: structure and function in inflammation and pathogen defense.
  J Biol Chem, 282, 20785-20789.  
17760836 K.A.Lindstedt, M.I.Mäyränpää, and P.T.Kovanen (2007).
Mast cells in vulnerable atherosclerotic plaques--a view to a kill.
  J Cell Mol Med, 11, 739-758.  
17342483 M.Gallwitz, M.Enoksson, and L.Hellman (2007).
Expression profile of novel members of the rat mast cell protease (rMCP)-2 and (rMCP)-8 families, and functional analyses of mouse mast cell protease (mMCP)-8.
  Immunogenetics, 59, 391-405.  
  17947681 N.N.Trivedi, Q.Tong, K.Raman, V.J.Bhagwandin, and G.H.Caughey (2007).
Mast cell alpha and beta tryptases changed rapidly during primate speciation and evolved from gamma-like transmembrane peptidases in ancestral vertebrates.
  J Immunol, 179, 6072-6079.  
17498058 R.L.Stevens, and R.Adachi (2007).
Protease-proteoglycan complexes of mouse and human mast cells and importance of their beta-tryptase-heparin complexes in inflammation and innate immunity.
  Immunol Rev, 217, 155-167.  
17456473 S.M.Thakurdas, E.Melicoff, L.Sansores-Garcia, D.C.Moreira, Y.Petrova, R.L.Stevens, and R.Adachi (2007).
The mast cell-restricted tryptase mMCP-6 has a critical immunoprotective role in bacterial infections.
  J Biol Chem, 282, 20809-20815.  
17509077 T.Hamuro, H.Kido, Y.Asada, K.Hatakeyama, Y.Okumura, Y.Kunori, T.Kamimura, S.Iwanaga, and S.Kamei (2007).
Tissue factor pathway inhibitor is highly susceptible to chymase-mediated proteolysis.
  FEBS J, 274, 3065-3077.  
18039527 Y.Fukuoka, and L.B.Schwartz (2007).
Active monomers of human beta-tryptase have expanded substrate specificities.
  Int Immunopharmacol, 7, 1900-1908.  
18516248 G.H.Caughey (2006).
A Pulmonary Perspective on GASPIDs: Granule-Associated Serine Peptidases of Immune Defense.
  Curr Respir Med Rev, 2, 263-277.  
16640553 J.Hallgren, and G.Pejler (2006).
Biology of mast cell tryptase. An inflammatory mediator.
  FEBS J, 273, 1871-1895.  
17014440 K.J.Dacre, S.M.McAleese, P.Knight, B.C.McGorum, and A.D.Pemberton (2006).
cDNA cloning and substrate specificity of equine tryptase, a possible mediator in equine heaves.
  Clin Exp Allergy, 36, 1303-1309.  
16353179 K.Kondo, M.Muramatsu, Y.Okamoto, D.Jin, S.Takai, N.Tanigawa, and M.Miyazaki (2006).
Expression of chymase-positive cells in gastric cancer and its correlation with the angiogenesis.
  J Surg Oncol, 93, 36.  
  16493076 Y.Fukuoka, and L.B.Schwartz (2006).
The B12 anti-tryptase monoclonal antibody disrupts the tetrameric structure of heparin-stabilized beta-tryptase to form monomers that are inactive at neutral pH and active at acidic pH.
  J Immunol, 176, 3165-3172.  
16260742 A.Bayés, M.Comellas-Bigler, M.Rodríguez de la Vega, K.Maskos, W.Bode, F.X.Aviles, M.A.Jongsma, J.Beekwilder, and J.Vendrell (2005).
Structural basis of the resistance of an insect carboxypeptidase to plant protease inhibitors.
  Proc Natl Acad Sci U S A, 102, 16602-16607.
PDB code: 2c1c
15607128 J.A.Cairns (2005).
Inhibitors of mast cell tryptase beta as therapeutics for the treatment of asthma and inflammatory disorders.
  Pulm Pharmacol Ther, 18, 55-66.  
15545266 L.Jin, P.Pandey, R.E.Babine, J.C.Gorga, K.J.Seidl, E.Gelfand, D.T.Weaver, S.S.Abdel-Meguid, and J.E.Strickler (2005).
Crystal structures of the FXIa catalytic domain in complex with ecotin mutants reveal substrate-like interactions.
  J Biol Chem, 280, 4704-4712.
PDB codes: 1xx9 1xxd 1xxf
15948975 M.Huttunen, and I.T.Harvima (2005).
Mast cell tryptase and chymase in chronic leg ulcers: chymase is potentially destructive to epithelium and is controlled by proteinase inhibitors.
  Br J Dermatol, 152, 1149-1160.  
16241939 M.J.Page, R.T.Macgillivray, and E.Di Cera (2005).
Determinants of specificity in coagulation proteases.
  J Thromb Haemost, 3, 2401-2408.  
15634276 N.M.O'Connell, R.E.Saunders, C.A.Lee, D.J.Perry, and S.J.Perkins (2005).
Structural interpretation of 42 mutations causing factor XI deficiency using homology modeling.
  J Thromb Haemost, 3, 127-138.  
15593113 N.Schaschke, D.Gabrijelcic-Geiger, A.Dominik, and C.P.Sommerhoff (2005).
Affinity chromatography of tryptases: design, synthesis and characterization of a novel matrix-bound bivalent inhibitor.
  Chembiochem, 6, 95.  
15701722 S.Yasuda, N.Morokawa, G.W.Wong, A.Rossi, M.S.Madhusudhan, A.Sali, Y.S.Askew, R.Adachi, G.A.Silverman, S.A.Krilis, and R.L.Stevens (2005).
Urokinase-type plasminogen activator is a preferred substrate of the human epithelium serine protease tryptase epsilon/PRSS22.
  Blood, 105, 3893-3901.  
15286733 D.C.Rees, M.Congreve, C.W.Murray, and R.Carr (2004).
Fragment-based lead discovery.
  Nat Rev Drug Discov, 3, 660-672.  
14583634 G.W.Wong, S.Yasuda, N.Morokawa, L.Li, and R.L.Stevens (2004).
Mouse chromosome 17A3.3 contains 13 genes that encode functional tryptic-like serine proteases with distinct tissue and cell expression patterns.
  J Biol Chem, 279, 2438-2452.  
15033978 M.A.Liz, C.J.Faro, M.J.Saraiva, and M.M.Sousa (2004).
Transthyretin, a new cryptic protease.
  J Biol Chem, 279, 21431-21438.  
15576318 T.Imamura, J.Potempa, and J.Travis (2004).
Activation of the kallikrein-kinin system and release of new kinins through alternative cleavage of kininogens by microbial and human cell proteinases.
  Biol Chem, 385, 989-996.  
12542700 A.Gambacurta, L.Fiorucci, P.Basili, F.Erba, A.Amoresano, and F.Ascoli (2003).
Bovine tryptases. cDNA cloning, tissue specific expression and characterization of the lung isoform.
  Eur J Biochem, 270, 507-517.  
14517908 A.Nayeem, S.Krystek, and T.Stouch (2003).
An assessment of protein-ligand binding site polarizability.
  Biopolymers, 70, 201-211.  
12554931 D.Turk, and G.Guncar (2003).
Lysosomal cysteine proteases (cathepsins): promising drug targets.
  Acta Crystallogr D Biol Crystallogr, 59, 203-213.  
12819769 J.K.Bell, D.H.Goetz, S.Mahrus, J.L.Harris, R.J.Fletterick, and C.S.Craik (2003).
The oligomeric structure of human granzyme A is a determinant of its extended substrate specificity.
  Nat Struct Biol, 10, 527-534.
PDB code: 1orf
12962630 J.R.Somoza, J.D.Ho, C.Luong, M.Ghate, P.A.Sprengeler, K.Mortara, W.D.Shrader, D.Sperandio, H.Chan, M.E.McGrath, and B.A.Katz (2003).
The structure of the extracellular region of human hepsin reveals a serine protease domain and a novel scavenger receptor cysteine-rich (SRCR) domain.
  Structure, 11, 1123-1131.
PDB code: 1p57
12675514 M.Sato, S.Yoshida, K.Iida, T.Tomozawa, H.Kido, and M.Yamashita (2003).
A novel influenza A virus activating enzyme from porcine lung: purification and characterization.
  Biol Chem, 384, 219-227.  
12605678 Q.Peng, A.R.McEuen, R.C.Benyon, and A.F.Walls (2003).
The heterogeneity of mast cell tryptase from human lung and skin.
  Eur J Biochem, 270, 270-283.  
14719803 T.Selwood, K.C.Elrod, and N.M.Schechter (2003).
Potent bivalent inhibition of human tryptase-beta by a synthetic inhibitor.
  Biol Chem, 384, 1605-1611.  
12441343 V.J.Bhagwandin, L.W.Hau, J.Mallen-St Clair, P.J.Wolters, and G.H.Caughey (2003).
Structure and activity of human pancreasin, a novel tryptic serine peptidase expressed primarily by the pancreas.
  J Biol Chem, 278, 3363-3371.  
  11906611 D.Scarpi, J.D.McBride, and R.J.Leatherbarrow (2002).
Inhibition of human beta-tryptase by Bowman-Birk inhibitor derived peptides.
  J Pept Res, 59, 90-93.  
12194977 G.W.Wong, P.S.Foster, S.Yasuda, J.C.Qi, S.Mahalingam, E.A.Mellor, G.Katsoulotos, L.Li, J.A.Boyce, S.A.Krilis, and R.L.Stevens (2002).
Biochemical and functional characterization of human transmembrane tryptase (TMT)/tryptase gamma. TMT is an exocytosed mast cell protease that induces airway hyperresponsiveness in vivo via an interleukin-13/interleukin-4 receptor alpha/signal transducer and activator of transcription (STAT) 6-dependent pathway.
  J Biol Chem, 277, 41906-41915.  
11985658 H.R.Miller, and A.D.Pemberton (2002).
Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut.
  Immunology, 105, 375-390.  
12364340 K.Soejima, M.Yuguchi, J.Mizuguchi, K.Tomokiyo, T.Nakashima, T.Nakagaki, and S.Iwanaga (2002).
The 99 and 170 loop-modified factor VIIa mutants show enhanced catalytic activity without tissue factor.
  J Biol Chem, 277, 49027-49035.  
11876641 T.Selwood, Z.M.Wang, D.R.McCaslin, and N.M.Schechter (2002).
Diverse stability and catalytic properties of human tryptase alpha and beta isoforms are mediated by residue differences at the S1 pocket.
  Biochemistry, 41, 3329-3340.  
11726493 D.Turk, V.Janjić, I.Stern, M.Podobnik, D.Lamba, S.W.Dahl, C.Lauritzen, J.Pedersen, V.Turk, and B.Turk (2001).
Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases.
  EMBO J, 20, 6570-6582.
PDB code: 1k3b
11172730 F.Erba, L.Fiorucci, S.Pascarella, E.Menegatti, P.Ascenzi, and F.Ascoli (2001).
Selective inhibition of human mast cell tryptase by gabexate mesylate, an antiproteinase drug.
  Biochem Pharmacol, 61, 271-276.  
11533057 J.Hallgren, D.Spillmann, and G.Pejler (2001).
Structural requirements and mechanism for heparin-induced activation of a recombinant mouse mast cell tryptase, mouse mast cell protease-6: formation of active tryptase monomers in the presence of low molecular weight heparin.
  J Biol Chem, 276, 42774-42781.  
11325588 N.Schaschke, G.Matschiner, F.Zettl, U.Marquardt, A.Bergner, W.Bode, C.P.Sommerhoff, and L.Moroder (2001).
Bivalent inhibition of human beta-tryptase.
  Chem Biol, 8, 313-327.  
11606310 S.J.Compton, B.Renaux, S.J.Wijesuriya, and M.D.Hollenberg (2001).
Glycosylation and the activation of proteinase-activated receptor 2 (PAR(2)) by human mast cell tryptase.
  Br J Pharmacol, 134, 705-718.  
10617625 C.Huang, G.Morales, A.Vagi, K.Chanasyk, M.Ferrazzi, C.Burklow, W.T.Qiu, E.Feyfant, A.Sali, and R.L.Stevens (2000).
Formation of enzymatically active, homotypic, and heterotypic tetramers of mouse mast cell tryptases. Dependence on a conserved Trp-rich domain on the surface.
  J Biol Chem, 275, 351-358.  
10940245 D.S.Goodsell, and A.J.Olson (2000).
Structural symmetry and protein function.
  Annu Rev Biophys Biomol Struct, 29, 105-153.  
11154069 F.Erba, L.Fiorucci, C.P.Sommerhoff, M.Coletta, and F.Ascoli (2000).
Kinetic and thermodynamic analysis of leech-derived tryptase inhibitor interaction with bovine tryptase and bovine trypsin.
  Biol Chem, 381, 1117-1122.  
10674718 G.Loidl, H.J.Musiol, M.Groll, R.Huber, and L.Moroder (2000).
Synthesis of bivalent inhibitors of eucaryotic proteasomes.
  J Pept Sci, 6, 36-46.  
10637221 H.Jing, Y.Xu, M.Carson, D.Moore, K.J.Macon, J.E.Volanakis, and S.V.Narayana (2000).
New structural motifs on the chymotrypsin fold and their potential roles in complement factor B.
  EMBO J, 19, 164-173.
PDB code: 1dle
11041873 J.Hallgren, U.Karlson, M.Poorafshar, L.Hellman, and G.Pejler (2000).
Mechanism for activation of mouse mast cell tryptase: dependence on heparin and acidic pH for formation of active tetramers of mouse mast cell protease 6.
  Biochemistry, 39, 13068-13077.  
10662694 J.Ottl, D.Gabriel, G.Murphy, V.Knäuper, Y.Tominaga, H.Nagase, M.Kröger, H.Tschesche, W.Bode, and L.Moroder (2000).
Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases.
  Chem Biol, 7, 119-132.  
10898108 M.Guida, M.Riedy, D.Lee, and J.Hall (2000).
Characterization of two highly polymorphic human tryptase loci and comparison with a newly discovered monkey tryptase ortholog.
  Pharmacogenetics, 10, 389-396.  
10824103 Y.Chen, M.Shiota, M.Ohuchi, T.Towatari, J.Tashiro, M.Murakami, M.Yano, B.Yang, and H.Kido (2000).
Mast cell tryptase from pig lungs triggers infection by pneumotropic Sendai and influenza A viruses. Purification and characterization.
  Eur J Biochem, 267, 3189-3197.  
10391906 C.Huang, L.Li, S.A.Krilis, K.Chanasyk, Y.Tang, Z.Li, J.E.Hunt, and R.L.Stevens (1999).
Human tryptases alpha and beta/II are functionally distinct due, in part, to a single amino acid difference in one of the surface loops that forms the substrate-binding cleft.
  J Biol Chem, 274, 19670-19676.  
10500112 C.P.Sommerhoff, W.Bode, P.J.Pereira, M.T.Stubbs, J.Stürzebecher, G.P.Piechottka, G.Matschiner, and A.Bergner (1999).
The structure of the human betaII-tryptase tetramer: fo(u)r better or worse.
  Proc Natl Acad Sci U S A, 96, 10984-10991.  
10318898 G.Loidl, M.Groll, H.J.Musiol, R.Huber, and L.Moroder (1999).
Bivalency as a principle for proteasome inhibition.
  Proc Natl Acad Sci U S A, 96, 5418-5422.  
10521469 G.W.Wong, Y.Tang, E.Feyfant, A.Sali, L.Li, Y.Li, C.Huang, D.S.Friend, S.A.Krilis, and R.L.Stevens (1999).
Identification of a new member of the tryptase family of mouse and human mast cell proteases which possesses a novel COOH-terminal hydrophobic extension.
  J Biol Chem, 274, 30784-30793.  
10102985 H.Czapinska, and J.Otlewski (1999).
Structural and energetic determinants of the S1-site specificity in serine proteases.
  Eur J Biochem, 260, 571-595.  
  9925826 I.Favre, and E.Moczydlowski (1999).
Simultaneous binding of basic peptides at intracellular sites on a large conductance Ca2+-activated K+ channel. Equilibrium and kinetic basis of negatively coupled ligand interactions.
  J Gen Physiol, 113, 295-320.  
10411878 L.E.Burgess, B.J.Newhouse, P.Ibrahim, J.Rizzi, M.A.Kashem, A.Hartman, B.J.Brandhuber, C.D.Wright, D.S.Thomson, G.P.Vigers, and K.Koch (1999).
Potent selective nonpeptidic inhibitors of human lung tryptase.
  Proc Natl Acad Sci U S A, 96, 8348-8352.  
10612586 S.Ono, S.Kuwahara, M.Takeuchi, H.Sakashita, Y.Naito, and T.Kondo (1999).
Syntheses and evaluation of amidinobenzofuran derivatives as tryptase inhibitors.
  Bioorg Med Chem Lett, 9, 3285-3290.  
10421830 S.T.Holgate, P.M.Lackie, D.E.Davies, W.R.Roche, and A.F.Walls (1999).
The bronchial epithelium as a key regulator of airway inflammation and remodelling in asthma.
  Clin Exp Allergy, 29, 90-95.  
9837892 A.Kozik, R.B.Moore, J.Potempa, T.Imamura, M.Rapala-Kozik, and J.Travis (1998).
A novel mechanism for bradykinin production at inflammatory sites. Diverse effects of a mixture of neutrophil elastase and mast cell tryptase versus tissue and plasma kallikreins on native and oxidized kininogens.
  J Biol Chem, 273, 33224-33229.  
9748324 T.Selwood, D.R.McCaslin, and N.M.Schechter (1998).
Spontaneous inactivation of human tryptase involves conformational changes consistent with conversion of the active site to a zymogen-like structure.
  Biochemistry, 37, 13174-13183.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer