spacer
spacer

PDBsum entry 1qk3

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Transferase PDB id
1qk3

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
228 a.a. *
213 a.a. *
Ligands
5GP ×4
Waters ×645
* Residue conservation analysis
PDB id:
1qk3
Name: Transferase
Title: Toxoplasma gondii hypoxanthine-guanine phosphoribosyltransferase gmp complex
Structure: Hypoxanthine-guanine phosphoribosyltransferase. Chain: a, b, c, d. Synonym: hgprtase. Engineered: yes
Source: Toxoplasma gondii. Organism_taxid: 383379. Strain: rh. Expressed in: escherichia coli. Expression_system_taxid: 469008.
Biol. unit: Tetramer (from PQS)
Resolution:
1.65Å     R-factor:   0.202     R-free:   0.231
Authors: A.Heroux,E.L.White,L.J.Ross,D.W.Borhani
Key ref:
A.Héroux et al. (1999). Crystal structures of the Toxoplasma gondii hypoxanthine-guanine phosphoribosyltransferase-GMP and -IMP complexes: comparison of purine binding interactions with the XMP complex. Biochemistry, 38, 14485-14494. PubMed id: 10545170 DOI: 10.1021/bi990507q
Date:
09-Jul-99     Release date:   17-Oct-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q26997  (HGXR_TOXGO) -  Hypoxanthine-guanine-xanthine phosphoribosyltransferase from Toxoplasma gondii
Seq:
Struc:
230 a.a.
228 a.a.
Protein chain
Pfam   ArchSchema ?
Q26997  (HGXR_TOXGO) -  Hypoxanthine-guanine-xanthine phosphoribosyltransferase from Toxoplasma gondii
Seq:
Struc:
230 a.a.
213 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 2: Chains A, B, C, D: E.C.2.4.2.22  - xanthine phosphoribosyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: XMP + diphosphate = xanthine + 5-phospho-alpha-D-ribose 1-diphosphate
XMP
+
diphosphate
Bound ligand (Het Group name = 5GP)
matches with 92.00% similarity
= xanthine
+ 5-phospho-alpha-D-ribose 1-diphosphate
   Enzyme class 3: Chains A, B, C, D: E.C.2.4.2.8  - hypoxanthine phosphoribosyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: IMP + diphosphate = hypoxanthine + 5-phospho-alpha-D-ribose 1-diphosphate
IMP
+
diphosphate
Bound ligand (Het Group name = 5GP)
matches with 95.83% similarity
= hypoxanthine
+ 5-phospho-alpha-D-ribose 1-diphosphate
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/bi990507q Biochemistry 38:14485-14494 (1999)
PubMed id: 10545170  
 
 
Crystal structures of the Toxoplasma gondii hypoxanthine-guanine phosphoribosyltransferase-GMP and -IMP complexes: comparison of purine binding interactions with the XMP complex.
A.Héroux, E.L.White, L.J.Ross, D.W.Borhani.
 
  ABSTRACT  
 
The crystal structures of the guanosine 5'-monophosphate (GMP) and inosine 5'-monophosphate (IMP) complexes of Toxoplasma gondii hypoxanthine-guanine phosphoribosyltransferase (HGPRT) have been determined at 1.65 and 1.90 A resolution. These complexes, which crystallize in space groups P2(1) (a = 65.45 A, b = 90.84 A, c = 80. 26 A, and beta = 92.53 degrees ) and P2(1)2(1)2(1) (a = 84.54 A, b = 102.44 A, and c = 108.83 A), each comprise a tetramer in the crystallographic asymmetric unit. All active sites in the tetramers are fully occupied by the nucleotide. Comparison of these structures with that of the xanthosine 5'-monophosphate (XMP)-pyrophosphate-Mg(2+) ternary complex reported in the following article [Héroux, A., et al. (1999) Biochemistry 38, 14495-14506] shows how T. gondii HGPRT is able to recognize guanine, hypoxanthine, and xanthine as substrates, and suggests why the human enzyme cannot use xanthine efficiently. Comparison with the apoenzyme reveals the structural changes that occur upon binding of purines and ribose 5'-phosphate to HGPRT. Two structural features important to the HGPRT mechanism, a previously unrecognized active site loop (loop III', residues 180-184) and an active site peptide bond (Leu78-Lys79) that adopts both the cis and the trans configurations, are presented.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20170081 H.Deng, R.Callender, V.L.Schramm, and C.Grubmeyer (2010).
Pyrophosphate activation in hypoxanthine--guanine phosphoribosyltransferase with transition state analogue.
  Biochemistry, 49, 2705-2714.  
18536021 P.Gayathri, I.N.Sujay Subbayya, C.S.Ashok, T.S.Selvi, H.Balaram, and M.R.Murthy (2008).
Crystal structure of a chimera of human and Plasmodium falciparum hypoxanthine guanine phosphoribosyltransferases provides insights into oligomerization.
  Proteins, 73, 1010-1020.
PDB code: 2vfa
17894860 P.S.Monzani, S.Trapani, O.H.Thiemann, and G.Oliva (2007).
Crystal structure of Leishmania tarentolae hypoxanthine-guanine phosphoribosyltransferase.
  BMC Struct Biol, 7, 59.
PDB code: 1pzm
15819884 J.Raman, C.S.Ashok, S.I.Subbayya, R.P.Anand, S.T.Selvi, and H.Balaram (2005).
Plasmodium falciparum hypoxanthine guanine phosphoribosyltransferase. Stability studies on the product-activated enzyme.
  FEBS J, 272, 1900-1911.  
15814612 K.Chaudhary, R.G.Donald, M.Nishi, D.Carter, B.Ullman, and D.S.Roos (2005).
Differential localization of alternatively spliced hypoxanthine-xanthine-guanine phosphoribosyltransferase isoforms in Toxoplasma gondii.
  J Biol Chem, 280, 22053-22059.  
15146465 J.Duan, L.Nilsson, and B.Lambert (2004).
Structural and functional analysis of mutations at the human hypoxanthine phosphoribosyl transferase (HPRT1) locus.
  Hum Mutat, 23, 599-611.  
15262968 R.V.Dumitru, and S.W.Ragsdale (2004).
Mechanism of 4-(beta-D-ribofuranosyl)aminobenzene 5'-phosphate synthase, a key enzyme in the methanopterin biosynthetic pathway.
  J Biol Chem, 279, 39389-39395.  
14501139 D.You, Q.Chen, Y.Liang, J.An, R.Li, X.Gu, M.Luo, and X.D.Su (2003).
Protein preparation, crystallization and preliminary X-ray crystallographic studies of a thermostable hypoxanthine-guanine phosphoribosyltransferase from Thermoanaerobacter tengcongensis.
  Acta Crystallogr D Biol Crystallogr, 59, 1863-1865.  
11900545 C.Bashor, J.M.Denu, R.G.Brennan, and B.Ullman (2002).
Kinetic mechanism of adenine phosphoribosyltransferase from Leishmania donovani.
  Biochemistry, 41, 4020-4031.  
11502531 A.M.Aronov, N.R.Munagala, I.D.Kuntz, and C.C.Wang (2001).
Virtual screening of combinatorial libraries across a gene family: in search of inhibitors of Giardia lamblia guanine phosphoribosyltransferase.
  Antimicrob Agents Chemother, 45, 2571-2576.  
11284686 N.Munagala, V.J.Basus, and C.C.Wang (2001).
Role of the flexible loop of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus in enzyme catalysis.
  Biochemistry, 40, 4303-4311.  
11188695 A.Héroux, E.L.White, L.J.Ross, A.P.Kuzin, and D.W.Borhani (2000).
Substrate deformation in a hypoxanthine-guanine phosphoribosyltransferase ternary complex: the structural basis for catalysis.
  Structure, 8, 1309-1318.
PDB code: 1fsg
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer