3elp Citations

Structural basis for the inhibition mechanism of human cystathionine gamma-lyase, an enzyme responsible for the production of H(2)S.

J Biol Chem 284 3076-3085 (2009)
Related entries: 2nmp, 3cog

Cited: 105 times
EuropePMC logo PMID: 19019829

Abstract

Impairment of the formation or action of hydrogen sulfide (H(2)S), an endogenous gasotransmitter, is associated with various diseases, such as hypertension, diabetes mellitus, septic and hemorrhagic shock, and pancreatitis. Cystathionine beta-synthase and cystathionine gamma-lyase (CSE) are two pyridoxal-5'-phosphate (PLP)-dependent enzymes largely responsible for the production of H(2)S in mammals. Inhibition of CSE by DL-propargylglycine (PAG) has been shown to alleviate disease symptoms. Here we report crystal structures of human CSE (hCSE), in apo form, and in complex with PLP and PLP.PAG. Structural characterization, combined with biophysical and biochemical studies, provides new insights into the inhibition mechanism of hCSE-mediated production of H(2)S. Transition from the open form of apo-hCSE to the closed PLP-bound form reveals large conformational changes hitherto not reported. In addition, PAG binds hCSE via a unique binding mode, not observed in PAG-enzyme complexes previously. The interaction of PAG-hCSE was not predicted based on existing information from known PAG complexes. The structure of hCSE.PLP.PAG complex highlights the particular importance of Tyr(114) in hCSE and the mechanism of PAG-dependent inhibition of hCSE. These results provide significant insights, which will facilitate the structure-based design of novel inhibitors of hCSE to aid in the development of therapies for diseases involving disorders of sulfur metabolism.

Articles - 3elp mentioned but not cited (7)

  1. Cystathionine gamma-lyase: Clinical, metabolic, genetic, and structural studies. Kraus JP, Hasek J, Kozich V, Collard R, Venezia S, Janosíková B, Wang J, Stabler SP, Allen RH, Jakobs C, Finn CT, Chien YH, Hwu WL, Hegele RA, Mudd SH. Mol Genet Metab 97 250-259 (2009)
  2. S-3-Carboxypropyl-l-cysteine specifically inhibits cystathionine γ-lyase-dependent hydrogen sulfide synthesis. Yadav PK, Vitvitsky V, Kim H, White A, Cho US, Banerjee R. J Biol Chem 294 11011-11022 (2019)
  3. Structural Snapshots of an Engineered Cystathionine-γ-lyase Reveal the Critical Role of Electrostatic Interactions in the Active Site. Yan W, Stone E, Zhang YJ. Biochemistry 56 876-885 (2017)
  4. Functional Characterization and Structure-Guided Mutational Analysis of the Transsulfuration Enzyme Cystathionine γ-Lyase from Toxoplasma gondii. Maresi E, Janson G, Fruncillo S, Paiardini A, Vallone R, Dominici P, Astegno A. Int J Mol Sci 19 E2111 (2018)
  5. Structural dynamics of a methionine γ-lyase for calicheamicin biosynthesis: Rotation of the conserved tyrosine stacking with pyridoxal phosphate. Cao H, Tan K, Wang F, Bigelow L, Yennamalli RM, Jedrzejczak R, Babnigg G, Bingman CA, Joachimiak A, Kharel MK, Singh S, Thorson JS, Phillips GN. Struct Dyn 3 034702 (2016)
  6. Expression, purification and preliminary crystallographic analysis of O-acetylhomoserine sulfhydrylase from Mycobacterium tuberculosis. Yin J, Garen CR, Bateman K, Yu M, Lyon EZ, Habel J, Kim H, Hung LW, Kim CY, James MN. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 959-963 (2011)
  7. Hypoxia increases persulfide and polysulfide formation by AMP kinase dependent cystathionine gamma lyase phosphorylation. Alam S, Pardue S, Shen X, Glawe JD, Yagi T, Bhuiyan MAN, Patel RP, Dominic PS, Virk CS, Bhuiyan MS, Orr AW, Petit C, Kolluru GK, Kevil CG. Redox Biol 68 102949 (2023)


Reviews citing this publication (33)

  1. Chemical Biology of H2S Signaling through Persulfidation. Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chem Rev 118 1253-1337 (2018)
  2. Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation--a tale of three gases! Li L, Hsu A, Moore PK. Pharmacol Ther 123 386-400 (2009)
  3. Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Whiteman M, Winyard PG. Expert Rev Clin Pharmacol 4 13-32 (2011)
  4. Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Whiteman M, Le Trionnaire S, Chopra M, Fox B, Whatmore J. Clin Sci (Lond) 121 459-488 (2011)
  5. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H2S Levels: H2S Donors and H2S Biosynthesis Inhibitors. Szabo C, Papapetropoulos A. Pharmacol Rev 69 497-564 (2017)
  6. Signaling molecules: hydrogen sulfide and polysulfide. Kimura H. Antioxid Redox Signal 22 362-376 (2015)
  7. The physiological role of hydrogen sulfide and beyond. Kimura H. Nitric Oxide 41 4-10 (2014)
  8. Regulators of the transsulfuration pathway. Sbodio JI, Snyder SH, Paul BD. Br J Pharmacol 176 583-593 (2019)
  9. PLP-dependent H(2)S biogenesis. Singh S, Banerjee R. Biochim Biophys Acta 1814 1518-1527 (2011)
  10. Cysteine Metabolism in Neuronal Redox Homeostasis. Paul BD, Sbodio JI, Snyder SH. Trends Pharmacol Sci 39 513-524 (2018)
  11. Endogenous production of H2S in the gastrointestinal tract: still in search of a physiologic function. Linden DR, Levitt MD, Farrugia G, Szurszewski JH. Antioxid Redox Signal 12 1135-1146 (2010)
  12. Hydrogen sulfide signaling in mitochondria and disease. Murphy B, Bhattacharya R, Mukherjee P. FASEB J 33 13098-13125 (2019)
  13. Hydrogen sulfide and polysulfides as signaling molecules. Kimura H. Proc Jpn Acad Ser B Phys Biol Sci 91 131-159 (2015)
  14. Hydrogen Sulfide Biochemistry and Interplay with Other Gaseous Mediators in Mammalian Physiology. Giuffrè A, Vicente JB, Vicente JB. Oxid Med Cell Longev 2018 6290931 (2018)
  15. Role of hydrogen sulfide in the pathology of inflammation. Bhatia M. Scientifica (Cairo) 2012 159680 (2012)
  16. Hydrogen Sulfide (H2S)-Releasing Compounds: Therapeutic Potential in Cardiovascular Diseases. Zhang L, Wang Y, Li Y, Li L, Xu S, Feng X, Liu S. Front Pharmacol 9 1066 (2018)
  17. An Update on Hydrogen Sulfide and Nitric Oxide Interactions in the Cardiovascular System. Wu D, Hu Q, Zhu D. Oxid Med Cell Longev 2018 4579140 (2018)
  18. Therapeutic application of hydrogen sulfide donors: the potential and challenges. Wu D, Hu Q, Zhu Y. Front Med 10 18-27 (2016)
  19. Trends in H2S-Donors Chemistry and Their Effects in Cardiovascular Diseases. Corvino A, Frecentese F, Magli E, Perissutti E, Santagada V, Scognamiglio A, Caliendo G, Fiorino F, Severino B. Antioxidants (Basel) 10 429 (2021)
  20. Hydrogen sulfide as a therapeutic target for inflammation. Rivers JR, Badiei A, Bhatia M. Expert Opin Ther Targets 16 439-449 (2012)
  21. Fluorescent Probes and Selective Inhibitors for Biological Studies of Hydrogen Sulfide- and Polysulfide-Mediated Signaling. Takano Y, Echizen H, Hanaoka K. Antioxid Redox Signal 27 669-683 (2017)
  22. A novel approach to inhibit intracellular vitamin B6-dependent enzymes: proof of principle with human and plasmodium ornithine decarboxylase and human histidine decarboxylase. Wu F, Christen P, Gehring H. FASEB J 25 2109-2122 (2011)
  23. Fluorescent probes for hydrogen sulfide (H2S) and sulfane sulfur and their applications to biological studies. Shimamoto K, Hanaoka K. Nitric Oxide 46 72-79 (2015)
  24. H2S Donors and Their Use in Medicinal Chemistry. Magli E, Perissutti E, Santagada V, Caliendo G, Corvino A, Esposito G, Esposito G, Fiorino F, Migliaccio M, Scognamiglio A, Severino B, Sparaco R, Frecentese F. Biomolecules 11 1899 (2021)
  25. Revealing on hydrogen sulfide and nitric oxide signals co-ordination for plant growth under stress conditions. Singh S, Kumar V, Kapoor D, Kumar S, Singh S, Dhanjal DS, Datta S, Samuel J, Dey P, Wang S, Prasad R, Singh J. Physiol Plant 168 301-317 (2020)
  26. Hydrogen sulphide as a signalling molecule regulating physiopathological processes in gastrointestinal motility. Jimenez M, Gil V, Martinez-Cutillas M, Mañé N, Gallego D. Br J Pharmacol 174 2805-2817 (2017)
  27. Mammalian Sulfur Amino Acid Metabolism: A Nexus Between Redox Regulation, Nutrition, Epigenetics, and Detoxification. Pajares MA, Pérez-Sala D. Antioxid Redox Signal 29 408-452 (2018)
  28. Understanding human thiol dioxygenase enzymes: structure to function, and biology to pathology. Sarkar B, Kulharia M, Mantha AK. Int J Exp Pathol 98 52-66 (2017)
  29. Hydrogen sulfide, the third gaseous signaling molecule with cardiovascular properties, is decreased in hemodialysis patients. Perna AF, Luciano MG, Ingrosso D, Raiola I, Pulzella P, Sepe I, Lanza D, Violetti E, Capasso R, Lombardi C, De Santo NG. J Ren Nutr 20 S11-4 (2010)
  30. The Role of Host-Generated H2S in Microbial Pathogenesis: New Perspectives on Tuberculosis. Rahman MA, Glasgow JN, Nadeem S, Reddy VP, Sevalkar RR, Lancaster JR, Steyn AJC. Front Cell Infect Microbiol 10 586923 (2020)
  31. Harnessing the Benefits of Endogenous Hydrogen Sulfide to Reduce Cardiovascular Disease. Casin KM, Calvert JW. Antioxidants (Basel) 10 383 (2021)
  32. Methods for Suppressing Hydrogen Sulfide in Biological Systems. Wang Y, Ni X, Chadha R, McCartney C, Lam Y, Brummett B, Ramush G, Xian M. Antioxid Redox Signal 36 294-308 (2022)
  33. Molecular Engines, Therapeutic Targets, and Challenges in Pediatric Brain Tumors: A Special Emphasis on Hydrogen Sulfide and RNA-Based Nano-Delivery. Fahmy SA, Dawoud A, Zeinelabdeen YA, Kiriacos CJ, Daniel KA, Eltahtawy O, Abdelhalim MM, Braoudaki M, Youness RA. Cancers (Basel) 14 5244 (2022)

Articles citing this publication (65)

  1. H2S: a universal defense against antibiotics in bacteria. Shatalin K, Shatalina E, Mironov A, Nudler E. Science 334 986-990 (2011)
  2. Selectivity of commonly used pharmacological inhibitors for cystathionine β synthase (CBS) and cystathionine γ lyase (CSE). Asimakopoulou A, Panopoulos P, Chasapis CT, Coletta C, Zhou Z, Cirino G, Giannis A, Szabo C, Spyroulias GA, Papapetropoulos A. Br J Pharmacol 169 922-932 (2013)
  3. N-Acetyl Cysteine Functions as a Fast-Acting Antioxidant by Triggering Intracellular H2S and Sulfane Sulfur Production. Ezeriņa D, Takano Y, Hanaoka K, Urano Y, Dick TP. Cell Chem Biol 25 447-459.e4 (2018)
  4. Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: is H2S a novel cytoprotective mediator in the inflamed joint? Fox B, Schantz JT, Haigh R, Wood ME, Moore PK, Viner N, Spencer JP, Winyard PG, Whiteman M. J Cell Mol Med 16 896-910 (2012)
  5. Role of the cystathionine γ lyase/hydrogen sulfide pathway in human melanoma progression. Panza E, De Cicco P, Armogida C, Scognamiglio G, Gigantino V, Botti G, Germano D, Napolitano M, Papapetropoulos A, Bucci M, Cirino G, Ianaro A. Pigment Cell Melanoma Res 28 61-72 (2015)
  6. Inhibitors of bacterial H2S biogenesis targeting antibiotic resistance and tolerance. Shatalin K, Nuthanakanti A, Kaushik A, Shishov D, Peselis A, Shamovsky I, Pani B, Lechpammer M, Vasilyev N, Shatalina E, Rebatchouk D, Mironov A, Fedichev P, Serganov A, Nudler E. Science 372 1169-1175 (2021)
  7. Hydrogen sulphide-generating pathways in haemodialysis patients: a study on relevant metabolites and transcriptional regulation of genes encoding for key enzymes. Perna AF, Luciano MG, Ingrosso D, Pulzella P, Sepe I, Lanza D, Violetti E, Capasso R, Lombardi C, De Santo NG. Nephrol Dial Transplant 24 3756-3763 (2009)
  8. Structural basis for the active site inhibition mechanism of human kidney-type glutaminase (KGA). Thangavelu K, Chong QY, Low BC, Sivaraman J. Sci Rep 4 3827 (2014)
  9. Effects of inhibitors of hydrogen sulphide synthesis on rat colonic motility. Gil V, Gallego D, Jiménez M. Br J Pharmacol 164 485-498 (2011)
  10. Hydrogen sulfide is produced by cystathionine γ-lyase at the steady-state low intracellular Ca(2+) concentrations. Mikami Y, Shibuya N, Ogasawara Y, Kimura H. Biochem Biophys Res Commun 431 131-135 (2013)
  11. Nitric Oxide and Hydrogen Sulfide Coordinately Reduce Glucose Sensitivity and Decrease Oxidative Stress via Ascorbate-Glutathione Cycle in Heat-Stressed Wheat (Triticum aestivum L.) Plants. Iqbal N, Umar S, Khan NA, Corpas FJ. Antioxidants (Basel) 10 108 (2021)
  12. Single-enzyme biomineralization of cadmium sulfide nanocrystals with controlled optical properties. Dunleavy R, Lu L, Kiely CJ, McIntosh S, Berger BW. Proc Natl Acad Sci U S A 113 5275-5280 (2016)
  13. Site-directed mutagenesis on human cystathionine-gamma-lyase reveals insights into the modulation of H2S production. Huang S, Chua JH, Yew WS, Sivaraman J, Moore PK, Tan CH, Deng LW. J Mol Biol 396 708-718 (2010)
  14. High-throughput tandem-microwell assay identifies inhibitors of the hydrogen sulfide signaling pathway. Zhou Y, Yu J, Lei X, Wu J, Niu Q, Zhang Y, Liu H, Christen P, Gehring H, Wu F. Chem Commun (Camb) 49 11782-11784 (2013)
  15. A new slow releasing, H₂S generating compound, GYY4137 relaxes spontaneous and oxytocin-stimulated contractions of human and rat pregnant myometrium. Robinson H, Wray S. PLoS One 7 e46278 (2012)
  16. D-Penicillamine modulates hydrogen sulfide (H2S) pathway through selective inhibition of cystathionine-γ-lyase. Brancaleone V, Esposito I, Gargiulo A, Vellecco V, Asimakopoulou A, Citi V, Calderone V, Gobbetti T, Perretti M, Papapetropoulos A, Bucci M, Cirino G. Br J Pharmacol 173 1556-1565 (2016)
  17. Beneficial effects of diminished production of hydrogen sulfide or carbon monoxide on hypertension and renal injury induced by NO withdrawal. Wesseling S, Fledderus JO, Verhaar MC, Joles JA. Br J Pharmacol 172 1607-1619 (2015)
  18. Analysis of plasma metabolic profile, characteristics and enzymes in the progression from chronic hepatitis B to hepatocellular carcinoma. Cai FF, Song YN, Lu YY, Zhang Y, Hu YY, Su SB. Aging (Albany NY) 12 14949-14965 (2020)
  19. Cystathionase mediates senescence evasion in melanocytes and melanoma cells. Leikam C, Hufnagel A, Walz S, Kneitz S, Fekete A, Müller MJ, Eilers M, Schartl M, Meierjohann S. Oncogene 33 771-782 (2014)
  20. Enzyme-mediated depletion of serum l-Met abrogates prostate cancer growth via multiple mechanisms without evidence of systemic toxicity. Lu WC, Saha A, Yan W, Garrison K, Lamb C, Pandey R, Irani S, Lodi A, Lu X, Tiziani S, Zhang YJ, Georgiou G, DiGiovanni J, Stone E. Proc Natl Acad Sci U S A 117 13000-13011 (2020)
  21. Functional characterization of enzymes involved in cysteine biosynthesis and H(2)S production in Trypanosoma cruzi. Marciano D, Santana M, Nowicki C. Mol Biochem Parasitol 185 114-120 (2012)
  22. Glutathione metabolism modeling: a mechanism for liver drug-robustness and a new biomarker strategy. Geenen S, du Preez FB, Snoep JL, Foster AJ, Sarda S, Kenna JG, Wilson ID, Westerhoff HV. Biochim Biophys Acta 1830 4943-4959 (2013)
  23. Role of Nitric Oxide and Hydrogen Sulfide in the Vasodilator Effect of Ursolic Acid and Uvaol from Black Cherry Prunus serotina Fruits. Luna-Vázquez FJ, Ibarra-Alvarado C, Rojas-Molina A, Romo-Mancillas A, López-Vallejo FH, Solís-Gutiérrez M, Rojas-Molina JI, Rivero-Cruz F. Molecules 21 78 (2016)
  24. Discovery of selective cystathionine β-synthase inhibitors by high-throughput screening with a fluorescent thiol probe. Niu W, Wu P, Chen F, Wang J, Shang X, Xu C. Medchemcomm 8 198-201 (2017)
  25. Crystallographic and mutational analyses of cystathionine β-synthase in the H2 S-synthetic gene cluster in Lactobacillus plantarum. Matoba Y, Yoshida T, Izuhara-Kihara H, Noda M, Sugiyama M. Protein Sci 26 763-783 (2017)
  26. Structural basis for substrate specificity in ArnB. A key enzyme in the polymyxin resistance pathway of Gram-negative bacteria. Lee M, Sousa MC. Biochemistry 53 796-805 (2014)
  27. Cysteine Deprivation Targets Ovarian Clear Cell Carcinoma Via Oxidative Stress and Iron-Sulfur Cluster Biogenesis Deficit. Novera W, Lee ZW, Nin DS, Dai MZ, Binte Idres S, Wu H, Damen JMA, Tan TZ, Sim AYL, Long YC, Wu W, Huang RY, Deng LW. Antioxid Redox Signal 33 1191-1208 (2020)
  28. Hydrogen sulfide: A novel mechanism for the vascular protection by resveratrol under oxidative stress in mouse aorta. Yetik-Anacak G, Sevin G, Ozzayım O, Dereli MV, Ahmed A. Vascul Pharmacol 87 76-82 (2016)
  29. Identification and characterization of a methionine γ-lyase in the calicheamicin biosynthetic cluster of Micromonospora echinospora. Song H, Xu R, Guo Z. Chembiochem 16 100-109 (2015)
  30. Multi-Omics Study on the Impact of Cysteine Feed Level on Cell Viability and mAb Production in a CHO Bioprocess. Ali AS, Raju R, Kshirsagar R, Ivanov AR, Gilbert A, Zang L, Karger BL. Biotechnol J 14 e1800352 (2019)
  31. Chemogenomics of pyridoxal 5'-phosphate dependent enzymes. Singh R, Spyrakis F, Cozzini P, Paiardini A, Pascarella S, Mozzarelli A. J Enzyme Inhib Med Chem 28 183-194 (2013)
  32. Fragment-based de novo design of a cystathionine γ-lyase selective inhibitor blocking hydrogen sulfide production. Corvino A, Severino B, Fiorino F, Frecentese F, Magli E, Perissutti E, Santagada V, Bucci M, Cirino G, Kelly G, Servillo L, Popowicz G, Pastore A, Caliendo G. Sci Rep 6 34398 (2016)
  33. Pyridoxal 5'-phosphate (PLP) deficiency might contribute to the onset of type I diabetes. Rubí B. Med Hypotheses 78 179-182 (2012)
  34. The dual role of the cystathionine gamma-lyase/hydrogen sulfide pathway in CVB3-induced myocarditis in mice. Hua W, Jiang J, Rong X, Wu R, Qiu H, Zhang Y, Chen Q. Biochem Biophys Res Commun 388 595-600 (2009)
  35. Cystathionine-γ-lyase drives antioxidant defense in cysteine-restricted IDH1-mutant astrocytomas. Cano-Galiano A, Oudin A, Fack F, Allega MF, Sumpton D, Martinez-Garcia E, Dittmar G, Hau AC, De Falco A, Herold-Mende C, Bjerkvig R, Meiser J, Tardito S, Niclou SP. Neurooncol Adv 3 vdab057 (2021)
  36. PLP undergoes conformational changes during the course of an enzymatic reaction. Ngo HP, Cerqueira NM, Kim JK, Hong MK, Fernandes PA, Ramos MJ, Kang LW. Acta Crystallogr D Biol Crystallogr 70 596-606 (2014)
  37. DL-Propargylglycine protects against myocardial injury induced by chronic intermittent hypoxia through inhibition of endoplasmic reticulum stress. Zhou X, Tang S, Hu K, Zhang Z, Liu P, Luo Y, Kang J, Xu L. Sleep Breath 22 853-863 (2018)
  38. Transcriptional profiling in Saccharomyces cerevisiae relevant for predicting alachlor mechanisms of toxicity. Gil FN, Gonçalves AC, Jacinto MJ, Becker JD, Viegas CA. Environ Toxicol Chem 30 2506-2518 (2011)
  39. A turn-on endoplasmic reticulum-targeted two-photon fluorescent probe for hydrogen sulfide and bio-imaging applications in living cells, tissues, and zebrafish. Tang Y, Xu A, Ma Y, Xu G, Gao S, Lin W. Sci Rep 7 12944 (2017)
  40. Catalytic specificity of the Lactobacillus plantarum cystathionine γ-lyase presumed by the crystallographic analysis. Matoba Y, Noda M, Yoshida T, Oda K, Ezumi Y, Yasutake C, Izuhara-Kihara H, Danshiitsoodol N, Kumagai T, Sugiyama M. Sci Rep 10 14886 (2020)
  41. Protective effect of methylsulfonylmethane in caerulein-induced acute pancreatitis and associated lung injury in mice. Velusamy RK, Tamizhselvi R. J Pharm Pharmacol 70 1188-1199 (2018)
  42. Screening Pyridine Derivatives against Human Hydrogen Sulfide-synthesizing Enzymes by Orthogonal Methods. Zuhra K, Sousa PMF, Paulini G, Lemos AR, Kalme Z, Bisenieks I, Bisenieks E, Vigante B, Duburs G, Bandeiras TM, Saso L, Giuffrè A, Vicente JB. Sci Rep 9 684 (2019)
  43. The Expression and Activity of Rhodanese, 3-Mercaptopyruvate Sulfurtransferase, Cystathionine γ-Lyase in the Most Frequently Chosen Cellular Research Models. Kaczor-Kamińska M, Kaminski K, Wróbel M. Biomolecules 11 1859 (2021)
  44. CBS-derived H2S facilitates host colonization of Vibrio cholerae by promoting the iron-dependent catalase activity of KatB. Ma Y, Yang X, Wang H, Qin Z, Yi C, Shi C, Luo M, Chen G, Yan J, Liu X, Liu Z. PLoS Pathog 17 e1009763 (2021)
  45. Cystathionine γ-lyase, an enzyme related to the reverse transsulfuration pathway, is functional in Leishmania spp. Giordana L, Mantilla BS, Santana M, Silber AM, Nowicki C. J Eukaryot Microbiol 61 204-213 (2014)
  46. Human Cystathionine γ-Lyase Is Inhibited by s-Nitrosation: A New Crosstalk Mechanism between NO and H2S. Fernandes DGF, Nunes J, Tomé CS, Zuhra K, Costa JMF, Antunes AMM, Giuffrè A, Vicente JB. Antioxidants (Basel) 10 1391 (2021)
  47. Mechanism-based and computational modeling of hydrogen sulfide biogenesis inhibition: interfacial inhibition. Le Corre L, Padovani D. Sci Rep 13 7287 (2023)
  48. Pharmacological Inhibition of Endogenous Hydrogen Sulfide Attenuates Breast Cancer Progression. Khan NH, Wang D, Wang W, Shahid M, Khattak S, Ngowi EE, Sarfraz M, Ji XY, Zhang CY, Wu DD. Molecules 27 4049 (2022)
  49. Vasodilation Elicited by Isoxsuprine, Identified by High-Throughput Virtual Screening of Compound Libraries, Involves Activation of the NO/cGMP and H₂S/KATP Pathways and Blockade of α₁-Adrenoceptors and Calcium Channels. Medina-Ruiz D, Erreguin-Luna B, Luna-Vázquez FJ, Romo-Mancillas A, Rojas-Molina A, Ibarra-Alvarado C. Molecules 24 E987 (2019)
  50. Glutathione-Allylsulfur Conjugates as Mesenchymal Stem Cells Stimulating Agents for Potential Applications in Tissue Repair. Di Giovanni E, Buonvino S, Amelio I, Melino S. Int J Mol Sci 21 E1638 (2020)
  51. H2O2-Mediated Oxidative Stress Enhances Cystathionine γ-Lyase-Derived H2S Synthesis via a Sulfenic Acid Intermediate. Wang J, Jia G, Li H, Yan S, Qian J, Guo X, Li G, Qi H, Zhu Z, Wu Y, He W, Niu W. Antioxidants (Basel) 10 1488 (2021)
  52. In vivo detection of hydrogen sulfide in the brain of live mouse: application in neuroinflammation models. Nam B, Lee W, Sarkar S, Kim JH, Bhise A, Park H, Kim JY, Huynh PT, Rajkumar S, Lee K, Ha YS, Cho SH, Lim JE, Kim KW, Lee KC, Suk K, Yoo J. Eur J Nucl Med Mol Imaging 49 4073-4087 (2022)
  53. Time-Gated Luminescence Detection of Enzymatically Produced Hydrogen Sulfide: Design, Synthesis, and Application of a Lanthanide-Based Probe. Yao Y, Delgado-Rivera L, Samareh Afsari H, Yin L, Thatcher GRJ, Moore TW, Miller LW. Inorg Chem 57 681-688 (2018)
  54. Cystathionine gamma-lyase (Cth) induces efferocytosis in macrophages via ERK1/2 to modulate intestinal barrier repair. Zhao XH, Yang T, Zheng MY, Zhao P, An LY, Qi YX, Yi KQ, Zhang PC, Sun DL. Cell Commun Signal 21 17 (2023)
  55. Dichotomous effects of isomeric secondary amines containing an aromatic nitrile and nitro group on human aortic smooth muscle cells via inhibition of cystathionine-γ-lyase. Ji Y, Bowersock A, Badour AR, Vij N, Juris SJ, Ash DE, Mohanty DK. Biochimie 133 103-111 (2017)
  56. Effects of endogenous H2S production inhibition on the homeostatic responses induced by acute high-salt diet consumption. Moreira AM, Grisote SA, Francescato HDC, Coimbra TM, Elias LLK, Antunes-Rodrigues J, Ruginsk SG. Mol Cell Biochem 476 715-725 (2021)
  57. Microvascular circulatory dysregulation driven in part by cystathionine gamma-lyase: A new paradigm for cardiovascular compromise in the preterm newborn. Dyson RM, Palliser HK, Wilding N, Kelly MA, Chwatko G, Glowacki R, Berry MJ, Ni X, Wright IMR. Microcirculation 26 e12507 (2019)
  58. Structural basis of the inhibition of cystathionine γ-lyase from Toxoplasma gondii by propargylglycine and cysteine. Fernández-Rodríguez C, Conter C, Oyenarte I, Favretto F, Quintana I, Martinez-Chantar ML, Astegno A, Martínez-Cruz LA. Protein Sci 32 e4619 (2023)
  59. Understanding the mechanism of H2S oxidation by flavin-dependent sulfide oxidases: a DFT/IEF-PCM study. Bonanata J, Coitiño EL. J Mol Model 25 308 (2019)
  60. A de novo protein catalyzes the synthesis of semiconductor quantum dots. Spangler LC, Yao Y, Cheng G, Yao N, Chari SL, Scholes GD, Hecht MH. Proc Natl Acad Sci U S A 119 e2204050119 (2022)
  61. Discovery of a cystathionine γ-lyase (CSE) selective inhibitor targeting active-site pyridoxal 5'-phosphate (PLP) via Schiff base formation. Echizen H, Hanaoka K, Shimamoto K, Hibi R, Toma-Fukai S, Ohno H, Sasaki E, Komatsu T, Ueno T, Tsuchiya Y, Watanabe Y, Otsuka T, Saito H, Nagatoishi S, Tsumoto K, Kojima H, Okabe T, Shimizu T, Urano Y. Sci Rep 13 16456 (2023)
  62. Persulfidation of DJ-1: Mechanism and Consequences. Galardon E, Mathas N, Padovani D, Le Corre L, Poncet G, Dairou J. Biomolecules 13 27 (2022)
  63. Pharmacological Inhibition and Genetic Deletion of Cystathionine Gamma-Lyase in Mice Protects against Organ Injury in Sepsis: A Key Role of Adhesion Molecules on Endothelial Cells. Manandhar S, Chambers S, Miller A, Ishii I, Bhatia M. Int J Mol Sci 24 13650 (2023)
  64. Physiological and genomic evidence of cysteine degradation and aerobic hydrogen sulfide production in freshwater bacteria. Tran PQ, Bachand SC, Hotvedt JC, Kieft K, McDaniel EA, McMahon KD, Anantharaman K. mSystems 8 e0020123 (2023)
  65. Synthesis of the Indole-Based Inhibitors of Bacterial Cystathionine γ-Lyase NL1-NL3. Potapov KV, Novikov RA, Novikov MA, Solyev PN, Tomilov YV, Kochetkov SN, Makarov AA, Mitkevich VA. Molecules 28 3568 (2023)