spacer
spacer

PDBsum entry 1a0a

Go to PDB code: 
protein dna_rna Protein-protein interface(s) links
Transcription/DNA PDB id
1a0a

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
63 a.a. *
DNA/RNA
Waters ×80
* Residue conservation analysis
PDB id:
1a0a
Name: Transcription/DNA
Title: Phosphate system positive regulatory protein pho4/DNA complex
Structure: DNA (5'- d( Cp Tp Cp Ap Cp Ap Cp Gp Tp Gp Gp Gp Ap Cp Tp Ap G )-3'). Chain: c. Fragment: upstream activation site p2. Synonym: uasp2(17). Engineered: yes. DNA (5'- d( Cp Tp Ap Gp Tp Cp Cp Cp Ap Cp Gp Tp Gp Tp Gp Ap G )-3'). Chain: d.
Source: Synthetic: yes. Saccharomyces cerevisiae. Baker's yeast. Organism_taxid: 4932. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Biol. unit: Dimer (from PDB file)
Resolution:
2.80Å     R-factor:   0.230     R-free:   0.284
Authors: T.Shimizu,A.Toumoto,K.Ihara,M.Shimizu,Y.Kyogoku,N.Ogawa,Y.Oshima, T.Hakoshima
Key ref:
T.Shimizu et al. (1997). Crystal structure of PHO4 bHLH domain-DNA complex: flanking base recognition. EMBO J, 16, 4689-4697. PubMed id: 9303313 DOI: 10.1093/emboj/16.15.4689
Date:
27-Nov-97     Release date:   18-Mar-98    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P07270  (PHO4_YEAST) -  Phosphate system positive regulatory protein PHO4 from Saccharomyces cerevisiae (strain ATCC 204508 / S288c)
Seq:
Struc:
312 a.a.
63 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

DNA/RNA chains
  C-T-C-A-C-A-C-G-T-G-G-G-A-C-T-A-G 17 bases
  C-T-A-G-T-C-C-C-A-C-G-T-G-T-G-A-G 17 bases

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1093/emboj/16.15.4689 EMBO J 16:4689-4697 (1997)
PubMed id: 9303313  
 
 
Crystal structure of PHO4 bHLH domain-DNA complex: flanking base recognition.
T.Shimizu, A.Toumoto, K.Ihara, M.Shimizu, Y.Kyogoku, N.Ogawa, Y.Oshima, T.Hakoshima.
 
  ABSTRACT  
 
The crystal structure of a DNA-binding domain of PHO4 complexed with DNA at 2.8 A resolution revealed that the domain folds into a basic-helix-loop-helix (bHLH) motif with a long but compact loop that contains a short alpha-helical segment. This helical structure positions a tryptophan residue into an aromatic cluster so as to make the loop compact. PHO4 binds to DNA as a homodimer with direct reading of both the core E-box sequence CACGTG and its 3'-flanking bases. The 3'-flanking bases GG are recognized by Arg2 and His5. The residues involved in the E-box recognition are His5, Glu9 and Arg13, as already reported for bHLH/Zip proteins MAX and USF, and are different from those recognized by bHLH proteins MyoD and E47, although PHO4 is a bHLH protein.
 
  Selected figure(s)  
 
Figure 4.
Figure 4 Summary of contacts of PHO4 residues with DNA bases and phosphate groups. Schematic summary of the base and phosphate contacts made by each monomer. The DNA is represented as a cylindrical projection with phosphates indicated by circles. The E-box bases are stippled and recognized flanking bases are hatched. Base pair recognitions are indicated by bold-lined arrows, and phosphate recognitions by thin-lined arrows. The weak interaction is shown by dashed-lined arrows. All contacts are via side chains.
Figure 7.
Figure 7 Surroundings of the 5'-flanking base in PHO4 (green) and USF (white). A van der Waals contact shown by a dashed line was observed between the methyl group of the flanking thymine (at position 4L) and Val8 of USF. Glu3 (PHO4) and Ala3 (USF) are far from the 5'-flanking base in PHO4 and USF.
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: EMBO J (1997, 16, 4689-4697) copyright 1997.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21408617 C.Mao, C.R.Brown, J.Griesenbeck, and H.Boeger (2011).
Occlusion of regulatory sequences by promoter nucleosomes in vivo.
  PLoS One, 6, e17521.  
21321051 Y.Niu, P.Figueroa, and J.Browse (2011).
Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis.
  J Exp Bot, 62, 2143-2154.  
19767616 B.Contreras-Moreira (2010).
3D-footprint: a database for the structural analysis of protein-DNA complexes.
  Nucleic Acids Res, 38, D91-D97.  
20392822 L.Cormier, R.Barbey, and L.Kuras (2010).
Transcriptional plasticity through differential assembly of a multiprotein activation complex.
  Nucleic Acids Res, 38, 4998-5014.  
20699001 L.Zheng, Y.Ying, L.Wang, F.Wang, J.Whelan, and H.Shou (2010).
Identification of a novel iron regulated basic helix-loop-helix protein involved in Fe homeostasis in Oryza sativa.
  BMC Plant Biol, 10, 166.  
19940020 T.A.Lee, P.Jorgensen, A.L.Bognar, C.Peyraud, D.Thomas, and M.Tyers (2010).
Dissection of combinatorial control by the Met4 transcriptional complex.
  Mol Biol Cell, 21, 456-469.  
19574230 M.Ransom, S.K.Williams, M.L.Dechassa, C.Das, J.Linger, M.Adkins, C.Liu, B.Bartholomew, and J.K.Tyler (2009).
FACT and the proteasome promote promoter chromatin disassembly and transcriptional initiation.
  J Biol Chem, 284, 23461-23471.  
19841254 S.J.Maerkl, and S.R.Quake (2009).
Experimental determination of the evolvability of a transcription factor.
  Proc Natl Acad Sci U S A, 106, 18650-18655.  
19337660 S.Weidtkamp-Peters, S.Felekyan, A.Bleckmann, R.Simon, W.Becker, R.Kühnemuth, and C.A.Seidel (2009).
Multiparameter fluorescence image spectroscopy to study molecular interactions.
  Photochem Photobiol Sci, 8, 470-480.  
18355269 B.Ramírez-Zavala, and A.Domínguez (2008).
Evolution and phylogenetic relationships of APSES proteins from Hemiascomycetes.
  FEMS Yeast Res, 8, 511-519.  
18418379 F.H.Lam, D.J.Steger, and E.K.O'Shea (2008).
Chromatin decouples promoter threshold from dynamic range.
  Nature, 453, 246-250.  
18849996 H.D.Kim, and E.K.O'Shea (2008).
A quantitative model of transcription factor-activated gene expression.
  Nat Struct Mol Biol, 15, 1192-1198.  
18927627 R.B.Smit, R.Schnabel, and J.Gaudet (2008).
The HLH-6 transcription factor regulates C. elegans pharyngeal gland development and function.
  PLoS Genet, 4, e1000222.  
18214959 S.Saito, T.Yokoyama, T.Aizawa, K.Kawaguchi, T.Yamaki, D.Matsumoto, T.Kamijima, M.Kamiya, Y.Kumaki, M.Mizuguchi, S.Takiya, M.Demura, and K.Kawano (2008).
Structural properties of the DNA-bound form of a novel tandem repeat DNA-binding domain, STPR.
  Proteins, 72, 414-426.  
17971452 J.Hernandez, L.Matter-Sadzinski, D.Skowronska-Krawczyk, F.Chiodini, C.Alliod, M.Ballivet, and J.M.Matter (2007).
Highly conserved sequences mediate the dynamic interplay of basic helix-loop-helix proteins regulating retinogenesis.
  J Biol Chem, 282, 37894-37905.  
18021424 J.Li, Z.Liu, Y.Pan, Q.Liu, X.Fu, N.G.Cooper, Y.Li, M.Qiu, and T.Shi (2007).
Regulatory Module Network of bHLH Transcription Factors in Mouse Brain.
  Genome Biol, 8, R244.  
17691100 L.J.Pillitteri, and K.U.Torii (2007).
Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development.
  Bioessays, 29, 861-870.  
17351075 M.Chen, and J.M.Lopes (2007).
Multiple basic helix-loop-helix proteins regulate expression of the ENO1 gene of Saccharomyces cerevisiae.
  Eukaryot Cell, 6, 786-796.  
17420955 M.J.Kim, J.K.Kim, J.S.Shin, and M.C.Suh (2007).
The SebHLH transcription factor mediates trans-activation of the SeFAD2 gene promoter through binding to E- and G-box elements.
  Plant Mol Biol, 64, 453-466.  
17218526 S.J.Maerkl, and S.R.Quake (2007).
A systems approach to measuring the binding energy landscapes of transcription factors.
  Science, 315, 233-237.  
17646310 S.Mahony, P.E.Auron, and P.V.Benos (2007).
Inferring protein-DNA dependencies using motif alignments and mutual information.
  Bioinformatics, 23, i297-i304.  
16973898 R.J.McDonald, J.D.Kahn, and L.J.Maher (2006).
DNA bending by bHLH charge variants.
  Nucleic Acids Res, 34, 4846-4856.  
  19455213 Z.Wang, and W.R.Atchley (2006).
Spectral Analysis of Sequence Variability in Basic-Helix-loop-helix (bHLH) Protein Domains.
  Evol Bioinform Online, 2, 213-222.  
16260616 D.Skowronska-Krawczyk, L.Matter-Sadzinski, M.Ballivet, and J.M.Matter (2005).
The basic domain of ATH5 mediates neuron-specific promoter activity during retina development.
  Mol Cell Biol, 25, 10029-10039.  
15356290 H.P.Shanahan, M.A.Garcia, S.Jones, and J.M.Thornton (2004).
Identifying DNA-binding proteins using structural motifs and the electrostatic potential.
  Nucleic Acids Res, 32, 4732-4741.  
15190133 K.Kinoshita, Y.Kikuchi, Y.Sasakura, M.Suzuki, Y.Fujii-Kuriyama, and K.Sogawa (2004).
Altered DNA binding specificity of Arnt by selection of partner bHLH-PAS proteins.
  Nucleic Acids Res, 32, 3169-3179.  
15485919 L.M.Powell, P.I.Zur Lage, D.R.Prentice, B.Senthinathan, and A.P.Jarman (2004).
The proneural proteins Atonal and Scute regulate neural target genes through different E-box binding sites.
  Mol Cell Biol, 24, 9517-9526.  
15186484 S.Jones (2004).
An overview of the basic helix-loop-helix proteins.
  Genome Biol, 5, 226.  
12820972 H.Reinke, and W.Hörz (2003).
Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter.
  Mol Cell, 11, 1599-1607.  
12514181 R.Ciarapica, J.Rosati, G.Cesareni, and S.Nasi (2003).
Molecular recognition in helix-loop-helix and helix-loop-helix-leucine zipper domains. Design of repertoires and selection of high affinity ligands for natural proteins.
  J Biol Chem, 278, 12182-12190.  
11967834 L.Mariño-Ramírez, and J.C.Hu (2002).
Isolation and mapping of self-assembling protein domains encoded by the Saccharomyces cerevisiae genome using lambda repressor fusions.
  Yeast, 19, 641-650.  
10722753 F.Then Bergh, E.M.Flinn, J.Svaren, A.P.Wright, and W.Hörz (2000).
Comparison of nucleosome remodeling by the yeast transcription factor Pho4 and the glucocorticoid receptor.
  J Biol Chem, 275, 9035-9042.  
10797009 J.F.Martínez-García, E.Huq, and P.H.Quail (2000).
Direct targeting of light signals to a promoter element-bound transcription factor.
  Science, 288, 859-863.  
  11206057 J.W.Cave, W.Kremer, and D.E.Wemmer (2000).
Backbone dynamics of sequence specific recognition and binding by the yeast Pho4 bHLH domain probed by NMR.
  Protein Sci, 9, 2354-2365.  
11071933 K.A.Robinson, J.I.Koepke, M.Kharodawala, and J.M.Lopes (2000).
A network of yeast basic helix-loop-helix interactions.
  Nucleic Acids Res, 28, 4460-4466.  
10710415 K.A.Robinson, and J.M.Lopes (2000).
SURVEY AND SUMMARY: Saccharomyces cerevisiae basic helix-loop-helix proteins regulate diverse biological processes.
  Nucleic Acids Res, 28, 1499-1505.  
10725404 K.R.Wollenberg, and W.R.Atchley (2000).
Separation of phylogenetic and functional associations in biological sequences by using the parametric bootstrap.
  Proc Natl Acad Sci U S A, 97, 3288-3291.  
11070082 P.Hemmerich, T.Stoyan, G.Wieland, M.Koch, J.Lechner, and S.Diekmann (2000).
Interaction of yeast kinetochore proteins with centromere-protein/transcription factor Cbf1.
  Proc Natl Acad Sci U S A, 97, 12583-12588.  
10594029 T.Kophengnavong, J.E.Michnowicz, and T.K.Blackwell (2000).
Establishment of distinct MyoD, E2A, and twist DNA binding specificities by different basic region-DNA conformations.
  Mol Cell Biol, 20, 261-272.  
10593926 A.N.Billin, A.L.Eilers, C.Queva, and D.E.Ayer (1999).
Mlx, a novel Max-like BHLHZip protein that interacts with the Max network of transcription factors.
  J Biol Chem, 274, 36344-36350.  
  10373509 B.H.Jennings, D.M.Tyler, and S.J.Bray (1999).
Target specificities of Drosophila enhancer of split basic helix-loop-helix proteins.
  Mol Cell Biol, 19, 4600-4610.  
10454619 H.I.Swanson, and J.H.Yang (1999).
Specificity of DNA binding of the c-Myc/Max and ARNT/ARNT dimers at the CACGTG recognition site.
  Nucleic Acids Res, 27, 3205-3212.  
9565685 A.J.Walhout, P.C.van der Vliet, and H.T.Timmers (1998).
Sequences flanking the E-box contribute to cooperative binding by c-Myc/Max heterodimers to adjacent binding sites.
  Biochim Biophys Acta, 1397, 189-201.  
9634703 A.Párraga, L.Bellsolell, A.R.Ferré-D'Amaré, and S.K.Burley (1998).
Co-crystal structure of sterol regulatory element binding protein 1a at 2.3 A resolution.
  Structure, 6, 661-672.
PDB code: 1am9
9544531 Y.Oshima (1997).
The phosphatase system in Saccharomyces cerevisiae.
  Genes Genet Syst, 72, 323-334.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer