4gek Citations

Structure-guided discovery of the metabolite carboxy-SAM that modulates tRNA function.

Abstract

The identification of novel metabolites and the characterization of their biological functions are major challenges in biology. X-ray crystallography can reveal unanticipated ligands that persist through purification and crystallization. These adventitious protein-ligand complexes provide insights into new activities, pathways and regulatory mechanisms. We describe a new metabolite, carboxy-S-adenosyl-l-methionine (Cx-SAM), its biosynthetic pathway and its role in transfer RNA modification. The structure of CmoA, a member of the SAM-dependent methyltransferase superfamily, revealed a ligand consistent with Cx-SAM in the catalytic site. Mechanistic analyses showed an unprecedented role for prephenate as the carboxyl donor and the involvement of a unique ylide intermediate as the carboxyl acceptor in the CmoA-mediated conversion of SAM to Cx-SAM. A second member of the SAM-dependent methyltransferase superfamily, CmoB, recognizes Cx-SAM and acts as a carboxymethyltransferase to convert 5-hydroxyuridine into 5-oxyacetyl uridine at the wobble position of multiple tRNAs in Gram-negative bacteria, resulting in expanded codon-recognition properties. CmoA and CmoB represent the first documented synthase and transferase for Cx-SAM. These findings reveal new functional diversity in the SAM-dependent methyltransferase superfamily and expand the metabolic and biological contributions of SAM-based biochemistry. These discoveries highlight the value of structural genomics approaches in identifying ligands within the context of their physiologically relevant macromolecular binding partners, and in revealing their functions.

Reviews - 4gek mentioned but not cited (1)

  1. S-Adenosylmethionine: more than just a methyl donor. Lee YH, Ren D, Jeon B, Liu HW. Nat Prod Rep 40 1521-1549 (2023)

Articles - 4gek mentioned but not cited (5)

  1. Structure-guided discovery of the metabolite carboxy-SAM that modulates tRNA function. Kim J, Xiao H, Bonanno JB, Kalyanaraman C, Brown S, Tang X, Al-Obaidi NF, Patskovsky Y, Babbitt PC, Jacobson MP, Lee YS, Almo SC. Nature 498 123-126 (2013)
  2. S-Adenosyl-S-carboxymethyl-L-homocysteine: a novel cofactor found in the putative tRNA-modifying enzyme CmoA. Byrne RT, Whelan F, Aller P, Bird LE, Dowle A, Lobley CM, Reddivari Y, Nettleship JE, Owens RJ, Antson AA, Waterman DG. Acta Crystallogr D Biol Crystallogr 69 1090-1098 (2013)
  3. Engineering Orthogonal Methyltransferases to Create Alternative Bioalkylation Pathways. Herbert AJ, Shepherd SA, Cronin VA, Bennett MR, Sung R, Micklefield J. Angew Chem Int Ed Engl 59 14950-14956 (2020)
  4. Structural insights into the catalytic mechanism of Synechocystis magnesium protoporphyrin IX O-methyltransferase (ChlM). Chen X, Wang X, Feng J, Chen Y, Fang Y, Zhao S, Zhao A, Zhang M, Liu L. J Biol Chem 289 25690-25698 (2014)
  5. Crystal Structure and Catalytic Mechanism of CouO, a Versatile C-Methyltransferase from Streptomyces rishiriensis. Pavkov-Keller T, Steiner K, Faber M, Tengg M, Schwab H, Gruber-Khadjawi M, Gruber K. PLoS One 12 e0171056 (2017)


Reviews citing this publication (11)

  1. Naturally occurring modified ribonucleosides. McCown PJ, Ruszkowska A, Kunkler CN, Breger K, Hulewicz JP, Wang MC, Springer NA, Brown JA. Wiley Interdiscip Rev RNA 11 e1595 (2020)
  2. Metabolomic strategies for the identification of new enzyme functions and metabolic pathways. Prosser GA, Larrouy-Maumus G, de Carvalho LP. EMBO Rep 15 657-669 (2014)
  3. Recent advances in methyltransferase biocatalysis. Bennett MR, Shepherd SA, Cronin VA, Micklefield J. Curr Opin Chem Biol 37 97-106 (2017)
  4. Diversity in mechanism and function of tRNA methyltransferases. Swinehart WE, Jackman JE. RNA Biol 12 398-411 (2015)
  5. Functional diversity of organic molecule enzyme cofactors. Richter M. Nat Prod Rep 30 1324-1345 (2013)
  6. Leveraging structure for enzyme function prediction: methods, opportunities, and challenges. Jacobson MP, Kalyanaraman C, Zhao S, Tian B. Trends Biochem Sci 39 363-371 (2014)
  7. TrmD: A Methyl Transferase for tRNA Methylation With m1G37. Hou YM, Matsubara R, Takase R, Masuda I, Sulkowska JI. Enzymes 41 89-115 (2017)
  8. The Evolution of Substrate Specificity by tRNA Modification Enzymes. McKenney KM, Rubio MAT, Alfonzo JD. Enzymes 41 51-88 (2017)
  9. Bacterial wobble modifications of NNA-decoding tRNAs. Nilsson EM, Alexander RW. IUBMB Life 71 1158-1166 (2019)
  10. Harnessing methylation and AdoMet-utilising enzymes for selective modification in cascade reactions. Michailidou F, Rentmeister A. Org Biomol Chem 19 3756-3762 (2021)
  11. Functional Diversification and Structural Origins of Plant Natural Product Methyltransferases. Lashley A, Miller R, Provenzano S, Jarecki SA, Erba P, Salim V. Molecules 28 43 (2022)

Articles citing this publication (34)

  1. The Structure-Function Linkage Database. Akiva E, Brown S, Almonacid DE, Barber AE, Custer AF, Hicks MA, Huang CC, Lauck F, Mashiyama ST, Meng EC, Mischel D, Morris JH, Ojha S, Schnoes AM, Stryke D, Yunes JM, Ferrin TE, Holliday GL, Babbitt PC. Nucleic Acids Res 42 D521-30 (2014)
  2. Archaeal Elp3 catalyzes tRNA wobble uridine modification at C5 via a radical mechanism. Selvadurai K, Wang P, Seimetz J, Huang RH. Nat Chem Biol 10 810-812 (2014)
  3. Experimental strategies for functional annotation and metabolism discovery: targeted screening of solute binding proteins and unbiased panning of metabolomes. Vetting MW, Al-Obaidi N, Zhao S, San Francisco B, Kim J, Wichelecki DJ, Bouvier JT, Solbiati JO, Vu H, Zhang X, Rodionov DA, Love JD, Hillerich BS, Seidel RD, Quinn RJ, Osterman AL, Cronan JE, Jacobson MP, Gerlt JA, Almo SC. Biochemistry 54 909-931 (2015)
  4. Maintenance of protein synthesis reading frame by EF-P and m(1)G37-tRNA. Gamper HB, Masuda I, Frenkel-Morgenstern M, Hou YM. Nat Commun 6 7226 (2015)
  5. Use of a scaffold peptide in the biosynthesis of amino acid-derived natural products. Ting CP, Funk MA, Halaby SL, Zhang Z, Gonen T, van der Donk WA. Science 365 280-284 (2019)
  6. Trends in structural coverage of the protein universe and the impact of the Protein Structure Initiative. Khafizov K, Madrid-Aliste C, Almo SC, Fiser A. Proc Natl Acad Sci U S A 111 3733-3738 (2014)
  7. Asymmetric trapping of zwitterionic intermediates by sulphur ylides in a palladium-catalysed decarboxylation-cycloaddition sequence. Li TR, Tan F, Lu LQ, Wei Y, Wang YN, Liu YY, Yang QQ, Chen JR, Shi DQ, Xiao WJ. Nat Commun 5 5500 (2014)
  8. Biogenesis and growth phase-dependent alteration of 5-methoxycarbonylmethoxyuridine in tRNA anticodons. Sakai Y, Miyauchi K, Kimura S, Suzuki T. Nucleic Acids Res 44 509-523 (2016)
  9. Directed Evolution of a Halide Methyltransferase Enables Biocatalytic Synthesis of Diverse SAM Analogs. Tang Q, Grathwol CW, Aslan-Üzel AS, Wu S, Link A, Pavlidis IV, Badenhorst CPS, Bornscheuer UT. Angew Chem Int Ed Engl 60 1524-1527 (2021)
  10. A sensitive mass spectrum assay to characterize engineered methionine adenosyltransferases with S-alkyl methionine analogues as substrates. Wang R, Zheng W, Luo M. Anal Biochem 450 11-19 (2014)
  11. Biogenesis and iron-dependency of ribosomal RNA hydroxylation. Kimura S, Sakai Y, Ishiguro K, Suzuki T. Nucleic Acids Res 45 12974-12986 (2017)
  12. Dual pathways of tRNA hydroxylation ensure efficient translation by expanding decoding capability. Sakai Y, Kimura S, Suzuki T. Nat Commun 10 2858 (2019)
  13. Oxidative opening of the aromatic ring: Tracing the natural history of a large superfamily of dioxygenase domains and their relatives. Burroughs AM, Glasner ME, Barry KP, Taylor EA, Aravind L. J Biol Chem 294 10211-10235 (2019)
  14. A Trojan-Horse Peptide-Carboxymethyl-Cytidine Antibiotic from Bacillus amyloliquefaciens. Serebryakova M, Tsibulskaya D, Mokina O, Kulikovsky A, Nautiyal M, Van Aerschot A, Severinov K, Dubiley S. J Am Chem Soc 138 15690-15698 (2016)
  15. Determinants of the CmoB carboxymethyl transferase utilized for selective tRNA wobble modification. Kim J, Xiao H, Koh J, Wang Y, Bonanno JB, Thomas K, Babbitt PC, Brown S, Lee YS, Almo SC. Nucleic Acids Res 43 4602-4613 (2015)
  16. Structural and functional characterisation of the methionine adenosyltransferase from Thermococcus kodakarensis. Schlesier J, Siegrist J, Gerhardt S, Erb A, Blaesi S, Richter M, Einsle O, Andexer JN. BMC Struct Biol 13 22 (2013)
  17. Survey and Validation of tRNA Modifications and Their Corresponding Genes in Bacillus subtilis sp Subtilis Strain 168. de Crécy-Lagard V, Ross RL, Jaroch M, Marchand V, Eisenhart C, Brégeon D, Motorin Y, Limbach PA. Biomolecules 10 E977 (2020)
  18. Selective terminal methylation of a tRNA wobble base. Masuda I, Takase R, Matsubara R, Paulines MJ, Gamper H, Limbach PA, Hou YM. Nucleic Acids Res 46 e37 (2018)
  19. article-commentary Biochemistry: The ylide has landed. Landgraf BJ, Booker SJ. Nature 498 45-47 (2013)
  20. Identification of a novel tRNA wobble uridine modifying activity in the biosynthesis of 5-methoxyuridine. Ryu H, Grove TL, Almo SC, Kim J. Nucleic Acids Res 46 9160-9169 (2018)
  21. From Natural Methylation to Versatile Alkylations Using Halide Methyltransferases. Tang Q, Pavlidis IV, Badenhorst CPS, Bornscheuer UT. Chembiochem 22 2584-2590 (2021)
  22. Identification and Characterization of Genes Required for 5-Hydroxyuridine Synthesis in Bacillus subtilis and Escherichia coli tRNA. Lauhon CT. J Bacteriol 201 e00433-19 (2019)
  23. Emergence of a novel immune-evasion strategy from an ancestral protein fold in bacteriophage Mu. Karambelkar S, Udupa S, Gowthami VN, Ramachandra SG, Swapna G, Nagaraja V. Nucleic Acids Res 48 5294-5305 (2020)
  24. Structural and biochemical characterization of Rv0187, an O-methyltransferase from Mycobacterium tuberculosis. Lee S, Kang J, Kim J. Sci Rep 9 8059 (2019)
  25. Changes in Vibrio natriegens Growth Under Simulated Microgravity. Yin M, Ye B, Jin Y, Liu L, Zhang Y, Li P, Wang Y, Li Y, Han Y, Shen W, Zhao Z. Front Microbiol 11 2040 (2020)
  26. Discovery of an Unnatural DNA Modification Derived from a Natural Secondary Metabolite. Wang T, Kohli RM. Cell Chem Biol 28 97-104.e4 (2021)
  27. Identification of Potential Drug Targets in Helicobacter pylori Using In Silico Subtractive Proteomics Approaches and Their Possible Inhibition through Drug Repurposing. Ibrahim KA, Helmy OM, Kashef MT, Elkhamissy TR, Ramadan MA. Pathogens 9 E747 (2020)
  28. Unique anticodon loop conformation with the flipped-out wobble nucleotide in the crystal structure of unbound tRNAVal. Jeong H, Kim J. RNA 27 1330-1338 (2021)
  29. Computational evaluation of factors governing catalytic 2-keto acid decarboxylation. Wu D, Yue D, You F, Broadbelt LJ. J Mol Model 20 2310 (2014)
  30. Direct enzymatic sequencing of 5-methylcytosine at single-base resolution. Wang T, Fowler JM, Liu L, Loo CE, Luo M, Schutsky EK, Berríos KN, DeNizio JE, Dvorak A, Downey N, Montermoso S, Pingul BY, Nasrallah M, Gosal WS, Wu H, Kohli RM. Nat Chem Biol 19 1004-1012 (2023)
  31. Discovery of a non-canonical prototype long-chain monoacylglycerol lipase through a structure-based endogenous reaction intermediate complex. Pinotsis N, Krüger A, Tomas N, Chatziefthymiou SD, Litz C, Mortensen SA, Daffé M, Marrakchi H, Antranikian G, Wilmanns M. Nat Commun 14 7649 (2023)
  32. Revealing Drivers for Carboxy-S-adenosyl-l-methionine Use by Neomorphic Variants of a DNA Methyltransferase. Loo CE, Hix MA, Wang T, Cisneros GA, Kohli RM. ACS Chem Biol 18 2224-2232 (2023)
  33. S51 Family Peptidases Provide Resistance to Peptidyl-Nucleotide Antibiotic McC. Yagmurov E, Gilep K, Serebryakova M, Wolf YI, Dubiley S, Severinov K. mBio 13 e0080522 (2022)
  34. Structural basis for the selective methylation of 5-carboxymethoxyuridine in tRNA modification. Yoo J, Lee J, Kim J. Nucleic Acids Res 51 9432-9441 (2023)