4iza Citations

Structure of ERK2 bound to PEA-15 reveals a mechanism for rapid release of activated MAPK.

OpenAccess logo Nat Commun 4 1681 (2013)
Related entries: 4iz5, 4iz7

Cited: 49 times
EuropePMC logo PMID: 23575685

Abstract

ERK1/2 kinases are the principal effectors of a central signalling cascade that converts extracellular stimuli into cell proliferation and migration responses and, when deregulated, can promote cell oncogenic transformation. The scaffolding protein PEA-15 is a death effector domain protein that directly interacts with ERK1/2 and affects ERK1/2 subcellular localization and phosphorylation. Here, to understand this ERK1/2 signalling complex, we have solved the crystal structures of PEA-15 bound to three different ERK2 phospho-conformers. The structures reveal that PEA-15 uses a bipartite binding mode, occupying two key docking sites of ERK2. Remarkably, PEA-15 can efficiently bind the ERK2 activation loop in the critical Thr-X-Tyr region in different phosphorylation states. PEA-15 binding triggers an extended allosteric conduit in dually phosphorylated ERK2, disrupting key features of active ERK2. At the same time PEA-15 binding protects ERK2 from dephosphorylation, thus setting the stage for immediate ERK activity upon its release from the PEA-15 inhibitory complex.

Reviews - 4iza mentioned but not cited (1)

  1. Molecular basis of MAP kinase regulation. Peti W, Page R. Protein Sci. 22 1698-1710 (2013)

Articles - 4iza mentioned but not cited (4)

  1. Structure of ERK2 bound to PEA-15 reveals a mechanism for rapid release of activated MAPK. Mace PD, Wallez Y, Egger MF, Dobaczewska MK, Robinson H, Pasquale EB, Riedl SJ. Nat Commun 4 1681 (2013)
  2. OGlcNAcylation and phosphorylation have similar structural effects in α-helices: post-translational modifications as inducible start and stop signals in α-helices, with greater structural effects on threonine modification. Elbaum MB, Zondlo NJ. Biochemistry 53 2242-2260 (2014)
  3. Topological and system-level protein interaction network (PIN) analyses to deduce molecular mechanism of curcumin. Dhasmana A, Uniyal S, Anukriti, Kashyap VK, Somvanshi P, Gupta M, Bhardwaj U, Jaggi M, Yallapu MM, Haque S, Chauhan SC. Sci Rep 10 12045 (2020)
  4. Substantial conformational change mediated by charge-triad residues of the death effector domain in protein-protein interactions. Twomey EC, Cordasco DF, Kozuch SD, Wei Y. PLoS ONE 8 e83421 (2013)


Reviews citing this publication (14)

  1. Phosphoprotein enriched in astrocytes (PEA)-15: a potential therapeutic target in multiple disease states. Greig FH, Nixon GF. Pharmacol. Ther. 143 265-274 (2014)
  2. On the Quest of Cellular Functions of PEA-15 and the Therapeutic Opportunities. Wei Y. Pharmaceuticals (Basel) 8 455-473 (2015)
  3. Guidelines for the successful generation of protein-ligand complex crystals. Müller I. Acta Crystallogr D Struct Biol 73 79-92 (2017)
  4. Tandem DEDs and CARDs suggest novel mechanisms of signaling complex assembly. Lo YC, Lin SC, Yang CY, Tung JY. Apoptosis 20 124-135 (2015)
  5. Mycobacterium tuberculosis Uses Mce Proteins to Interfere With Host Cell Signaling. Fenn K, Wong CT, Darbari VC. Front Mol Biosci 6 149 (2019)
  6. Thioredoxin promotes survival signaling events under nitrosative/oxidative stress associated with cancer development. Monteiro HP, Ogata FT, Stern A. Biomed J 40 189-199 (2017)
  7. ERK signalling: a master regulator of cell behaviour, life and fate. Lavoie H, Gagnon J, Therrien M. Nat Rev Mol Cell Biol 21 607-632 (2020)
  8. Targetting PED/PEA-15 for diabetes treatment. Fiory F, Spinelli R, Raciti GA, Parrillo L, D'esposito V, Formisano P, Miele C, Beguinot F. Expert Opin. Ther. Targets 21 571-581 (2017)
  9. Regulators of the RAS-ERK pathway as therapeutic targets in thyroid cancer. Zaballos MA, Acuña-Ruiz A, Morante M, Crespo P, Santisteban P. Endocr Relat Cancer 26 R319-R344 (2019)
  10. Targeting ERK beyond the boundaries of the kinase active site in melanoma. Sammons RM, Ghose R, Tsai KY, Dalby KN. Mol Carcinog 58 1551-1570 (2019)
  11. Extracellular-Signal Regulated Kinase: A Central Molecule Driving Epithelial-Mesenchymal Transition in Cancer. Olea-Flores M, Zuñiga-Eulogio MD, Mendoza-Catalán MA, Rodríguez-Ruiz HA, Castañeda-Saucedo E, Ortuño-Pineda C, Padilla-Benavides T, Navarro-Tito N. Int J Mol Sci 20 (2019)
  12. Mechanisms shaping the role of ERK1/2 in cellular senescence (Review). Zou J, Lei T, Guo P, Yu J, Xu Q, Luo Y, Ke R, Huang D. Mol Med Rep 19 759-770 (2019)
  13. Navigating the ERK1/2 MAPK Cascade. Martin-Vega A, Cobb MH. Biomolecules 13 1555 (2023)
  14. Not your Mother's MAPKs: Apicomplexan MAPK function in daughter cell budding. O'Shaughnessy WJ, Dewangan PS, Paiz EA, Reese ML. PLoS Pathog 18 e1010849 (2022)

Articles citing this publication (30)

  1. OCT1 is a determinant of synbindin-related ERK signalling with independent prognostic significance in gastric cancer. Qian J, Kong X, Deng N, Tan P, Chen H, Wang J, Li Z, Hu Y, Zou W, Xu J, Fang JY. Gut 64 37-48 (2015)
  2. Characterization of Neuronal Tau Protein as a Target of Extracellular Signal-regulated Kinase. Qi H, Prabakaran S, Cantrelle FX, Chambraud B, Gunawardena J, Lippens G, Landrieu I. J. Biol. Chem. 291 7742-7753 (2016)
  3. The human Na(+)/H(+) exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2. Hendus-Altenburger R, Pedraz-Cuesta E, Olesen CW, Papaleo E, Schnell JA, Hopper JT, Robinson CV, Pedersen SF, Kragelund BB. BMC Biol. 14 31 (2016)
  4. Mapping the binding interface of ERK and transcriptional repressor Capicua using photocrosslinking. Futran AS, Kyin S, Shvartsman SY, Link AJ. Proc. Natl. Acad. Sci. U.S.A. 112 8590-8595 (2015)
  5. FADD adaptor and PEA-15/ERK1/2 partners in major depression and schizophrenia postmortem brains: basal contents and effects of psychotropic treatments. García-Fuster MJ, Díez-Alarcia R, Ferrer-Alcón M, La Harpe R, Meana JJ, García-Sevilla JA. Neuroscience 277 541-551 (2014)
  6. Tumor-suppressor NFκB2 p100 interacts with ERK2 and stabilizes PTEN mRNA via inhibition of miR-494. Wang Y, Xu J, Gao G, Li J, Huang H, Jin H, Zhu J, Che X, Huang C. Oncogene 35 4080-4090 (2016)
  7. Association of the breast cancer antiestrogen resistance protein 1 (BCAR1) and BCAR3 scaffolding proteins in cell signaling and antiestrogen resistance. Wallez Y, Riedl SJ, Pasquale EB. J. Biol. Chem. 289 10431-10444 (2014)
  8. Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases. Zeke A, Bastys T, Alexa A, Garai Á, Mészáros B, Kirsch K, Dosztányi Z, Kalinina OV, Reményi A. Mol. Syst. Biol. 11 837 (2015)
  9. Defined spatiotemporal features of RAS-ERK signals dictate cell fate in MCF-7 mammary epithelial cells. Herrero A, Casar B, Colón-Bolea P, Agudo-Ibáñez L, Crespo P. Mol. Biol. Cell 27 1958-1968 (2016)
  10. PEA-15 facilitates EGFR dephosphorylation via ERK sequestration at increased ER-PM contacts in TNBC cells. Shin M, Lee KE, Yang EG, Jeon H, Song HK. FEBS Lett. 589 1033-1039 (2015)
  11. Structural and Dynamic Features of F-recruitment Site Driven Substrate Phosphorylation by ERK2. Piserchio A, Ramakrishan V, Wang H, Kaoud TS, Arshava B, Dutta K, Dalby KN, Ghose R. Sci Rep 5 11127 (2015)
  12. Structural basis for the regulation of the mitogen-activated protein (MAP) kinase p38α by the dual specificity phosphatase 16 MAP kinase binding domain in solution. Kumar GS, Zettl H, Page R, Peti W. J. Biol. Chem. 288 28347-28356 (2013)
  13. ZNF703 promotes tumor progression in ovarian cancer by interacting with HE4 and epigenetically regulating PEA15. Wang S, Wang C, Hu Y, Li X, Jin S, Liu O, Gou R, Zhuang Y, Guo Q, Nie X, Zhu L, Liu J, Lin B. J Exp Clin Cancer Res 39 264 (2020)
  14. Chronic Cerebral Hypoperfusion Induced Synaptic Proteome Changes in the rat Cerebral Cortex. Völgyi K, Gulyássy P, Todorov MI, Puska G, Badics K, Hlatky D, Kékesi KA, Nyitrai G, Czurkó A, Drahos L, Dobolyi A. Mol. Neurobiol. 55 4253-4266 (2018)
  15. Next-Generation CDK2/9 Inhibitors and Anaphase Catastrophe in Lung Cancer. Kawakami M, Mustachio LM, Rodriguez-Canales J, Mino B, Roszik J, Tong P, Wang J, Lee JJ, Myung JH, Heymach JV, Johnson FM, Hong S, Zheng L, Hu S, Villalobos PA, Behrens C, Wistuba I, Freemantle S, Liu X, Dmitrovsky E. J. Natl. Cancer Inst. 109 (2017)
  16. Absence of the Adaptor Protein PEA-15 Is Associated with Altered Pattern of Th Cytokines Production by Activated CD4+ T Lymphocytes In Vitro, and Defective Red Blood Cell Alloimmune Response In Vivo. Kerbrat S, Vingert B, Junier MP, Castellano F, Renault-Mihara F, Dos Reis Tavares S, Surenaud M, Noizat-Pirenne F, Boczkowski J, Guellaën G, Chneiweiss H, Le Gouvello S. PLoS ONE 10 e0136885 (2015)
  17. Local destabilization, rigid body, and fuzzy docking facilitate the phosphorylation of the transcription factor Ets-1 by the mitogen-activated protein kinase ERK2. Piserchio A, Warthaka M, Kaoud TS, Callaway K, Dalby KN, Ghose R. Proc. Natl. Acad. Sci. U.S.A. 114 E6287-E6296 (2017)
  18. Activation Loop Plasticity and Active Site Coupling in the MAP Kinase, ERK2. Pegram L, Riccardi D, Ahn N. J Mol Biol 435 168309 (2023)
  19. Circadian expression and functional characterization of PEA-15 within the mouse suprachiasmatic nucleus. Wheaton K, Aten S, Queiroz LS, Sullivan K, Oberdick J, Hoyt KR, Obrietan K. Eur. J. Neurosci. 47 845-857 (2018)
  20. Structure-Guided Strategy for the Development of Potent Bivalent ERK Inhibitors. Lechtenberg BC, Mace PD, Sessions EH, Williamson R, Stalder R, Wallez Y, Roth GP, Riedl SJ, Pasquale EB. ACS Med Chem Lett 8 726-731 (2017)
  21. Ancient MAPK ERK7 is regulated by an unusual inhibitory scaffold required for Toxoplasma apical complex biogenesis. Back PS, O'Shaughnessy WJ, Moon AS, Dewangan PS, Hu X, Sha J, Wohlschlegel JA, Bradley PJ, Reese ML. Proc Natl Acad Sci U S A 117 12164-12173 (2020)
  22. Engineering and cytosolic delivery of a native regulatory protein and its variants for modulation of ERK2 signaling pathway. Ryou JH, Sohn YK, Kim DG, Kyeong HH, Kim HS. Biotechnol. Bioeng. 115 839-849 (2018)
  23. Hydrogen peroxide-dependent oxidation of ERK2 within its D-recruitment site alters its substrate selection. Postiglione AE, Adams LL, Ekhator ES, Odelade AE, Patwardhan S, Chaudhari M, Pardue AS, Kumari A, LeFever WA, Tornow OP, Kaoud TS, Neiswinger J, Jeong JS, Parsonage D, Nelson KJ, Kc DB, Furdui CM, Zhu H, Wommack AJ, Dalby KN, Dong M, Poole LB, Keyes JD, Newman RH. iScience 26 107817 (2023)
  24. Interfering PLD1-PED/PEA15 interaction using self-inhibitory peptides: An in silico study to discover novel therapeutic candidates against type 2 diabetes. Baig MH, Kausar MA, Husain FM, Shakil S, Ahmad I, Yadav BS, Saeed M. Saudi J Biol Sci 26 160-164 (2019)
  25. PEA-15 C-Terminal Tail Allosterically Modulates Death-Effector Domain Conformation and Facilitates Protein-Protein Interactions. Crespo-Flores SL, Cabezas A, Hassan S, Wei Y. Int J Mol Sci 20 (2019)
  26. PEA-15 engages in allosteric interactions using a common scaffold in a phosphorylation-dependent manner. Ikedife J, He J, Wei Y. Sci Rep 12 116 (2022)
  27. PEA15 loss of function and defective cerebral development in the domestic cat. Graff EC, Cochran JN, Kaelin CB, Day K, Gray-Edwards HL, Watanabe R, Koehler JW, Falgoust RA, Prokop JW, Myers RM, Cox NR, Barsh GS, Martin DR, 99 Lives Consortium. PLoS Genet 16 e1008671 (2020)
  28. PEA15 promotes liver metastasis of colorectal cancer by upregulating the ERK/MAPK signaling pathway. Tang B, Liang W, Liao Y, Li Z, Wang Y, Yan C. Oncol. Rep. 41 43-56 (2019)
  29. Phosphorylation of PED/PEA-15 at Ser116 and phosphorylation of p27 at Thr187 indicates a poor prognosis in hepatocellular carcinoma. Wu Y, Li X, Chen M, Liu Z, Zhang X, Zheng S, Xu X. Oncol Lett 21 177 (2021)
  30. Properties that rank protein:protein docking poses with high accuracy. Simões ICM, Coimbra JTS, Neves RPP, Costa IPD, Ramos MJ, Fernandes PA. Phys Chem Chem Phys 20 20927-20942 (2018)