2zai Citations

Structure-guided identification of a new catalytic motif of oligosaccharyltransferase.

EMBO J 27 234-43 (2008)
Cited: 113 times
EuropePMC logo PMID: 18046457

Abstract

Asn-glycosylation is widespread not only in eukaryotes but also in archaea and some eubacteria. Oligosaccharyltransferase (OST) catalyzes the co-translational transfer of an oligosaccharide from a lipid donor to an asparagine residue in nascent polypeptide chains. Here, we report that a thermophilic archaeon, Pyrococcus furiosus OST is composed of the STT3 protein alone, and catalyzes the transfer of a heptasaccharide, containing one hexouronate and two pentose residues, onto peptides in an Asn-X-Thr/Ser-motif-dependent manner. We also determined the 2.7-A resolution crystal structure of the C-terminal soluble domain of Pyrococcus STT3. The structure-based multiple sequence alignment revealed a new motif, DxxK, which is adjacent to the well-conserved WWDYG motif in the tertiary structure. The mutagenesis of the DK motif residues in yeast STT3 revealed the essential role of the motif in the catalytic activity. The function of this motif may be related to the binding of the pyrophosphate group of lipid-linked oligosaccharide donors through a transiently bound cation. Our structure provides the first structural insights into the formation of the oligosaccharide-asparagine bond.

Articles - 2zai mentioned but not cited (4)



Reviews citing this publication (34)

  1. Glycosyltransferases: structures, functions, and mechanisms. Lairson LL, Henrissat B, Davies GJ, Withers SG. Annu Rev Biochem 77 521-555 (2008)
  2. Protein glycosylation in bacteria: sweeter than ever. Nothaft H, Szymanski CM. Nat Rev Microbiol 8 765-778 (2010)
  3. The archaeal cell envelope. Albers SV, Meyer BH. Nat Rev Microbiol 9 414-426 (2011)
  4. The expanding horizons of asparagine-linked glycosylation. Larkin A, Imperiali B. Biochemistry 50 4411-4426 (2011)
  5. Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation. Mohorko E, Glockshuber R, Aebi M. J Inherit Metab Dis 34 869-878 (2011)
  6. N-linked protein glycosylation in the endoplasmic reticulum. Breitling J, Aebi M. Cold Spring Harb Perspect Biol 5 a013359 (2013)
  7. Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. Abu-Qarn M, Eichler J, Sharon N. Curr Opin Struct Biol 18 544-550 (2008)
  8. Current trends in the structure-activity relationships of sialyltransferases. Audry M, Jeanneau C, Imberty A, Harduin-Lepers A, Delannoy P, Breton C. Glycobiology 21 716-726 (2011)
  9. N-linked glycosylation in Archaea: a structural, functional, and genetic analysis. Jarrell KF, Ding Y, Meyer BH, Albers SV, Kaminski L, Eichler J. Microbiol Mol Biol Rev 78 304-341 (2014)
  10. Protein glycosylation in Archaea: sweet and extreme. Calo D, Kaminski L, Eichler J. Glycobiology 20 1065-1076 (2010)
  11. Bacterial protein N-glycosylation: new perspectives and applications. Nothaft H, Szymanski CM. J Biol Chem 288 6912-6920 (2013)
  12. Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation. Chang A, Singh S, Phillips GN, Thorson JS. Curr Opin Biotechnol 22 800-808 (2011)
  13. Extreme sweetness: protein glycosylation in archaea. Eichler J. Nat Rev Microbiol 11 151-156 (2013)
  14. Emerging facets of prokaryotic glycosylation. Schäffer C, Messner P. FEMS Microbiol Rev 41 49-91 (2017)
  15. Plant secondary metabolism linked glycosyltransferases: An update on expanding knowledge and scopes. Tiwari P, Sangwan RS, Sangwan NS. Biotechnol Adv 34 714-739 (2016)
  16. Sweet to the extreme: protein glycosylation in Archaea. Yurist-Doutsch S, Chaban B, VanDyke DJ, Jarrell KF, Eichler J. Mol Microbiol 68 1079-1084 (2008)
  17. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. Harvey DJ. Mass Spectrom Rev 31 183-311 (2012)
  18. Recent developments in bacterial protein glycan coupling technology and glycoconjugate vaccine design. Terra VS, Mills DC, Yates LE, Abouelhadid S, Cuccui J, Wren BW. J Med Microbiol 61 919-926 (2012)
  19. Hot and sweet: protein glycosylation in Crenarchaeota. Meyer BH, Albers SV. Biochem Soc Trans 41 384-392 (2013)
  20. Glycosyltransferases, glycoside hydrolases: surprise, surprise! Henrissat B, Sulzenbacher G, Bourne Y. Curr Opin Struct Biol 18 527-533 (2008)
  21. Major players on the microbial stage: why archaea are important. Jarrell KF, Walters AD, Bochiwal C, Borgia JM, Dickinson T, Chong JPJ. Microbiology (Reading) 157 919-936 (2011)
  22. Exploring genomes for glycosyltransferases. Hansen SF, Bettler E, Rinnan A, Engelsen SB, Breton C. Mol Biosyst 6 1773-1781 (2010)
  23. Post-translation modification in Archaea: lessons from Haloferax volcanii and other haloarchaea. Eichler J, Maupin-Furlow J. FEMS Microbiol Rev 37 583-606 (2013)
  24. Structural Insight into the Mechanism of N-Linked Glycosylation by Oligosaccharyltransferase. Mohanty S, Chaudhary BP, Zoetewey D. Biomolecules 10 E624 (2020)
  25. Oligosaccharyltransferase structures provide novel insight into the mechanism of asparagine-linked glycosylation in prokaryotic and eukaryotic cells. Shrimal S, Gilmore R. Glycobiology 29 288-297 (2019)
  26. Glycosyltransferase-mediated Sweet Modification in Oral Streptococci. Zhu F, Zhang H, Wu H. J Dent Res 94 659-665 (2015)
  27. N-linked glycosylation in bacteria: an unexpected application. Langdon RH, Cuccui J, Wren BW. Future Microbiol 4 401-412 (2009)
  28. Structural details of the glycosyltransferase step of peptidoglycan assembly. Lovering AL, Gretes M, Strynadka NC. Curr Opin Struct Biol 18 534-543 (2008)
  29. Add salt, add sugar: N-glycosylation in Haloferax volcanii. Kaminski L, Naparstek S, Kandiba L, Cohen-Rosenzweig C, Arbiv A, Konrad Z, Eichler J. Biochem Soc Trans 41 432-435 (2013)
  30. Lipid sugar carriers at the extremes: The phosphodolichols Archaea use in N-glycosylation. Eichler J, Guan Z. Biochim Biophys Acta Mol Cell Biol Lipids 1862 589-599 (2017)
  31. Glycoside Hydrolases and Glycosyltransferases from Hyperthermophilic Archaea: Insights on Their Characteristics and Applications in Biotechnology. Amin K, Tranchimand S, Benvegnu T, Abdel-Razzak Z, Chamieh H. Biomolecules 11 1557 (2021)
  32. Development of inhibitors as research tools for carbohydrate-processing enzymes. Gloster TM. Biochem Soc Trans 40 913-928 (2012)
  33. Dolichol phosphate mannose synthase: a Glycosyltransferase with Unity in molecular diversities. Banerjee DK, Zhang Z, Baksi K, Serrano-Negrón JE. Glycoconj J 34 467-479 (2017)
  34. Post-Translational Modifications Aid Archaeal Survival. Gong P, Lei P, Wang S, Zeng A, Lou H. Biomolecules 10 E584 (2020)

Articles citing this publication (75)

  1. X-ray structure of a bacterial oligosaccharyltransferase. Lizak C, Gerber S, Numao S, Aebi M, Locher KP. Nature 474 350-355 (2011)
  2. Broad spectrum O-linked protein glycosylation in the human pathogen Neisseria gonorrhoeae. Vik A, Aas FE, Anonsen JH, Bilsborough S, Schneider A, Egge-Jacobsen W, Koomey M. Proc Natl Acad Sci U S A 106 4447-4452 (2009)
  3. Oxidoreductase activity of oligosaccharyltransferase subunits Ost3p and Ost6p defines site-specific glycosylation efficiency. Schulz BL, Stirnimann CU, Grimshaw JP, Brozzo MS, Fritsch F, Mohorko E, Capitani G, Glockshuber R, Grütter MG, Aebi M. Proc Natl Acad Sci U S A 106 11061-11066 (2009)
  4. Structural and enzymatic analysis of MshA from Corynebacterium glutamicum: substrate-assisted catalysis. Vetting MW, Frantom PA, Blanchard JS. J Biol Chem 283 15834-15844 (2008)
  5. Structure of the yeast oligosaccharyltransferase complex gives insight into eukaryotic N-glycosylation. Wild R, Kowal J, Eyring J, Ngwa EM, Aebi M, Locher KP. Science 359 545-550 (2018)
  6. Distinct donor and acceptor specificities of Trypanosoma brucei oligosaccharyltransferases. Izquierdo L, Schulz BL, Rodrigues JA, Güther ML, Procter JB, Barton GJ, Aebi M, Ferguson MA. EMBO J 28 2650-2661 (2009)
  7. Comparative structural biology of eubacterial and archaeal oligosaccharyltransferases. Maita N, Nyirenda J, Igura M, Kamishikiryo J, Kohda D. J Biol Chem 285 4941-4950 (2010)
  8. Crystal structures of an archaeal oligosaccharyltransferase provide insights into the catalytic cycle of N-linked protein glycosylation. Matsumoto S, Shimada A, Nyirenda J, Igura M, Kawano Y, Kohda D. Proc Natl Acad Sci U S A 110 17868-17873 (2013)
  9. AglF, aglG and aglI, novel members of a gene island involved in the N-glycosylation of the Haloferax volcanii S-layer glycoprotein. Yurist-Doutsch S, Abu-Qarn M, Battaglia F, Morris HR, Hitchen PG, Dell A, Eichler J. Mol Microbiol 69 1234-1245 (2008)
  10. Protein glycosylation as an adaptive response in Archaea: growth at different salt concentrations leads to alterations in Haloferax volcanii S-layer glycoprotein N-glycosylation. Guan Z, Naparstek S, Calo D, Eichler J. Environ Microbiol 14 743-753 (2012)
  11. Construction of a rice glycosyltransferase phylogenomic database and identification of rice-diverged glycosyltransferases. Cao PJ, Bartley LE, Jung KH, Ronald PC. Mol Plant 1 858-877 (2008)
  12. Glycosyltransferases and oligosaccharyltransferases in Archaea: putative components of the N-glycosylation pathway in the third domain of life. Magidovich H, Eichler J. FEMS Microbiol Lett 300 122-130 (2009)
  13. Mechanism of bacterial oligosaccharyltransferase: in vitro quantification of sequon binding and catalysis. Gerber S, Lizak C, Michaud G, Bucher M, Darbre T, Aebi M, Reymond JL, Locher KP. J Biol Chem 288 8849-8861 (2013)
  14. AglJ adds the first sugar of the N-linked pentasaccharide decorating the Haloferax volcanii S-layer glycoprotein. Kaminski L, Abu-Qarn M, Guan Z, Naparstek S, Ventura VV, Raetz CR, Hitchen PG, Dell A, Eichler J. J Bacteriol 192 5572-5579 (2010)
  15. AglP is a S-adenosyl-L-methionine-dependent methyltransferase that participates in the N-glycosylation pathway of Haloferax volcanii. Magidovich H, Yurist-Doutsch S, Konrad Z, Ventura VV, Dell A, Hitchen PG, Eichler J. Mol Microbiol 76 190-199 (2010)
  16. N-glycosylation in Archaea: on the coordinated actions of Haloferax volcanii AglF and AglM. Yurist-Doutsch S, Magidovich H, Ventura VV, Hitchen PG, Dell A, Eichler J. Mol Microbiol 75 1047-1058 (2010)
  17. The atomic structure of a eukaryotic oligosaccharyltransferase complex. Bai L, Wang T, Zhao G, Kovach A, Li H. Nature 555 328-333 (2018)
  18. AglC and AglK are involved in biosynthesis and attachment of diacetylated glucuronic acid to the N-glycan in Methanococcus voltae. Chaban B, Logan SM, Kelly JF, Jarrell KF. J Bacteriol 191 187-195 (2009)
  19. Molecular basis of lipid-linked oligosaccharide recognition and processing by bacterial oligosaccharyltransferase. Napiórkowska M, Boilevin J, Sovdat T, Darbre T, Reymond JL, Aebi M, Locher KP. Nat Struct Mol Biol 24 1100-1106 (2017)
  20. Ribophorin I regulates substrate delivery to the oligosaccharyltransferase core. Wilson CM, Roebuck Q, High S. Proc Natl Acad Sci U S A 105 9534-9539 (2008)
  21. The highly conserved domain of unknown function 1792 has a distinct glycosyltransferase fold. Zhang H, Zhu F, Yang T, Ding L, Zhou M, Li J, Haslam SM, Dell A, Erlandsen H, Wu H. Nat Commun 5 4339 (2014)
  22. Relaxed acceptor site specificity of bacterial oligosaccharyltransferase in vivo. Schwarz F, Lizak C, Fan YY, Fleurkens S, Kowarik M, Aebi M. Glycobiology 21 45-54 (2011)
  23. The S-layer glycoprotein of the crenarchaeote Sulfolobus acidocaldarius is glycosylated at multiple sites with chitobiose-linked N-glycans. Peyfoon E, Meyer B, Hitchen PG, Panico M, Morris HR, Haslam SM, Albers SV, Dell A. Archaea 2010 754101 (2010)
  24. The yeast oligosaccharyltransferase complex can be replaced by STT3 from Leishmania major. Hese K, Otto C, Routier FH, Lehle L. Glycobiology 19 160-171 (2009)
  25. The C-terminal domain of the Arabinosyltransferase Mycobacterium tuberculosis EmbC is a lectin-like carbohydrate binding module. Alderwick LJ, Lloyd GS, Ghadbane H, May JW, Bhatt A, Eggeling L, Fütterer K, Besra GS. PLoS Pathog 7 e1001299 (2011)
  26. Improvement of N-glycan site occupancy of therapeutic glycoproteins produced in Pichia pastoris. Choi BK, Warburton S, Lin H, Patel R, Boldogh I, Meehl M, d'Anjou M, Pon L, Stadheim TA, Sethuraman N. Appl Microbiol Biotechnol 95 671-682 (2012)
  27. Different routes to the same ending: comparing the N-glycosylation processes of Haloferax volcanii and Haloarcula marismortui, two halophilic archaea from the Dead Sea. Calo D, Guan Z, Naparstek S, Eichler J. Mol Microbiol 81 1166-1177 (2011)
  28. Biochemical evidence for an alternate pathway in N-linked glycoprotein biosynthesis. Larkin A, Chang MM, Whitworth GE, Imperiali B. Nat Chem Biol 9 367-373 (2013)
  29. Diversity in prokaryotic glycosylation: an archaeal-derived N-linked glycan contains legionaminic acid. Kandiba L, Aitio O, Helin J, Guan Z, Permi P, Bamford DH, Eichler J, Roine E. Mol Microbiol 84 578-593 (2012)
  30. Eukaryotic oligosaccharyltransferase generates free oligosaccharides during N-glycosylation. Harada Y, Buser R, Ngwa EM, Hirayama H, Aebi M, Suzuki T. J Biol Chem 288 32673-32684 (2013)
  31. Manual annotation, transcriptional analysis, and protein expression studies reveal novel genes in the agl cluster responsible for N glycosylation in the halophilic archaeon Haloferax volcanii. Yurist-Doutsch S, Eichler J. J Bacteriol 191 3068-3075 (2009)
  32. Exploiting topological constraints to reveal buried sequence motifs in the membrane-bound N-linked oligosaccharyl transferases. Jaffee MB, Imperiali B. Biochemistry 50 7557-7567 (2011)
  33. In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: identification of stimulating factors for in vivo glycosylation. Kämpf MM, Braun M, Sirena D, Ihssen J, Thöny-Meyer L, Ren Q. Microb Cell Fact 14 12 (2015)
  34. Biosynthesis and role of N-linked glycosylation in cell surface structures of archaea with a focus on flagella and s layers. Jarrell KF, Jones GM, Nair DB. Int J Microbiol 2010 470138 (2010)
  35. Defining the topology of the N-glycosylation pathway in the halophilic archaeon Haloferax volcanii. Plavner N, Eichler J. J Bacteriol 190 8045-8052 (2008)
  36. Comparative Analysis of Archaeal Lipid-linked Oligosaccharides That Serve as Oligosaccharide Donors for Asn Glycosylation. Taguchi Y, Fujinami D, Kohda D. J Biol Chem 291 11042-11054 (2016)
  37. Structural insights from random mutagenesis of Campylobacter jejuni oligosaccharyltransferase PglB. Ihssen J, Kowarik M, Wiesli L, Reiss R, Wacker M, Thöny-Meyer L. BMC Biotechnol 12 67 (2012)
  38. Biochemical characterization and membrane topology of Alg2 from Saccharomyces cerevisiae as a bifunctional alpha1,3- and 1,6-mannosyltransferase involved in lipid-linked oligosaccharide biosynthesis. Kämpf M, Absmanner B, Schwarz M, Lehle L. J Biol Chem 284 11900-11912 (2009)
  39. Substrate and metal ion promiscuity in mannosylglycerate synthase. Nielsen MM, Suits MD, Yang M, Barry CS, Martinez-Fleites C, Tailford LE, Flint JE, Dumon C, Davis BG, Gilbert HJ, Davies GJ. J Biol Chem 286 15155-15164 (2011)
  40. AglB, catalyzing the oligosaccharyl transferase step of the archaeal N-glycosylation process, is essential in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Meyer BH, Albers SV. Microbiologyopen 3 531-543 (2014)
  41. Crystallographic and NMR evidence for flexibility in oligosaccharyltransferases and its catalytic significance. Nyirenda J, Matsumoto S, Saitoh T, Maita N, Noda NN, Inagaki F, Kohda D. Structure 21 32-41 (2013)
  42. Substrate promiscuity: AglB, the archaeal oligosaccharyltransferase, can process a variety of lipid-linked glycans. Cohen-Rosenzweig C, Guan Z, Shaanan B, Eichler J. Appl Environ Microbiol 80 486-496 (2014)
  43. N-Linked Glycans Are Assembled on Highly Reduced Dolichol Phosphate Carriers in the Hyperthermophilic Archaea Pyrococcus furiosus. Chang MM, Imperiali B, Eichler J, Guan Z. PLoS One 10 e0130482 (2015)
  44. Galactinol synthase across evolutionary diverse taxa: functional preference for higher plants? Sengupta S, Mukherjee S, Parween S, Majumder AL. FEBS Lett 586 1488-1496 (2012)
  45. Quantitative assessment of the preferences for the amino acid residues flanking archaeal N-linked glycosylation sites. Igura M, Kohda D. Glycobiology 21 575-583 (2011)
  46. Crystal structure of the C-terminal globular domain of the third paralog of the Archaeoglobus fulgidus oligosaccharyltransferases. Matsumoto S, Shimada A, Kohda D. BMC Struct Biol 13 11 (2013)
  47. Membrane Topological Model of Glycosyltransferases of the GT-C Superfamily. Albuquerque-Wendt A, Hütte HJ, Buettner FFR, Routier FH, Bakker H. Int J Mol Sci 20 E4842 (2019)
  48. Genes involved in the endoplasmic reticulum N-glycosylation pathway of the red microalga Porphyridium sp.: a bioinformatic study. Levy-Ontman O, Fisher M, Shotland Y, Weinstein Y, Tekoah Y, Arad SM. Int J Mol Sci 15 2305-2326 (2014)
  49. Salinity regulation of the interaction of halovirus SNJ1 with its host and alteration of the halovirus replication strategy to adapt to the variable ecosystem. Mei Y, He C, Huang Y, Liu Y, Zhang Z, Chen X, Shen P. PLoS One 10 e0123874 (2015)
  50. Structural elucidation of an asparagine-linked oligosaccharide from the hyperthermophilic archaeon, Pyrococcus furiosus. Fujinami D, Matsumoto M, Noguchi T, Sonomoto K, Kohda D. Carbohydr Res 387 30-36 (2014)
  51. Identification of residues important for the activity of Haloferax volcanii AglD, a component of the archaeal N-glycosylation pathway. Kaminski L, Eichler J. Archaea 2010 315108 (2010)
  52. Decorating proteins with "sweets" is a flexible matter. Wei Z, Zhang M. Structure 21 1-2 (2013)
  53. ArnT proteins that catalyze the glycosylation of lipopolysaccharide share common features with bacterial N-oligosaccharyltransferases. Tavares-Carreón F, Fathy Mohamed Y, Andrade A, Valvano MA. Glycobiology 26 286-300 (2016)
  54. Challenging the limit: NMR assignment of a 31 kDa helical membrane protein. Huang C, Mohanty S. J Am Chem Soc 132 3662-3663 (2010)
  55. Comparative genomics analysis of completely sequenced microbial genomes reveals the ubiquity of N-linked glycosylation in prokaryotes. Kumar M, Balaji PV. Mol Biosyst 7 1629-1645 (2011)
  56. Structural elucidation of an asparagine-linked oligosaccharide from the hyperthermophilic archaeon, Archaeoglobus fulgidus. Fujinami D, Nyirenda J, Matsumoto S, Kohda D. Carbohydr Res 413 55-62 (2015)
  57. A conserved DGGK motif is essential for the function of the PglB oligosaccharyltransferase from Campylobacter jejuni. Barre Y, Nothaft H, Thomas C, Liu X, Li J, Ng KKS, Szymanski CM. Glycobiology 27 978-989 (2017)
  58. A novel method of production and biophysical characterization of the catalytic domain of yeast oligosaccharyl transferase. Huang C, Mohanty S, Banerjee M. Biochemistry 49 1115-1126 (2010)
  59. Analysis of substrate specificity of Trypanosoma brucei oligosaccharyltransferases (OSTs) by functional expression of domain-swapped chimeras in yeast. Poljak K, Breitling J, Gauss R, Rugarabamu G, Pellanda M, Aebi M. J Biol Chem 292 20342-20352 (2017)
  60. A novel and simple method of production and biophysical characterization of a mini-membrane protein, Ost4p: a subunit of yeast oligosaccharyl transferase. Kumar A, Ward P, Katre UV, Mohanty S. Biopolymers 97 499-507 (2012)
  61. Glycosyltransferase FvCpsA Regulates Fumonisin Biosynthesis and Virulence in Fusarium verticillioides. Deng Q, Wu H, Gu Q, Tang G, Liu W. Toxins (Basel) 13 718 (2021)
  62. Comment Structural biology: Porthole to catalysis. Gilmore R. Nature 474 292-293 (2011)
  63. In silico Investigation of the PglB Active Site Reveals Transient Catalytic States and Octahedral Metal Ion Coordination. Pedebos C, Arantes PR, Giesel GM, Verli H. Glycobiology 25 1183-1195 (2015)
  64. Inhibition of the oligosaccharyl transferase in Caenorhabditis elegans that compromises ER proteostasis suppresses p38-dependent protection against pathogenic bacteria. Jeong DE, Lee Y, Ham S, Lee D, Kwon S, Park HH, Hwang SY, Yoo JY, Roh TY, Lee SV. PLoS Genet 16 e1008617 (2020)
  65. The essential endoplasmic reticulum chaperone Rot1 is required for protein N- and O-glycosylation in yeast. Pasikowska M, Palamarczyk G, Lehle L. Glycobiology 22 939-947 (2012)
  66. Uncoupling the hydrolysis of lipid-linked oligosaccharide from the oligosaccharyl transfer reaction by point mutations in yeast oligosaccharyltransferase. Yamasaki T, Kohda D. J Biol Chem 295 16072-16085 (2020)
  67. Complementation of an aglB Mutant of Methanococcus maripaludis with Heterologous Oligosaccharyltransferases. Ding Y, Vrionis HA, Schneider J, Berezuk A, Khursigara CM, Jarrell KF. PLoS One 11 e0167611 (2016)
  68. One flexible loop in OST lassos both substrates. Shrimal S, Cherepanova NA, Gilmore R. Nat Struct Mol Biol 24 1009-1010 (2017)
  69. The structure of an archaeal oligosaccharyltransferase provides insight into the strict exclusion of proline from the N-glycosylation sequon. Taguchi Y, Yamasaki T, Ishikawa M, Kawasaki Y, Yukimura R, Mitani M, Hirata K, Kohda D. Commun Biol 4 941 (2021)
  70. N-Glycosylation with synthetic undecaprenyl pyrophosphate-linked oligosaccharide to oligopeptides by PglB oligosaccharyltransferase from Campylobacter jejuni. Ishiwata A, Taguchi Y, Lee YJ, Watanabe T, Kohda D, Ito Y. Chembiochem 16 731-737 (2015)
  71. A Radioisotope-free Oligosaccharyltransferase Assay Method. Yamasaki T, Kohda D. Bio Protoc 9 e3186 (2019)
  72. Biogenesis of Asparagine-Linked Glycoproteins Across Domains of Life-Similarities and Differences. Eichler J, Imperiali B. ACS Chem Biol 13 833-837 (2018)
  73. Subcellular localization of the enterobacterial common antigen GT-E-like glycosyltransferase, WecG. Maczuga N, Tran ENH, Morona R. Mol Microbiol 118 403-416 (2022)
  74. The Role of Substrate Mediated Allostery in the Catalytic Competency of the Bacterial Oligosaccharyltransferase PglB. Morgan BR, Massi F. Front Mol Biosci 8 740904 (2021)
  75. aglgenes, A curated and searchable database of archaeal N-glycosylation pathway components. Godin N, Eichler J. Database (Oxford) 2014 bau046 (2014)