2i75 Citations

Large-scale structural analysis of the classical human protein tyrosine phosphatome.

Abstract

Protein tyrosine phosphatases (PTPs) play a critical role in regulating cellular functions by selectively dephosphorylating their substrates. Here we present 22 human PTP crystal structures that, together with prior structural knowledge, enable a comprehensive analysis of the classical PTP family. Despite their largely conserved fold, surface properties of PTPs are strikingly diverse. A potential secondary substrate-binding pocket is frequently found in phosphatases, and this has implications for both substrate recognition and development of selective inhibitors. Structural comparison identified four diverse catalytic loop (WPD) conformations and suggested a mechanism for loop closure. Enzymatic assays revealed vast differences in PTP catalytic activity and identified PTPD1, PTPD2, and HDPTP as catalytically inert protein phosphatases. We propose a "head-to-toe" dimerization model for RPTPgamma/zeta that is distinct from the "inhibitory wedge" model and that provides a molecular basis for inhibitory regulation. This phosphatome resource gives an expanded insight into intrafamily PTP diversity, catalytic activity, substrate recognition, and autoregulatory self-association.

Articles - 2i75 mentioned but not cited (3)

  1. PTP-MEG2 regulates quantal size and fusion pore opening through two distinct structural bases and substrates. Xu YF, Chen X, Yang Z, Xiao P, Liu CH, Li KS, Yang XZ, Wang YJ, Zhu ZL, Xu ZG, Zhang S, Wang C, Song YC, Zhao WD, Wang CH, Ji ZL, Zhang ZY, Cui M, Sun JP, Yu X. EMBO Rep 22 e52141 (2021)
  2. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  3. Automatic Bayesian Weighting for SAXS Data. Spill YG, Karami Y, Maisonneuve P, Wolff N, Nilges M. Front Mol Biosci 8 671011 (2021)


Reviews citing this publication (59)

  1. Inside the human cancer tyrosine phosphatome. Julien SG, Dubé N, Hardy S, Tremblay ML. Nat Rev Cancer 11 35-49 (2011)
  2. A Call for Systematic Research on Solute Carriers. César-Razquin A, Snijder B, Frappier-Brinton T, Isserlin R, Gyimesi G, Bai X, Reithmeier RA, Hepworth D, Hediger MA, Edwards AM, Superti-Furga G. Cell 162 478-487 (2015)
  3. Inhibition of BET bromodomains as a therapeutic strategy for cancer drug discovery. Fu LL, Tian M, Li X, Li JJ, Huang J, Ouyang L, Zhang Y, Liu B. Oncotarget 6 5501-5516 (2015)
  4. Redox regulation of protein tyrosine phosphatases: structural and chemical aspects. Tanner JJ, Parsons ZD, Cummings AH, Zhou H, Gates KS. Antioxid Redox Signal 15 77-97 (2011)
  5. The human phosphatase interactome: An intricate family portrait. Sacco F, Perfetto L, Castagnoli L, Cesareni G. FEBS Lett 586 2732-2739 (2012)
  6. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Hota PK, Buck M. Cell Mol Life Sci 69 3765-3805 (2012)
  7. Pseudokinases-remnants of evolution or key allosteric regulators? Zeqiraj E, van Aalten DM. Curr Opin Struct Biol 20 772-781 (2010)
  8. Modulation of immune cell signalling by the leukocyte common tyrosine phosphatase, CD45. Saunders AE, Johnson P. Cell Signal 22 339-348 (2010)
  9. Targeting protein tyrosine phosphatases for anticancer drug discovery. Scott LM, Lawrence HR, Sebti SM, Lawrence NJ, Wu J. Curr Pharm Des 16 1843-1862 (2010)
  10. Protein Tyrosine Phosphatases in Hypothalamic Insulin and Leptin Signaling. Zhang ZY, Dodd GT, Tiganis T. Trends Pharmacol Sci 36 661-674 (2015)
  11. Small molecule tools for functional interrogation of protein tyrosine phosphatases. He R, Zeng LF, He Y, Zhang S, Zhang ZY. FEBS J 280 731-750 (2013)
  12. Protein phosphatases and Alzheimer's disease. Braithwaite SP, Stock JB, Lombroso PJ, Nairn AC. Prog Mol Biol Transl Sci 106 343-379 (2012)
  13. Protein tyrosine phosphatases: structure, function, and implication in human disease. Tautz L, Critton DA, Grotegut S. Methods Mol Biol 1053 179-221 (2013)
  14. In control at the ER: PTP1B and the down-regulation of RTKs by dephosphorylation and endocytosis. Stuible M, Tremblay ML. Trends Cell Biol 20 672-679 (2010)
  15. Non-catalytic tyrosine-phosphorylated receptors. Dushek O, Goyette J, van der Merwe PA. Immunol Rev 250 258-276 (2012)
  16. Shepherding AKT and androgen receptor by Ack1 tyrosine kinase. Mahajan K, Mahajan NP. J Cell Physiol 224 327-333 (2010)
  17. The extended human PTPome: a growing tyrosine phosphatase family. Alonso A, Pulido R. FEBS J 283 1404-1429 (2016)
  18. Regulatory Mechanisms and Novel Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases. Yu ZH, Zhang ZY. Chem Rev 118 1069-1091 (2018)
  19. Probing disease-related proteins with fluorogenic composite materials. He XP, Zang Y, James TD, Li J, Chen GR. Chem Soc Rev 44 4239-4248 (2015)
  20. Endocrine role of bone: recent and emerging perspectives beyond osteocalcin. Oldknow KJ, MacRae VE, Farquharson C. J Endocrinol 225 R1-19 (2015)
  21. Protein tyrosine phosphatase structure-function relationships in regulation and pathogenesis. Böhmer F, Szedlacsek S, Tabernero L, Ostman A, den Hertog J. FEBS J 280 413-431 (2013)
  22. Genetic alterations of protein tyrosine phosphatases in human cancers. Zhao S, Sedwick D, Wang Z. Oncogene 34 3885-3894 (2015)
  23. Physiological signaling specificity by protein tyrosine phosphatases. Soulsby M, Bennett AM. Physiology (Bethesda) 24 281-289 (2009)
  24. Targeting protein tyrosine phosphatase SHP2 for therapeutic intervention. Butterworth S, Overduin M, Barr AJ. Future Med Chem 6 1423-1437 (2014)
  25. Receptor-type tyrosine phosphatase ligands: looking for the needle in the haystack. Mohebiany AN, Nikolaienko RM, Bouyain S, Harroch S. FEBS J 280 388-400 (2013)
  26. Large-scale structural biology of the human proteome. Edwards A. Annu Rev Biochem 78 541-568 (2009)
  27. Conservation of the PTEN catalytic motif in the bacterial undecaprenyl pyrophosphate phosphatase, BacA/UppP. Bickford JS, Nick HS. Microbiology (Reading) 159 2444-2455 (2013)
  28. Receptor protein tyrosine phosphatases and cancer: new insights from structural biology. Nikolaienko RM, Agyekum B, Bouyain S. Cell Adh Migr 6 356-364 (2012)
  29. VHR/DUSP3 phosphatase: structure, function and regulation. Pavic K, Duan G, Köhn M. FEBS J 282 1871-1890 (2015)
  30. Extracellular regulation of type IIa receptor protein tyrosine phosphatases: mechanistic insights from structural analyses. Coles CH, Jones EY, Aricescu AR. Semin Cell Dev Biol 37 98-107 (2015)
  31. Protein tyrosine phosphatase σ in proteoglycan-mediated neural regeneration regulation. Chien PN, Ryu SE. Mol Neurobiol 47 220-227 (2013)
  32. Protein tyrosine phosphatase inhibitors: a patent review (2002 - 2011). Sobhia ME, Paul S, Shinde R, Potluri M, Gundam V, Kaur A, Haokip T. Expert Opin Ther Pat 22 125-153 (2012)
  33. Covalent inhibition of protein tyrosine phosphatases. Ruddraraju KV, Zhang ZY. Mol Biosyst 13 1257-1279 (2017)
  34. Targeting Receptor-Type Protein Tyrosine Phosphatases with Biotherapeutics: Is Outside-in Better than Inside-Out? Senis YA, Barr AJ. Molecules 23 569 (2018)
  35. Perspective: Tyrosine phosphatases as novel targets for antiplatelet therapy. Tautz L, Senis YA, Oury C, Rahmouni S. Bioorg Med Chem 23 2786-2797 (2015)
  36. Structure and catalytic mechanism of human protein tyrosine phosphatome. Kim SJ, Ryu SE. BMB Rep 45 693-699 (2012)
  37. Bidentate inhibitors of protein tyrosine phosphatases. Low JL, Chai CL, Yao SQ. Antioxid Redox Signal 20 2225-2250 (2014)
  38. Profiling protein tyrosine phosphatase activity with mechanistic probes. Krishnamurthy D, Barrios AM. Curr Opin Chem Biol 13 375-381 (2009)
  39. The analysis of enzymic free energy relationships using kinetic and computational models. Greig IR. Chem Soc Rev 39 2272-2301 (2010)
  40. A decade of the human genome sequence--how does the medicinal chemist benefit? Brunschweiger A, Hall J. ChemMedChem 7 194-203 (2012)
  41. Fragment-based approaches to TB drugs. Marchetti C, Chan DSH, Coyne AG, Abell C. Parasitology 145 184-195 (2018)
  42. Pseudophosphatases: methods of analysis and physiological functions. Kharitidi D, Manteghi S, Pause A. Methods 65 207-218 (2014)
  43. The Intersection of Structural and Chemical Biology - An Essential Synergy. Zuercher WJ, Elkins JM, Knapp S. Cell Chem Biol 23 173-182 (2016)
  44. The Role of the Tumor Suppressor Gene Protein Tyrosine Phosphatase Gamma in Cancer. Boni C, Sorio C. Front Cell Dev Biol 9 768969 (2021)
  45. The rise and fall of anandamide: processes that control synthesis, degradation, and storage. Biringer RG. Mol Cell Biochem 476 2753-2775 (2021)
  46. A Comprehensive Review of Receptor-Type Tyrosine-Protein Phosphatase Gamma (PTPRG) Role in Health and Non-Neoplastic Disease. Boni C, Laudanna C, Sorio C. Biomolecules 12 84 (2022)
  47. Oncogenic Tyrosine Phosphatases: Novel Therapeutic Targets for Melanoma Treatment. Pardella E, Pranzini E, Leo A, Taddei ML, Paoli P, Raugei G. Cancers (Basel) 12 E2799 (2020)
  48. Protein Tyrosine Phosphatases: A new paradigm in an old signaling system? Welsh CL, Pandey P, Ahuja LG. Adv Cancer Res 152 263-303 (2021)
  49. Structure and functions of His domain protein tyrosine phosphatase in receptor trafficking and cancer 1. Desrochers G, Kazan JM, Pause A. Biochem Cell Biol 97 68-72 (2019)
  50. Type IIa RPTPs and Glycans: Roles in Axon Regeneration and Synaptogenesis. Sakamoto K, Ozaki T, Suzuki Y, Kadomatsu K. Int J Mol Sci 22 5524 (2021)
  51. Vascular PTPs: current developments and challenges for exploitation in Type 2 diabetes-associated vascular dysfunction. Popov D. Biochem Biophys Res Commun 389 1-4 (2009)
  52. Bi-domain protein tyrosine phosphatases reveal an evolutionary adaptation to optimize signal transduction. Ahuja LG, Gopal B. Antioxid Redox Signal 20 2141-2159 (2014)
  53. Protein Tyrosine Phosphatase Receptor Type Z in Central Nervous System Disease. Nagai K, Fujii M, Kitazume S. Int J Mol Sci 23 4414 (2022)
  54. The development of protein tyrosine phosphatase1B inhibitors defined by binding sites in crystalline complexes. Zhang Y, Du Y. Future Med Chem 10 2345-2367 (2018)
  55. Computational Methods in Cooperation with Experimental Approaches to Design Protein Tyrosine Phosphatase 1B Inhibitors in Type 2 Diabetes Drug Design: A Review of the Achievements of This Century. Campos-Almazán MI, Hernández-Campos A, Castillo R, Sierra-Campos E, Valdez-Solana M, Avitia-Domínguez C, Téllez-Valencia A. Pharmaceuticals (Basel) 15 866 (2022)
  56. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Hendriks WJAJ, van Cruchten RTP, Pulido R. Front Cell Dev Biol 10 1051311 (2022)
  57. Regulation of Cell Plasticity by Bromodomain and Extraterminal Domain (BET) Proteins: A New Perspective in Glioblastoma Therapy. Gargano D, Segatto M, Di Bartolomeo S. Int J Mol Sci 24 5665 (2023)
  58. Roles of protein tyrosine phosphatases in hepatocellular carcinoma progression (Review). Chen YL, Hsieh CC, Chu PM, Chen JY, Huang YC, Chen CY. Oncol Rep 49 48 (2023)
  59. Uncovering the Significance of STEP61 in Alzheimer's Disease: Structure, Substrates, and Interactome. Bagwe PV, Deshpande RD, Juhasz G, Sathaye S, Joshi SV. Cell Mol Neurobiol (2023)

Articles citing this publication (230)

  1. Histone recognition and large-scale structural analysis of the human bromodomain family. Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Müller S, Pawson T, Gingras AC, Arrowsmith CH, Knapp S. Cell 149 214-231 (2012)
  2. Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury. Lang BT, Cregg JM, DePaul MA, Tran AP, Xu K, Dyck SM, Madalena KM, Brown BP, Weng YL, Li S, Karimi-Abdolrezaee S, Busch SA, Shen Y, Silver J. Nature 518 404-408 (2015)
  3. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Wen H, Li Y, Xi Y, Jiang S, Stratton S, Peng D, Tanaka K, Ren Y, Xia Z, Wu J, Li B, Barton MC, Li W, Li H, Shi X. Nature 508 263-268 (2014)
  4. Initiation of T cell signaling by CD45 segregation at 'close contacts'. Chang VT, Fernandes RA, Ganzinger KA, Lee SF, Siebold C, McColl J, Jönsson P, Palayret M, Harlos K, Coles CH, Jones EY, Lui Y, Huang E, Gilbert RJC, Klenerman D, Aricescu AR, Davis SJ. Nat Immunol 17 574-582 (2016)
  5. Salicylic acid based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2). Zhang X, He Y, Liu S, Yu Z, Jiang ZX, Yang Z, Dong Y, Nabinger SC, Wu L, Gunawan AM, Wang L, Chan RJ, Zhang ZY. J Med Chem 53 2482-2493 (2010)
  6. Dephosphorylation of the C-terminal tyrosyl residue of the DNA damage-related histone H2A.X is mediated by the protein phosphatase eyes absent. Krishnan N, Jeong DG, Jung SK, Ryu SE, Xiao A, Allis CD, Kim SJ, Tonks NK. J Biol Chem 284 16066-16070 (2009)
  7. LYP inhibits T-cell activation when dissociated from CSK. Vang T, Liu WH, Delacroix L, Wu S, Vasile S, Dahl R, Yang L, Musumeci L, Francis D, Landskron J, Tasken K, Tremblay ML, Lie BA, Page R, Mustelin T, Rahmouni S, Rickert RC, Tautz L. Nat Chem Biol 8 437-446 (2012)
  8. Receptor-type protein-tyrosine phosphatase ζ is a functional receptor for interleukin-34. Nandi S, Cioce M, Yeung YG, Nieves E, Tesfa L, Lin H, Hsu AW, Halenbeck R, Cheng HY, Gokhan S, Mehler MF, Stanley ER. J Biol Chem 288 21972-21986 (2013)
  9. The protein tyrosine phosphatases PTPRZ and PTPRG bind to distinct members of the contactin family of neural recognition molecules. Bouyain S, Watkins DJ. Proc Natl Acad Sci U S A 107 2443-2448 (2010)
  10. Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions? Collins BM, Davis MJ, Hancock JF, Parton RG. Dev Cell 23 11-20 (2012)
  11. Frequent mutation of receptor protein tyrosine phosphatases provides a mechanism for STAT3 hyperactivation in head and neck cancer. Lui VW, Peyser ND, Ng PK, Hritz J, Zeng Y, Lu Y, Li H, Wang L, Gilbert BR, General IJ, Bahar I, Ju Z, Wang Z, Pendleton KP, Xiao X, Du Y, Vries JK, Hammerman PS, Garraway LA, Mills GB, Johnson DE, Grandis JR. Proc Natl Acad Sci U S A 111 1114-1119 (2014)
  12. Structure and function of the intracellular region of the plexin-b1 transmembrane receptor. Tong Y, Hota PK, Penachioni JY, Hamaneh MB, Kim S, Alviani RS, Shen L, He H, Tempel W, Tamagnone L, Park HW, Buck M. J Biol Chem 284 35962-35972 (2009)
  13. Substrate specificity of protein tyrosine phosphatases 1B, RPTPα, SHP-1, and SHP-2. Ren L, Chen X, Luechapanichkul R, Selner NG, Meyer TM, Wavreille AS, Chan R, Iorio C, Zhou X, Neel BG, Pei D. Biochemistry 50 2339-2356 (2011)
  14. Zinc ions modulate protein tyrosine phosphatase 1B activity. Bellomo E, Massarotti A, Hogstrand C, Maret W. Metallomics 6 1229-1239 (2014)
  15. Therapeutic potential of targeting the oncogenic SHP2 phosphatase. Zeng LF, Zhang RY, Yu ZH, Li S, Wu L, Gunawan AM, Lane BS, Mali RS, Li X, Chan RJ, Kapur R, Wells CD, Zhang ZY. J Med Chem 57 6594-6609 (2014)
  16. Tumor suppressor density-enhanced phosphatase-1 (DEP-1) inhibits the RAS pathway by direct dephosphorylation of ERK1/2 kinases. Sacco F, Tinti M, Palma A, Ferrari E, Nardozza AP, van Huijsduijnen RH, Takahashi T, Castagnoli L, Cesareni G. J Biol Chem 284 22048-22058 (2009)
  17. An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering. Keedy DA, Hill ZB, Biel JT, Kang E, Rettenmaier TJ, Brandão-Neto J, Pearce NM, von Delft F, Wells JA, Fraser JS. Elife 7 e36307 (2018)
  18. Sts-2 is a phosphatase that negatively regulates zeta-associated protein (ZAP)-70 and T cell receptor signaling pathways. San Luis B, Sondgeroth B, Nassar N, Carpino N. J Biol Chem 286 15943-15954 (2011)
  19. A signaling network stimulated by β2 integrin promotes the polarization of lytic granules in cytotoxic cells. Zhang M, March ME, Lane WS, Long EO. Sci Signal 7 ra96 (2014)
  20. YEATS2 links histone acetylation to tumorigenesis of non-small cell lung cancer. Mi W, Guan H, Lyu J, Zhao D, Xi Y, Jiang S, Andrews FH, Wang X, Gagea M, Wen H, Tora L, Dent SYR, Kutateladze TG, Li W, Li H, Shi X. Nat Commun 8 1088 (2017)
  21. Mouse and human strategies identify PTPN14 as a modifier of angiogenesis and hereditary haemorrhagic telangiectasia. Benzinou M, Clermont FF, Letteboer TG, Kim JH, Espejel S, Harradine KA, Arbelaez J, Luu MT, Roy R, Quigley D, Higgins MN, Zaid M, Aouizerat BE, van Amstel JK, Giraud S, Dupuis-Girod S, Lesca G, Plauchu H, Hughes CC, Westermann CJ, Akhurst RJ. Nat Commun 3 616 (2012)
  22. Crystal structure of the human lymphoid tyrosine phosphatase catalytic domain: insights into redox regulation . Tsai SJ, Sen U, Zhao L, Greenleaf WB, Dasgupta J, Fiorillo E, Orrú V, Bottini N, Chen XS. Biochemistry 48 4838-4845 (2009)
  23. Novel approaches for targeting kinases: allosteric inhibition, allosteric activation and pseudokinases. Cowan-Jacob SW, Jahnke W, Knapp S. Future Med Chem 6 541-561 (2014)
  24. HD-PTP is a catalytically inactive tyrosine phosphatase due to a conserved divergence in its phosphatase domain. Gingras MC, Zhang YL, Kharitidi D, Barr AJ, Knapp S, Tremblay ML, Pause A. PLoS One 4 e5105 (2009)
  25. Cadmium is a potent inhibitor of PPM phosphatases and targets the M1 binding site. Pan C, Liu HD, Gong Z, Yu X, Hou XB, Xie DD, Zhu XB, Li HW, Tang JY, Xu YF, Yu JQ, Zhang LY, Fang H, Xiao KH, Chen YG, Wang JY, Pang Q, Chen W, Sun JP. Sci Rep 3 2333 (2013)
  26. Pleiotrophin suppression of receptor protein tyrosine phosphatase-β/ζ maintains the self-renewal competence of fetal human oligodendrocyte progenitor cells. McClain CR, Sim FJ, Goldman SA. J Neurosci 32 15066-15075 (2012)
  27. Selective inhibitors of the protein tyrosine phosphatase SHP2 block cellular motility and growth of cancer cells in vitro and in vivo. Grosskopf S, Eckert C, Arkona C, Radetzki S, Böhm K, Heinemann U, Wolber G, von Kries JP, Birchmeier W, Rademann J. ChemMedChem 10 815-826 (2015)
  28. The T cell receptor triggering apparatus is composed of monovalent or monomeric proteins. James JR, McColl J, Oliveira MI, Dunne PD, Huang E, Jansson A, Nilsson P, Sleep DL, Gonçalves CM, Morgan SH, Felce JH, Mahen R, Fernandes RA, Carmo AM, Klenerman D, Davis SJ. J Biol Chem 286 31993-32001 (2011)
  29. G9a-mediated methylation of ERα links the PHF20/MOF histone acetyltransferase complex to hormonal gene expression. Zhang X, Peng D, Xi Y, Yuan C, Sagum CA, Klein BJ, Tanaka K, Wen H, Kutateladze TG, Li W, Bedford MT, Shi X. Nat Commun 7 10810 (2016)
  30. Identification of new substrates of the protein-tyrosine phosphatase PTP1B by Bayesian integration of proteome evidence. Ferrari E, Tinti M, Costa S, Corallino S, Nardozza AP, Chatraryamontri A, Ceol A, Cesareni G, Castagnoli L. J Biol Chem 286 4173-4185 (2011)
  31. Combinatorial inhibition of PTPN12-regulated receptors leads to a broadly effective therapeutic strategy in triple-negative breast cancer. Nair A, Chung HC, Sun T, Tyagi S, Dobrolecki LE, Dominguez-Vidana R, Kurley SJ, Orellana M, Renwick A, Henke DM, Katsonis P, Schmitt E, Chan DW, Li H, Mao S, Petrovic I, Creighton CJ, Gutierrez C, Dubrulle J, Stossi F, Tyner JW, Lichtarge O, Lin CY, Zhang B, Scott KL, Hilsenbeck SG, Sun J, Yu X, Osborne CK, Schiff R, Christensen JG, Shields DJ, Rimawi MF, Ellis MJ, Shaw CA, Lewis MT, Westbrook TF. Nat Med 24 505-511 (2018)
  32. HuPho: the human phosphatase portal. Liberti S, Sacco F, Calderone A, Perfetto L, Iannuccelli M, Panni S, Santonico E, Palma A, Nardozza AP, Castagnoli L, Cesareni G. FEBS J 280 379-387 (2013)
  33. Lck and the nature of the T cell receptor trigger. Davis SJ, van der Merwe PA. Trends Immunol 32 1-5 (2011)
  34. A novel molecular diagnostic of glioblastomas: detection of an extracellular fragment of protein tyrosine phosphatase mu. Burden-Gulley SM, Gates TJ, Burgoyne AM, Cutter JL, Lodowski DT, Robinson S, Sloan AE, Miller RH, Basilion JP, Brady-Kalnay SM. Neoplasia 12 305-316 (2010)
  35. EKPD: a hierarchical database of eukaryotic protein kinases and protein phosphatases. Wang Y, Liu Z, Cheng H, Gao T, Pan Z, Yang Q, Guo A, Xue Y. Nucleic Acids Res 42 D496-502 (2014)
  36. The receptor protein tyrosine phosphatase LAR promotes R7 photoreceptor axon targeting by a phosphatase-independent signaling mechanism. Hofmeyer K, Treisman JE. Proc Natl Acad Sci U S A 106 19399-19404 (2009)
  37. PTPD1 supports receptor stability and mitogenic signaling in bladder cancer cells. Carlucci A, Porpora M, Garbi C, Galgani M, Santoriello M, Mascolo M, di Lorenzo D, Altieri V, Quarto M, Terracciano L, Gottesman ME, Insabato L, Feliciello A. J Biol Chem 285 39260-39270 (2010)
  38. SHP-1 is a target of regorafenib in colorectal cancer. Fan LC, Teng HW, Shiau CW, Lin H, Hung MH, Chen YL, Huang JW, Tai WT, Yu HC, Chen KF. Oncotarget 5 6243-6251 (2014)
  39. The adaptor protein TRAF3 inhibits interleukin-6 receptor signaling in B cells to limit plasma cell development. Lin WW, Yi Z, Stunz LL, Maine CJ, Sherman LA, Bishop GA. Sci Signal 8 ra88 (2015)
  40. Multidentate small-molecule inhibitors of vaccinia H1-related (VHR) phosphatase decrease proliferation of cervix cancer cells. Wu S, Vossius S, Rahmouni S, Miletic AV, Vang T, Vazquez-Rodriguez J, Cerignoli F, Arimura Y, Williams S, Hayes T, Moutschen M, Vasile S, Pellecchia M, Mustelin T, Tautz L. J Med Chem 52 6716-6723 (2009)
  41. Quantitative Tyrosine Phosphoproteomics of Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor-treated Lung Adenocarcinoma Cells Reveals Potential Novel Biomarkers of Therapeutic Response. Zhang X, Maity T, Kashyap MK, Bansal M, Venugopalan A, Singh S, Awasthi S, Marimuthu A, Charles Jacob HK, Belkina N, Pitts S, Cultraro CM, Gao S, Kirkali G, Biswas R, Chaerkady R, Califano A, Pandey A, Guha U. Mol Cell Proteomics 16 891-910 (2017)
  42. Structural basis of SALM5-induced PTPδ dimerization for synaptic differentiation. Lin Z, Liu J, Ding H, Xu F, Liu H. Nat Commun 9 268 (2018)
  43. Suppression of protein tyrosine phosphatase N23 predisposes to breast tumorigenesis via activation of FYN kinase. Zhang S, Fan G, Hao Y, Hammell M, Wilkinson JE, Tonks NK. Genes Dev 31 1939-1957 (2017)
  44. Leveraging Reciprocity to Identify and Characterize Unknown Allosteric Sites in Protein Tyrosine Phosphatases. Cui DS, Beaumont V, Ginther PS, Lipchock JM, Loria JP. J Mol Biol 429 2360-2372 (2017)
  45. Molecular mechanism of ERK dephosphorylation by striatal-enriched protein tyrosine phosphatase. Li R, Xie DD, Dong JH, Li H, Li KS, Su J, Chen LZ, Xu YF, Wang HM, Gong Z, Cui GY, Yu X, Wang K, Yao W, Xin T, Li MY, Xiao KH, An XF, Huo Y, Xu ZG, Sun JP, Pang Q. J Neurochem 128 315-329 (2014)
  46. Role of Chondroitin Sulfate (CS) Modification in the Regulation of Protein-tyrosine Phosphatase Receptor Type Z (PTPRZ) Activity: PLEIOTROPHIN-PTPRZ-A SIGNALING IS INVOLVED IN OLIGODENDROCYTE DIFFERENTIATION. Kuboyama K, Fujikawa A, Suzuki R, Tanga N, Noda M. J Biol Chem 291 18117-18128 (2016)
  47. Targeting a cryptic allosteric site for selective inhibition of the oncogenic protein tyrosine phosphatase Shp2. Chio CM, Lim CS, Bishop AC. Biochemistry 54 497-504 (2015)
  48. A potent and selective small-molecule inhibitor for the lymphoid-specific tyrosine phosphatase (LYP), a target associated with autoimmune diseases. He Y, Liu S, Menon A, Stanford S, Oppong E, Gunawan AM, Wu L, Wu DJ, Barrios AM, Bottini N, Cato AC, Zhang ZY. J Med Chem 56 4990-5008 (2013)
  49. Effect of a novel proteoglycan PTP1B inhibitor from Ganoderma lucidum on the amelioration of hyperglycaemia and dyslipidaemia in db/db mice. Wang CD, Teng BS, He YM, Wu JS, Pan D, Pan LF, Zhang D, Fan ZH, Yang HJ, Zhou P. Br J Nutr 108 2014-2025 (2012)
  50. Targeting PTPRZ inhibits stem cell-like properties and tumorigenicity in glioblastoma cells. Fujikawa A, Sugawara H, Tanaka T, Matsumoto M, Kuboyama K, Suzuki R, Tanga N, Ogata A, Masumura M, Noda M. Sci Rep 7 5609 (2017)
  51. A highly selective and potent PTP-MEG2 inhibitor with therapeutic potential for type 2 diabetes. Zhang S, Liu S, Tao R, Wei D, Chen L, Shen W, Yu ZH, Wang L, Jones DR, Dong XC, Zhang ZY. J Am Chem Soc 134 18116-18124 (2012)
  52. Interaction network of the ribosome assembly machinery from a eukaryotic thermophile. Baßler J, Ahmed YL, Kallas M, Kornprobst M, Calviño FR, Gnädig M, Thoms M, Stier G, Ismail S, Kharde S, Castillo N, Griesel S, Bastuck S, Bradatsch B, Thomson E, Flemming D, Sinning I, Hurt E. Protein Sci 26 327-342 (2017)
  53. Interdependence between EGFR and Phosphatases Spatially Established by Vesicular Dynamics Generates a Growth Factor Sensing and Responding Network. Stanoev A, Mhamane A, Schuermann KC, Grecco HE, Stallaert W, Baumdick M, Brüggemann Y, Joshi MS, Roda-Navarro P, Fengler S, Stockert R, Roßmannek L, Luig J, Koseska A, Bastiaens PIH. Cell Syst 7 295-309.e11 (2018)
  54. Using small molecules to target protein phosphatases. Vintonyak VV, Waldmann H, Rauh D. Bioorg Med Chem 19 2145-2155 (2011)
  55. BMX Negatively Regulates BAK Function, Thereby Increasing Apoptotic Resistance to Chemotherapeutic Drugs. Fox JL, Storey A. Cancer Res 75 1345-1355 (2015)
  56. Down-regulation of protein-tyrosine phosphatases activates an immune receptor in the absence of its translocation into lipid rafts. Heneberg P, Dráberová L, Bambousková M, Pompach P, Dráber P. J Biol Chem 285 12787-12802 (2010)
  57. Inhibition of lymphoid tyrosine phosphatase by benzofuran salicylic acids. Vang T, Xie Y, Liu WH, Vidović D, Liu Y, Wu S, Smith DH, Rinderspacher A, Chung C, Gong G, Mustelin T, Landry DW, Rickert RC, Schürer SC, Deng SX, Tautz L. J Med Chem 54 562-571 (2011)
  58. Activation of Src and transformation by an RPTPα splice mutant found in human tumours. Huang J, Yao L, Xu R, Wu H, Wang M, White BS, Shalloway D, Zheng X. EMBO J 30 3200-3211 (2011)
  59. Coupling an EML4-ALK-centric interactome with RNA interference identifies sensitizers to ALK inhibitors. Zhang G, Scarborough H, Kim J, Rozhok AI, Chen YA, Zhang X, Song L, Bai Y, Fang B, Liu RZ, Koomen J, Tan AC, Degregori J, Haura EB. Sci Signal 9 rs12 (2016)
  60. Dimerization of tyrosine phosphatase PTPRO decreases its activity and ability to inactivate TrkC. Hower AE, Beltran PJ, Bixby JL. J Neurochem 110 1635-1647 (2009)
  61. Hepatic protein tyrosine phosphatase receptor gamma links obesity-induced inflammation to insulin resistance. Brenachot X, Ramadori G, Ioris RM, Veyrat-Durebex C, Altirriba J, Aras E, Ljubicic S, Kohno D, Fabbiano S, Clement S, Goossens N, Trajkovski M, Harroch S, Negro F, Coppari R. Nat Commun 8 1820 (2017)
  62. PTPN12 promotes resistance to oxidative stress and supports tumorigenesis by regulating FOXO signaling. Harris IS, Blaser H, Moreno J, Treloar AE, Gorrini C, Sasaki M, Mason JM, Knobbe CB, Rufini A, Hallé M, Elia AJ, Wakeham A, Tremblay ML, Melino G, Done S, Mak TW. Oncogene 33 1047-1054 (2014)
  63. T-cell protein tyrosine phosphatase regulates bone resorption and whole-body insulin sensitivity through its expression in osteoblasts. Zee T, Settembre C, Levine RL, Karsenty G. Mol Cell Biol 32 1080-1088 (2012)
  64. Diverse levels of sequence selectivity and catalytic efficiency of protein-tyrosine phosphatases. Selner NG, Luechapanichkul R, Chen X, Neel BG, Zhang ZY, Knapp S, Bell CE, Pei D. Biochemistry 53 397-412 (2014)
  65. PTPRO represses ERBB2-driven breast oncogenesis by dephosphorylation and endosomal internalization of ERBB2. Dong H, Ma L, Gan J, Lin W, Chen C, Yao Z, Du L, Zheng L, Ke C, Huang X, Song H, Kumar R, Yeung SC, Zhang H. Oncogene 36 410-422 (2017)
  66. Role of Receptor Protein Tyrosine Phosphatase γ in Sensing Extracellular CO2 and HCO3. Zhou Y, Skelton LA, Xu L, Chandler MP, Berthiaume JM, Boron WF. J Am Soc Nephrol 27 2616-2621 (2016)
  67. SHP2 is a target of the immunosuppressant tautomycetin. Liu S, Yu Z, Yu X, Huang SX, Luo Y, Wu L, Shen W, Yang Z, Wang L, Gunawan AM, Chan RJ, Shen B, Zhang ZY. Chem Biol 18 101-110 (2011)
  68. Letter What controls T cell receptor phosphorylation? Fernandes RA, Yu C, Carmo AM, Evans EJ, van der Merwe PA, Davis SJ. Cell 142 668-669 (2010)
  69. A conserved motif in JNK/p38-specific MAPK phosphatases as a determinant for JNK1 recognition and inactivation. Liu X, Zhang CS, Lu C, Lin SC, Wu JW, Wang ZX. Nat Commun 7 10879 (2016)
  70. CD148 enhances platelet responsiveness to collagen by maintaining a pool of active Src family kinases. Ellison S, Mori J, Barr AJ, Senis YA. J Thromb Haemost 8 1575-1583 (2010)
  71. Exploring the Existing Drug Space for Novel pTyr Mimetic and SHP2 Inhibitors. He R, Yu ZH, Zhang RY, Wu L, Gunawan AM, Lane BS, Shim JS, Zeng LF, He Y, Chen L, Wells CD, Liu JO, Zhang ZY. ACS Med Chem Lett 6 782-786 (2015)
  72. Inhibition of hematopoietic protein tyrosine phosphatase augments and prolongs ERK1/2 and p38 activation. Sergienko E, Xu J, Liu WH, Dahl R, Critton DA, Su Y, Brown BT, Chan X, Yang L, Bobkova EV, Vasile S, Yuan H, Rascon J, Colayco S, Sidique S, Cosford ND, Chung TD, Mustelin T, Page R, Lombroso PJ, Tautz L. ACS Chem Biol 7 367-377 (2012)
  73. The family-wide structure and function of human dual-specificity protein phosphatases. Jeong DG, Wei CH, Ku B, Jeon TJ, Chien PN, Kim JK, Park SY, Hwang HS, Ryu SY, Park H, Kim DS, Kim SJ, Ryu SE. Acta Crystallogr D Biol Crystallogr 70 421-435 (2014)
  74. Crystal Structure and Substrate Specificity of PTPN12. Li H, Yang F, Liu C, Xiao P, Xu Y, Liang Z, Liu C, Wang H, Wang W, Zheng W, Zhang W, Ma X, He D, Song X, Cui F, Xu Z, Yi F, Sun JP, Yu X. Cell Rep 15 1345-1358 (2016)
  75. Expanding molecular modeling and design tools to non-natural sidechains. Gfeller D, Michielin O, Zoete V. J Comput Chem 33 1525-1535 (2012)
  76. High-throughput screen using a single-cell tyrosine phosphatase assay reveals biologically active inhibitors of tyrosine phosphatase CD45. Stanford SM, Panchal RG, Walker LM, Wu DJ, Falk MD, Mitra S, Damle SS, Ruble D, Kaltcheva T, Zhang S, Zhang ZY, Bavari S, Barrios AM, Bottini N. Proc Natl Acad Sci U S A 109 13972-13977 (2012)
  77. PTPRZ1 regulates calmodulin phosphorylation and tumor progression in small-cell lung carcinoma. Makinoshima H, Ishii G, Kojima M, Fujii S, Higuchi Y, Kuwata T, Ochiai A. BMC Cancer 12 537 (2012)
  78. Structural basis for recognition of the tumor suppressor protein PTPN14 by the oncoprotein E7 of human papillomavirus. Yun HY, Kim MW, Lee HS, Kim W, Shin JH, Kim H, Shin HC, Park H, Oh BH, Kim WK, Bae KH, Lee SC, Lee EW, Ku B, Kim SJ. PLoS Biol 17 e3000367 (2019)
  79. Andrographolide induces vascular smooth muscle cell apoptosis through a SHP-1-PP2A-p38MAPK-p53 cascade. Chen YY, Hsieh CY, Jayakumar T, Lin KH, Chou DS, Lu WJ, Hsu MJ, Sheu JR. Sci Rep 4 5651 (2014)
  80. Development of inhibitors of receptor protein tyrosine phosphatase β/ζ (PTPRZ1) as candidates for CNS disorders. Pastor M, Fernández-Calle R, Di Geronimo B, Vicente-Rodríguez M, Zapico JM, Gramage E, Coderch C, Pérez-García C, Lasek AW, Puchades-Carrasco L, Pineda-Lucena A, de Pascual-Teresa B, Herradón G, Ramos A. Eur J Med Chem 144 318-329 (2018)
  81. Enhanced insulin signaling in density-enhanced phosphatase-1 (DEP-1) knockout mice. Krüger J, Brachs S, Trappiel M, Kintscher U, Meyborg H, Wellnhofer E, Thöne-Reineke C, Stawowy P, Östman A, Birkenfeld AL, Böhmer FD, Kappert K. Mol Metab 4 325-336 (2015)
  82. Expressing the human proteome for affinity proteomics: optimising expression of soluble protein domains and in vivo biotinylation. Keates T, Cooper CD, Savitsky P, Allerston CK, Phillips C, Hammarström M, Daga N, Berridge G, Mahajan P, Burgess-Brown NA, Müller S, Gräslund S, Gileadi O. N Biotechnol 29 515-525 (2012)
  83. Protein tyrosine phosphatase receptor type γ is a JAK phosphatase and negatively regulates leukocyte integrin activation. Mirenda M, Toffali L, Montresor A, Scardoni G, Sorio C, Laudanna C. J Immunol 194 2168-2179 (2015)
  84. Quantification of the host response proteome after mammalian reovirus T1L infection. Berard AR, Cortens JP, Krokhin O, Wilkins JA, Severini A, Coombs KM. PLoS One 7 e51939 (2012)
  85. Shp2 protein tyrosine phosphatase inhibitor activity of estramustine phosphate and its triterpenoid analogs. Scott LM, Chen L, Daniel KG, Brooks WH, Guida WC, Lawrence HR, Sebti SM, Lawrence NJ, Wu J. Bioorg Med Chem Lett 21 730-733 (2011)
  86. The catalytically inactive tyrosine phosphatase HD-PTP/PTPN23 is a novel regulator of SMN complex localization. Husedzinovic A, Neumann B, Reymann J, Draeger-Meurer S, Chari A, Erfle H, Fischer U, Gruss OJ. Mol Biol Cell 26 161-171 (2015)
  87. The homophilic receptor PTPRK selectively dephosphorylates multiple junctional regulators to promote cell-cell adhesion. Fearnley GW, Young KA, Edgar JR, Antrobus R, Hay IM, Liang WC, Martinez-Martin N, Lin W, Deane JE, Sharpe HJ. Elife 8 e44597 (2019)
  88. Evolutionary and structural analyses of mammalian haloacid dehalogenase-type phosphatases AUM and chronophin provide insight into the basis of their different substrate specificities. Seifried A, Knobloch G, Duraphe PS, Segerer G, Manhard J, Schindelin H, Schultz J, Gohla A. J Biol Chem 289 3416-3431 (2014)
  89. Loop Dynamics and Enzyme Catalysis in Protein Tyrosine Phosphatases. Crean RM, Biler M, van der Kamp MW, Hengge AC, Kamerlin SCL. J Am Chem Soc 143 3830-3845 (2021)
  90. The case for open-access chemical biology. A strategy for pre-competitive medicinal chemistry to promote drug discovery. Weigelt J. EMBO Rep 10 941-945 (2009)
  91. Distribution of different isoforms of receptor protein tyrosine phosphatase γ (Ptprg-RPTP γ) in adult mouse brain: upregulation during neuroinflammation. Lorenzetto E, Moratti E, Vezzalini M, Harroch S, Sorio C, Buffelli M. Brain Struct Funct 219 875-890 (2014)
  92. Regulation of lymphoid tyrosine phosphatase activity: inhibition of the catalytic domain by the proximal interdomain. Liu Y, Stanford SM, Jog SP, Fiorillo E, Orrú V, Comai L, Bottini N. Biochemistry 48 7525-7532 (2009)
  93. Druggability analysis and classification of protein tyrosine phosphatase active sites. Ghattas MA, Raslan N, Sadeq A, Al Sorkhy M, Atatreh N. Drug Des Devel Ther 10 3197-3209 (2016)
  94. Dynamic substrate enhancement for the identification of specific, second-site-binding fragments targeting a set of protein tyrosine phosphatases. Schmidt MF, Groves MR, Rademann J. Chembiochem 12 2640-2646 (2011)
  95. Comment Editorial: Leishmania survival mechanisms: the role of host phosphatases. Shio MT, Olivier M. J Leukoc Biol 88 1-3 (2010)
  96. PRL3 pseudophosphatase activity is necessary and sufficient to promote metastatic growth. Kozlov G, Funato Y, Chen YS, Zhang Z, Illes K, Miki H, Gehring K. J Biol Chem 295 11682-11692 (2020)
  97. Alpha7 helix plays an important role in the conformational stability of PTP1B. Olmez EO, Alakent B. J Biomol Struct Dyn 28 675-693 (2011)
  98. Identification of tyrosine phosphatase ligands for contactin cell adhesion molecules. Bouyain S, Watkins DJ. Commun Integr Biol 3 284-286 (2010)
  99. Immune receptor inhibition through enforced phosphatase recruitment. Fernandes RA, Su L, Nishiga Y, Ren J, Bhuiyan AM, Cheng N, Kuo CJ, Picton LK, Ohtsuki S, Majzner RG, Rietberg SP, Mackall CL, Yin Q, Ali LR, Yang X, Savvides CS, Sage J, Dougan M, Garcia KC. Nature 586 779-784 (2020)
  100. Regulation of the catalytic activity of the human phosphatase PTPN4 by its PDZ domain. Maisonneuve P, Caillet-Saguy C, Raynal B, Gilquin B, Chaffotte A, Pérez J, Zinn-Justin S, Delepierre M, Buc H, Cordier F, Wolff N. FEBS J 281 4852-4865 (2014)
  101. Structural stability of human protein tyrosine phosphatase ρ catalytic domain: effect of point mutations. Pasquo A, Consalvi V, Knapp S, Alfano I, Ardini M, Stefanini S, Chiaraluce R. PLoS One 7 e32555 (2012)
  102. Structure and substrate recognition of the Staphylococcus aureus protein tyrosine phosphatase PtpA. Vega C, Chou S, Engel K, Harrell ME, Rajagopal L, Grundner C. J Mol Biol 413 24-31 (2011)
  103. The Trypanosoma brucei life cycle switch TbPTP1 is structurally conserved and dephosphorylates the nucleolar protein NOPP44/46. Chou S, Jensen BC, Parsons M, Alber T, Grundner C. J Biol Chem 285 22075-22081 (2010)
  104. qFit 3: Protein and ligand multiconformer modeling for X-ray crystallographic and single-particle cryo-EM density maps. Riley BT, Wankowicz SA, de Oliveira SHP, van Zundert GCP, Hogan DW, Fraser JS, Keedy DA, van den Bedem H. Protein Sci 30 270-285 (2021)
  105. A loss-of-function screen for phosphatases that regulate neurite outgrowth identifies PTPN12 as a negative regulator of TrkB tyrosine phosphorylation. Ambjørn M, Dubreuil V, Miozzo F, Nigon F, Møller B, Issazadeh-Navikas S, Berg J, Lees M, Sap J. PLoS One 8 e65371 (2013)
  106. Inhibition of protein tyrosine phosphatase receptor type F suppresses Wnt signaling in colorectal cancer. Gan T, Stevens AT, Xiong X, Wen YA, Farmer TN, Li AT, Stevens PD, Golshani S, Weiss HL, Evers BM, Gao T. Oncogene 39 6789-6801 (2020)
  107. Integrating virtual and biochemical screening for protein tyrosine phosphatase inhibitor discovery. Martin KR, Narang P, Medina-Franco JL, Meurice N, MacKeigan JP. Methods 65 219-228 (2014)
  108. Minimally disruptive optical control of protein tyrosine phosphatase 1B. Hongdusit A, Zwart PH, Sankaran B, Fox JM. Nat Commun 11 788 (2020)
  109. PD-1 suppresses TCR-CD8 cooperativity during T-cell antigen recognition. Li K, Yuan Z, Lyu J, Ahn E, Davis SJ, Ahmed R, Zhu C. Nat Commun 12 2746 (2021)
  110. Reciprocal allosteric regulation of p38γ and PTPN3 involves a PDZ domain-modulated complex formation. Chen KE, Lin SY, Wu MJ, Ho MR, Santhanam A, Chou CC, Meng TC, Wang AH. Sci Signal 7 ra98 (2014)
  111. Small molecule inhibitors of SHP2 tyrosine phosphatase discovered by virtual screening. Yu ZH, Chen L, Wu L, Liu S, Wang L, Zhang ZY. Bioorg Med Chem Lett 21 4238-4242 (2011)
  112. Small molecule receptor protein tyrosine phosphatase γ (RPTPγ) ligands that inhibit phosphatase activity via perturbation of the tryptophan-proline-aspartate (WPD) loop. Sheriff S, Beno BR, Zhai W, Kostich WA, McDonnell PA, Kish K, Goldfarb V, Gao M, Kiefer SE, Yanchunas J, Huang Y, Shi S, Zhu S, Dzierba C, Bronson J, Macor JE, Appiah KK, Westphal RS, O'Connell J, Gerritz SW. J Med Chem 54 6548-6562 (2011)
  113. Visualizing active-site dynamics in single crystals of HePTP: opening of the WPD loop involves coordinated movement of the E loop. Critton DA, Tautz L, Page R. J Mol Biol 405 619-629 (2011)
  114. Fullerene derivatives as a new class of inhibitors of protein tyrosine phosphatases. Kobzar OL, Trush VV, Tanchuk VY, Zhilenkov AV, Troshin PA, Vovk AI. Bioorg Med Chem Lett 24 3175-3179 (2014)
  115. Positive Regulation of Lyn Kinase by CD148 Is Required for B Cell Receptor Signaling in B1 but Not B2 B Cells. Skrzypczynska KM, Zhu JW, Weiss A. Immunity 45 1232-1244 (2016)
  116. Rational design of allosteric-inhibition sites in classical protein tyrosine phosphatases. Chio CM, Yu X, Bishop AC. Bioorg Med Chem 23 2828-2838 (2015)
  117. Receptor tyrosine phosphatase PTPγ is a regulator of spinal cord neurogenesis. Hashemi H, Hurley M, Gibson A, Panova V, Tchetchelnitski V, Barr A, Stoker AW. Mol Cell Neurosci 46 469-482 (2011)
  118. A specific amino acid context in EGFR and HER2 phosphorylation sites enables selective binding to the active site of Src homology phosphatase 2 (SHP2). Hartman Z, Geldenhuys WJ, Agazie YM. J Biol Chem 295 3563-3575 (2020)
  119. Dynamic recruitment of protein tyrosine phosphatase PTPD1 to EGF stimulation sites potentiates EGFR activation. Roda-Navarro P, Bastiaens PI. PLoS One 9 e103203 (2014)
  120. Structural and Biochemical Analysis of Tyrosine Phosphatase Related to Biofilm Formation A (TpbA) from the Opportunistic Pathogen Pseudomonas aeruginosa PAO1. Xu K, Li S, Yang W, Li K, Bai Y, Xu Y, Jin J, Wang Y, Bartlam M. PLoS One 10 e0124330 (2015)
  121. Targeting protein tyrosine phosphatase PTP-PEST (PTPN12) for therapeutic intervention in acute myocardial infarction. Yang CF, Chen YY, Singh JP, Hsu SF, Liu YW, Yang CY, Chang CW, Chen SN, Shih RH, Hsu SD, Jou YS, Cheng CF, Meng TC. Cardiovasc Res 116 1032-1046 (2020)
  122. The non-receptor tyrosine phosphatase type 14 blocks caveolin-1-enhanced cancer cell metastasis. Díaz-Valdivia NI, Díaz J, Contreras P, Campos A, Rojas-Celis V, Burgos-Ravanal RA, Lobos-González L, Torres VA, Perez VI, Frei B, Leyton L, Quest AFG. Oncogene 39 3693-3709 (2020)
  123. The receptor protein tyrosine phosphatase PTPRB negatively regulates FGF2-dependent branching morphogenesis. Soady KJ, Tornillo G, Kendrick H, Meniel V, Olijnyk-Dallis D, Morris JS, Stein T, Gusterson BA, Isacke CM, Smalley MJ. Development 144 3777-3788 (2017)
  124. A novel partially open state of SHP2 points to a "multiple gear" regulation mechanism. Tao Y, Xie J, Zhong Q, Wang Y, Zhang S, Luo F, Wen F, Xie J, Zhao J, Sun X, Long H, Ma J, Zhang Q, Long J, Fang X, Lu Y, Li D, Li M, Zhu J, Sun B, Li G, Diao J, Liu C. J Biol Chem 296 100538 (2021)
  125. Characterization of PTPRG in knockdown and phosphatase-inactive mutant mice and substrate trapping analysis of PTPRG in mammalian cells. Zhang W, Savelieva KV, Tran DT, Pogorelov VM, Cullinan EB, Baker KB, Platt KA, Hu S, Rajan I, Xu N, Lanthorn TH. PLoS One 7 e45500 (2012)
  126. Characterization of Protein Tyrosine Phosphatase 1B Inhibition by Chlorogenic Acid and Cichoric Acid. Lipchock JM, Hendrickson HP, Douglas BB, Bird KE, Ginther PS, Rivalta I, Ten NS, Batista VS, Loria JP. Biochemistry 56 96-106 (2017)
  127. Cooperative dynamics across distinct structural elements regulate PTP1B activity. Torgeson KR, Clarkson MW, Kumar GS, Page R, Peti W. J Biol Chem 295 13829-13837 (2020)
  128. PTPRB promotes metastasis of colorectal carcinoma via inducing epithelial-mesenchymal transition. Weng X, Chen W, Hu W, Xu K, Qi L, Chen J, Lu D, Shao Y, Zheng X, Ye C, Zheng S. Cell Death Dis 10 352 (2019)
  129. PTPRG is an ischemia risk locus essential for HCO3--dependent regulation of endothelial function and tissue perfusion. Hansen KB, Staehr C, Rohde PD, Homilius C, Kim S, Nyegaard M, Matchkov VV, Boedtkjer E. Elife 9 e57553 (2020)
  130. Substrate specificity and plasticity of FERM-containing protein tyrosine phosphatases. Chen KE, Li MY, Chou CC, Ho MR, Chen GC, Meng TC, Wang AH. Structure 23 653-664 (2015)
  131. The receptor PTPRU is a redox sensitive pseudophosphatase. Hay IM, Fearnley GW, Rios P, Köhn M, Sharpe HJ, Deane JE. Nat Commun 11 3219 (2020)
  132. A cellular target engagement assay for the characterization of SHP2 (PTPN11) phosphatase inhibitors. Romero C, Lambert LJ, Sheffler DJ, De Backer LJS, Raveendra-Panickar D, Celeridad M, Grotegut S, Rodiles S, Holleran J, Sergienko E, Pasquale EB, Cosford NDP, Tautz L. J Biol Chem 295 2601-2613 (2020)
  133. A novel phosphatidic acid-protein-tyrosine phosphatase D2 axis is essential for ERBB2 signaling in mammary epithelial cells. Ramesh M, Krishnan N, Muthuswamy SK, Tonks NK. J Biol Chem 290 9646-9659 (2015)
  134. Genome-Wide Association Study of H/L Traits in Chicken. Zhu B, Li Q, Liu R, Zheng M, Wen J, Zhao G. Animals (Basel) 9 E260 (2019)
  135. Identification of novel splicing variants of protein tyrosine phosphatase receptor type Z. Fujikawa A, Chow JPH, Matsumoto M, Suzuki R, Kuboyama K, Yamamoto N, Noda M. J Biochem 162 381-390 (2017)
  136. Reciprocal regulation of C-Maf tyrosine phosphorylation by Tec and Ptpn22. Liu CC, Lai CY, Yen WF, Lin YH, Chang HH, Tai TS, Lu YJ, Tsao HW, Ho IC, Miaw SC. PLoS One 10 e0127617 (2015)
  137. Specific inhibition of sensitized protein tyrosine phosphatase 1B (PTP1B) with a biarsenical probe. Davis OB, Bishop AC. Bioconjug Chem 23 272-278 (2012)
  138. Structural basis for the regulation of the mitogen-activated protein (MAP) kinase p38α by the dual specificity phosphatase 16 MAP kinase binding domain in solution. Kumar GS, Zettl H, Page R, Peti W. J Biol Chem 288 28347-28356 (2013)
  139. Target-specific control of lymphoid-specific protein tyrosine phosphatase (Lyp) activity. Walton ZE, Bishop AC. Bioorg Med Chem 18 4884-4891 (2010)
  140. The Allosteric Site on SHP2's Protein Tyrosine Phosphatase Domain is Targetable with Druglike Small Molecules. Marsh-Armstrong B, Fajnzylber JM, Korntner S, Plaman BA, Bishop AC. ACS Omega 3 15763-15770 (2018)
  141. The pseudophosphatase phogrin enables glucose-stimulated insulin signaling in pancreatic β cells. Torii S, Kubota C, Saito N, Kawano A, Hou N, Kobayashi M, Torii R, Hosaka M, Kitamura T, Takeuchi T, Gomi H. J Biol Chem 293 5920-5933 (2018)
  142. The second-sphere residue T263 is important for the function and catalytic activity of PTP1B via interaction with the WPD-loop. Xiao P, Wang X, Wang HM, Fu XL, Cui FA, Yu X, Wen SS, Bi WX, Sun JP. Int J Biochem Cell Biol 57 84-95 (2014)
  143. The transcription factor STAT5 catalyzes Mannich ligation reactions yielding inhibitors of leukemic cell proliferation. Wong EL, Nawrotzky E, Arkona C, Kim BG, Beligny S, Wang X, Wagner S, Lisurek M, Carstanjen D, Rademann J. Nat Commun 10 66 (2019)
  144. X-ray Characterization and Structure-Based Optimization of Striatal-Enriched Protein Tyrosine Phosphatase Inhibitors. Witten MR, Wissler L, Snow M, Geschwindner S, Read JA, Brandon NJ, Nairn AC, Lombroso PJ, Käck H, Ellman JA. J Med Chem 60 9299-9319 (2017)
  145. Behavioral and neurological analyses of adult mice carrying null and distinct loss-of-receptor function mutations in protein tyrosine phosphatase receptor type Z (PTPRZ). Tanga N, Kuboyama K, Kishimoto A, Kihara M, Kiyonari H, Watanabe T, Fujikawa A, Noda M. PLoS One 14 e0217880 (2019)
  146. Construction of an alkaline phosphatase-specific two-photon probe and its imaging application in living cells and tissues. Zhang H, Xiao P, Wong YT, Shen W, Chhabra M, Peltier R, Jiang Y, He Y, He J, Tan Y, Xie Y, Ho D, Lam YW, Sun J, Sun H. Biomaterials 140 220-229 (2017)
  147. Functional analysis of the putative tumor suppressor PTPRD in neuroblastoma cells. Clark O, Schmidt F, Coles CH, Tchetchelnitski V, Stoker AW. Cancer Invest 30 422-432 (2012)
  148. Targeting density-enhanced phosphatase-1 (DEP-1) with antisense oligonucleotides improves the metabolic phenotype in high-fat diet-fed mice. Krüger J, Trappiel M, Dagnell M, Stawowy P, Meyborg H, Böhm C, Bhanot S, Ostman A, Kintscher U, Kappert K. Cell Commun Signal 11 49 (2013)
  149. A versatile spectrophotometric protein tyrosine phosphatase assay based on 3-nitrophosphotyrosine containing substrates. van Ameijde J, Overvoorde J, Knapp S, den Hertog J, Ruijtenbeek R, Liskamp RM. Anal Biochem 448 9-13 (2014)
  150. Abietane-Type Diterpenoids Inhibit Protein Tyrosine Phosphatases by Stabilizing an Inactive Enzyme Conformation. Hjortness MK, Riccardi L, Hongdusit A, Ruppe S, Zhao M, Kim EY, Zwart PH, Sankaran B, Arthanari H, Sousa MC, De Vivo M, Fox JM. Biochemistry 57 5886-5896 (2018)
  151. Computational Strategy for Bound State Structure Prediction in Structure-Based Virtual Screening: A Case Study of Protein Tyrosine Phosphatase Receptor Type O Inhibitors. Hou X, Rooklin D, Yang D, Liang X, Li K, Lu J, Wang C, Xiao P, Zhang Y, Sun JP, Fang H. J Chem Inf Model 58 2331-2342 (2018)
  152. Disrupting the transmembrane domain-mediated oligomerization of protein tyrosine phosphatase receptor J inhibits EGFR-driven cancer cell phenotypes. Bloch E, Sikorski EL, Pontoriero D, Day EK, Berger BW, Lazzara MJ, Thévenin D. J Biol Chem 294 18796-18806 (2019)
  153. Exploring protein structure and dynamics through a project-oriented biochemistry laboratory module. Lipchock JM, Ginther PS, Douglas BB, Bird KE, Patrick Loria J. Biochem Mol Biol Educ 45 403-410 (2017)
  154. Inhibition of the Hematopoietic Protein Tyrosine Phosphatase by Phenoxyacetic Acids. Bobkova EV, Liu WH, Colayco S, Rascon J, Vasile S, Gasior C, Critton DA, Chan X, Dahl R, Su Y, Sergienko E, Chung TD, Mustelin T, Page R, Tautz L. ACS Med Chem Lett 2 113-118 (2011)
  155. Knowledge-based characterization of similarity relationships in the human protein-tyrosine phosphatase family for rational inhibitor design. Vidović D, Schürer SC. J Med Chem 52 6649-6659 (2009)
  156. Phosphotyrosine Substrate Sequence Motifs for Dual Specificity Phosphatases. Zhao BM, Keasey SL, Tropea JE, Lountos GT, Dyas BK, Cherry S, Raran-Kurussi S, Waugh DS, Ulrich RG. PLoS One 10 e0134984 (2015)
  157. RPTPα phosphatase activity is allosterically regulated by the membrane-distal catalytic domain. Wen Y, Yang S, Wakabayashi K, Svensson MND, Stanford SM, Santelli E, Bottini N. J Biol Chem 295 4923-4936 (2020)
  158. Structural basis for the dephosphorylating activity of PTPRQ towards phosphatidylinositide substrates. Yu KR, Kim YJ, Jung SK, Ku B, Park H, Cho SY, Jung H, Chung SJ, Bae KH, Lee SC, Kim BY, Erikson RL, Ryu SE, Kim SJ. Acta Crystallogr D Biol Crystallogr 69 1522-1529 (2013)
  159. Targeting the SHP2 phosphatase promotes vascular damage and inhibition of tumor growth. Wang Y, Salvucci O, Ohnuki H, Tran AD, Ha T, Feng JX, DiPrima M, Kwak H, Wang D, Yu Y, Kruhlak M, Tosato G. EMBO Mol Med 13 e14089 (2021)
  160. A head-to-toe dimerization has physiological relevance for ligand-induced inactivation of protein tyrosine receptor type Z. Fujikawa A, Sugawara H, Tanga N, Ishii K, Kuboyama K, Uchiyama S, Suzuki R, Noda M. J Biol Chem 294 14953-14965 (2019)
  161. Activation of hydrogen peroxide to peroxytetradecanoic acid is responsible for potent inhibition of protein tyrosine phosphatase CD45. Kuban-Jankowska A, Tuszynski JA, Winter P, Gorska M, Knap N, Wozniak M. PLoS One 7 e52495 (2012)
  162. Both Intrinsic Substrate Preference and Network Context Contribute to Substrate Selection of Classical Tyrosine Phosphatases. Palma A, Tinti M, Paoluzi S, Santonico E, Brandt BW, Brandt BW, Hooft van Huijsduijnen R, Masch A, Heringa J, Schutkowski M, Castagnoli L, Cesareni G. J Biol Chem 292 4942-4952 (2017)
  163. Ethyl Gallate Dual-Targeting PTPN6 and PPARγ Shows Anti-Diabetic and Anti-Obese Effects. Ahn D, Kim J, Nam G, Zhao X, Kwon J, Hwang JY, Kim JK, Yoon SY, Chung SJ. Int J Mol Sci 23 5020 (2022)
  164. Identification and structure-function analyses of an allosteric inhibitor of the tyrosine phosphatase PTPN22. Li K, Hou X, Li R, Bi W, Yang F, Chen X, Xiao P, Liu T, Lu T, Zhou Y, Tian Z, Shen Y, Zhang Y, Wang J, Fang H, Sun J, Yu X. J Biol Chem 294 8653-8663 (2019)
  165. Molecular analysis of Aedes aegypti classical protein tyrosine phosphatases uncovers an ortholog of mammalian PTP-1B implicated in the control of egg production in mosquitoes. Moretti DM, Ahuja LG, Nunes RD, Cudischevitch CO, Daumas-Filho CR, Medeiros-Castro P, Ventura-Martins G, Jablonka W, Gazos-Lopes F, Senna R, Sorgine MH, Hartfelder K, Capurro M, Atella GC, Mesquita RD, Silva-Neto MA. PLoS One 9 e104878 (2014)
  166. Stability of proICA512/IA-2 and its targeting to insulin secretory granules require β4-sheet-mediated dimerization of its ectodomain in the endoplasmic reticulum. Torkko JM, Primo ME, Dirkx R, Friedrich A, Viehrig A, Vergari E, Borgonovo B, Sönmez A, Wegbrod C, Lachnit M, Münster C, Sica MP, Ermácora MR, Solimena M. Mol Cell Biol 35 914-927 (2015)
  167. Structural insights into selective interaction between type IIa receptor protein tyrosine phosphatases and Liprin-α. Wakita M, Yamagata A, Shiroshima T, Izumi H, Maeda A, Sendo M, Imai A, Kubota K, Goto-Ito S, Sato Y, Mori H, Yoshida T, Fukai S. Nat Commun 11 649 (2020)
  168. Structural insights into the homology and differences between mouse protein tyrosine phosphatase-sigma and human protein tyrosine phosphatase-sigma. Hou L, Wang J, Zhou Y, Li J, Zang Y, Li J. Acta Biochim Biophys Sin (Shanghai) 43 977-988 (2011)
  169. Structure-guided studies of the SHP-1/JAK1 interaction provide new insights into phosphatase catalytic domain substrate recognition. Alicea-Velázquez NL, Jakoncic J, Boggon TJ. J Struct Biol 181 243-251 (2013)
  170. Chemical activation of divergent protein tyrosine phosphatase domains with cyanine-based biarsenicals. Plaman BA, Chan WC, Bishop AC. Sci Rep 9 16148 (2019)
  171. Design, synthesis, biological activity and molecular dynamics studies of specific protein tyrosine phosphatase 1B inhibitors over SHP-2. Sun SX, Li XB, Liu WB, Ma Y, Wang RL, Cheng XC, Wang SQ, Liu W. Int J Mol Sci 14 12661-12674 (2013)
  172. Effects of protonation state of Asp181 and position of active site water molecules on the conformation of PTP1B. Ozcan A, Olmez EO, Alakent B. Proteins 81 788-804 (2013)
  173. SH3-domain mutations selectively disrupt Csk homodimerization or PTPN22 binding. Brian BF, Sjaastad FV, Freedman TS. Sci Rep 12 5875 (2022)
  174. Structural analysis of protein tyrosine phosphatase 1B reveals potentially druggable allosteric binding sites. Kumar AP, Nguyen MN, Verma C, Lukman S. Proteins 86 301-321 (2018)
  175. The core cysteines, (C909) of islet antigen-2 and (C945) of islet antigen-2β, are crucial to autoantibody binding in type 1 diabetes. Elvers KT, Geoghegan I, Shoemark DK, Lampasona V, Bingley PJ, Williams AJ. Diabetes 62 214-222 (2013)
  176. Activation of Engineered Protein Tyrosine Phosphatases with the Biarsenical Compound AsCy3-EDT2. Chan WC, Knowlton GS, Bishop AC. Chembiochem 18 1950-1958 (2017)
  177. Allosteric inhibition induces an open WPD-loop: a new avenue towards glioblastoma therapy. Agoni C, Ramharack P, Soliman MES. RSC Adv 8 40187-40197 (2018)
  178. Analysis of Three Architectures for Controlling PTP1B with Light. Hongdusit A, Liechty ET, Fox JM. ACS Synth Biol 11 61-68 (2022)
  179. Catalytically active membrane-distal phosphatase domain of receptor protein-tyrosine phosphatase alpha is required for Src activation. Vacaru AM, den Hertog J. FEBS J 277 1562-1570 (2010)
  180. Genome-Wide Search for Tyrosine Phosphatases in the Human Genome Through Computational Approaches Leads to the Discovery of Few New Domain Architectures. Bhattacharyya T, Sowdhamini R. Evol Bioinform Online 15 1176934319840289 (2019)
  181. His domain protein tyrosine phosphatase and Rabaptin-5 couple endo-lysosomal sorting of EGFR with endosomal maturation. Parkinson G, Roboti P, Zhang L, Taylor S, Woodman P. J Cell Sci 134 jcs259192 (2021)
  182. Identification of a benzo imidazole thiazole derivative as the specific irreversible inhibitor of protein tyrosine phosphatase. Ge L, Li KS, Li MM, Xiao P, Hou XB, Chen X, Liu HD, Lin A, Yu X, Ren GJ, Fang H, Sun JP. Bioorg Med Chem Lett 26 4795-4798 (2016)
  183. Inhibition of striatal-enriched protein tyrosine phosphatase by targeting computationally revealed cryptic pockets. Hou X, Sun JP, Ge L, Liang X, Li K, Zhang Y, Fang H. Eur J Med Chem 190 112131 (2020)
  184. Prediction and verification of novel peptide targets of protein tyrosine phosphatase 1B. Li X, Köhn M. Bioorg Med Chem 24 3255-3258 (2016)
  185. research-article Protein tyrosine phosphatase PTPN21 acts as a negative regulator of ICAM-1 by dephosphorylating IKKβ in TNF-α-stimulated human keratinocytes. Cho YC, Kim BR, Cho S. BMB Rep 50 584-589 (2017)
  186. Substrate selection influences molecular recognition in a screen for lymphoid tyrosine phosphatase inhibitors. Kulkarni RA, Vellore NA, Bliss MR, Stanford SM, Falk MD, Bottini N, Baron R, Barrios AM. Chembiochem 14 1640-1647 (2013)
  187. The physiological concentration of ferrous iron (II) alters the inhibitory effect of hydrogen peroxide on CD45, LAR and PTP1B phosphatases. Kuban-Jankowska A, Gorska M, Jaremko L, Jaremko M, Tuszynski JA, Wozniak M. Biometals 28 975-986 (2015)
  188. (-)-Tarchonanthuslactone: Design of New Analogues, Evaluation of their Antiproliferative Activity on Cancer Cell Lines, and Preliminary Mechanistic Studies. Toneto Novaes LF, Martins Avila C, Pelizzaro-Rocha KJ, Vendramini-Costa DB, Pereira Dias M, Barbosa Trivella DB, Ernesto de Carvalho J, Ferreira-Halder CV, Pilli RA. ChemMedChem 10 1687-1699 (2015)
  189. A common structural scaffold in CTD phosphatases that supports distinct catalytic mechanisms. Pons T, Paramonov I, Boullosa C, Ibáñez K, Rojas AM, Valencia A. Proteins 82 103-118 (2014)
  190. A novel binding pocket in the D2 domain of protein tyrosine phosphatase mu (PTPmu) guides AI screen to identify small molecules that modulate tumour cell adhesion, growth and migration. Molyneaux K, Laggner C, Brady-Kalnay SM. J Cell Mol Med 27 3553-3564 (2023)
  191. Age-related decline in hippocampal tyrosine phosphatase PTPRO is a mechanistic factor in chemotherapy-related cognitive impairment. Yao Z, Dong H, Zhu J, Du L, Luo Y, Liu Q, Liu S, Lin Y, Wang L, Wang S, Wei W, Zhang K, Huang Q, Yu X, Zhao W, Xu H, Qiu X, Pan Y, Huang X, Jim Yeung SC, Zhang D, Zhang H. JCI Insight 8 e166306 (2023)
  192. Analysis of neutral mutational drift in an allosteric enzyme. Liechty ET, Hren A, Kramer L, Donovan G, Friedman AJ, Shirts MR, Fox JM. Protein Sci 32 e4719 (2023)
  193. Defining the molecular basis of interaction between R3 receptor-type protein tyrosine phosphatases and VE-cadherin. Dorofejeva O, Barr AJ. PLoS One 12 e0184574 (2017)
  194. Distinct functional and conformational states of the human lymphoid tyrosine phosphatase catalytic domain can be targeted by choice of the inhibitor chemotype. Vidović D, Xie Y, Rinderspacher A, Deng SX, Landry DW, Chung C, Smith DH, Tautz L, Schürer SC. J Comput Aided Mol Des 25 873-883 (2011)
  195. On the Control of TCR Phosphorylation. Fernandes RA, Huo J, Lui Y, Felce JH, Davis SJ. Front Immunol 3 92 (2012)
  196. Promoting the activity of a receptor tyrosine phosphatase with a novel pH-responsive transmembrane agonist inhibits cancer-associated phenotypes. Rizzo S, Sikorski E, Park S, Im W, Vasquez-Montes V, Ladokhin AS, Thévenin D. Protein Sci 32 e4742 (2023)
  197. Spatial confinement of receptor activity by tyrosine phosphatase during directional cell migration. Zhu Z, Chai Y, Hu H, Li W, Li WJ, Dong MQ, Wu JW, Wang ZX, Ou G. Proc Natl Acad Sci U S A 117 14270-14279 (2020)
  198. Structure and Molecular Dynamics Simulations of Protein Tyrosine Phosphatase Non-Receptor 12 Provide Insights into the Catalytic Mechanism of the Enzyme. Dong H, Zonta F, Wang S, Song K, He X, He M, Nie Y, Li S. Int J Mol Sci 19 (2017)
  199. Synthesis, In Vitro, and Computational Studies of PTP1B Phosphatase Inhibitors Based on Oxovanadium(IV) and Dioxovanadium(V) Complexes. Kostrzewa T, Jończyk J, Drzeżdżon J, Jacewicz D, Górska-Ponikowska M, Kołaczkowski M, Kuban-Jankowska A. Int J Mol Sci 23 7034 (2022)
  200. The EGFR phosphatase RPTPγ is a redox-regulated suppressor of promigratory signaling. Joshi MS, Stanoev A, Huebinger J, Soetje B, Zorina V, Roßmannek L, Michel K, Müller SA, Bastiaens PI. EMBO J 42 e111806 (2023)
  201. The translation attenuating arginine-rich sequence in the extended signal peptide of the protein-tyrosine phosphatase PTPRJ/DEP1 is conserved in mammals. Karagyozov L, Grozdanov PN, Böhmer FD. PLoS One 15 e0240498 (2020)
  202. Y-shaped bis-arylethenesulfonic acid esters: Potential potent and membrane permeable protein tyrosine phosphatase 1B inhibitors. Yang F, Xie F, Zhang Y, Xia Y, Liu W, Jiang F, Lam C, Qiao Y, Xie D, Li J, Fu L. Bioorg Med Chem Lett 27 2166-2170 (2017)
  203. A Conserved Local Structural Motif Controls the Kinetics of PTP1B Catalysis. Yeh CY, Izaguirre JA, Greisman JB, Willmore L, Maragakis P, Shaw DE. J Chem Inf Model 63 4115-4124 (2023)
  204. A MET-PTPRK kinase-phosphatase rheostat controls ZNRF3 and Wnt signaling. Kim M, Reinhard C, Niehrs C. Elife 10 e70885 (2021)
  205. A missense methionine mutation augments catalytic activity but reduces thermal stability in two protein tyrosine phosphatases. Bishop AC. Biochem Biophys Res Commun 481 153-158 (2016)
  206. An In Silico Study Investigating Camptothecin-Analog Interaction with Human Protein Tyrosine Phosphatase, SHP2 (PTPN11). Bajia D, Derwich K. Pharmaceuticals (Basel) 16 926 (2023)
  207. An Isoform-Selective PTP1B Inhibitor Derived from Nitrogen-Atom Augmentation of Radicicol. Shi T, Wijeratne EMK, Solano C, Ambrose AJ, Ross AB, Norwood C, Orido CK, Grigoryan T, Tillotson J, Kang M, Luo G, Keegan BM, Hu W, Hu W, Blagg BSJ, Zhang DD, Gunatilaka AAL, Chapman E. Biochemistry 58 3225-3231 (2019)
  208. Clustering of phosphatase RPTPα promotes Src signaling and the arthritogenic action of synovial fibroblasts. Sendo S, Kiosses WB, Yang S, Wu DJ, Lee DWK, Liu L, Aschner Y, Vela AJ, Downey GP, Santelli E, Bottini N. Sci Signal 16 eabn8668 (2023)
  209. Crystal structure of the catalytic domain of human RPTPH. Kim M, Ryu SE. Acta Crystallogr F Struct Biol Commun 78 265-269 (2022)
  210. Destabilization of the SHP2 and SHP1 protein tyrosine phosphatase domains by a non-conserved "backdoor" cysteine. Yarnall MTN, Kim SH, Korntner S, Bishop AC. Biochem Biophys Rep 32 101370 (2022)
  211. Disrupting PTPRJ transmembrane-mediated oligomerization counteracts oncogenic receptor tyrosine kinase FLT3 ITD. Schwarz M, Rizzo S, Paz WE, Kresinsky A, Thévenin D, Müller JP. Front Oncol 12 1017947 (2022)
  212. Dual-Specificity Phosphatase 11 Is a Prognostic Biomarker of Intrahepatic Cholangiocarcinoma. Xu L, Wang P, Zhang W, Li W, Liu T, Che X. Front Oncol 11 757498 (2021)
  213. Enforced Dimerization of CD45 by the Adenovirus E3/49K Protein Inhibits T Cell Receptor Signaling. Windheim M, Reubold TF, Aichane K, Gaestel M, Burgert HG. J Virol 97 e0189822 (2023)
  214. Enzyme mechanistic studies of NMA1982, a protein tyrosine phosphatase and potential virulence factor in Neisseria meningitidis. Wu S, Coureuil M, Nassif X, Tautz L. Sci Rep 13 22015 (2023)
  215. Genetic Variants in Protein Tyrosine Phosphatase Non-Receptor Type 23 Are Responsible for Mesiodens Formation. Adisornkanj P, Chanprasit R, Eliason S, Fons JM, Intachai W, Tongsima S, Olsen B, Arold ST, Ngamphiw C, Amendt BA, Tucker AS, Kantaputra P. Biology (Basel) 12 393 (2023)
  216. Identification and Optimization of Protein Tyrosine Phosphatase Inhibitors Via Fragment Ligation. Tiemann M, Rademann J. Methods Mol Biol 2743 239-270 (2024)
  217. In Silico Discovery of Anticancer Peptides from Sanghuang. Liu M, Lv J, Chen L, Li W, Han W. Int J Mol Sci 23 13682 (2022)
  218. Label-Free Detection of Protein Tyrosine Phosphatase 1B (PTP1B) by Using a Rationally Designed Förster Resonance Energy Transfer (FRET) Probe. Durgannavar T, Kwon SJ, Ghisaidoobe ABT, Rho K, Kim JH, Yoon SY, Kang HJ, Chung SJ. Chembiochem 19 2495-2501 (2018)
  219. Mapping the Chemical Space of Active-Site Targeted Covalent Ligands for Protein Tyrosine Phosphatases. Hong SH, Xi SY, Johns AC, Tang LC, Li A, Hum MN, Chartier CA, Jovanovic M, Shah NH. Chembiochem 24 e202200706 (2023)
  220. Molecular mechanism of Afadin substrate recruitment to the receptor phosphatase PTPRK via its pseudophosphatase domain. Hay IM, Mulholland KE, Lai T, Graham SC, Sharpe HJ, Deane JE. Elife 11 e79855 (2022)
  221. Optimized allosteric inhibition of engineered protein tyrosine phosphatases with an expanded palette of biarsenical small molecules. Korntner S, Pomorski A, Krężel A, Bishop AC. Bioorg Med Chem 26 2610-2620 (2018)
  222. PPM1H is down-regulated by ATF6 and dephosphorylates p-RPS6KB1 to inhibit progression of hepatocellular carcinoma. Yang X, Guo J, Li W, Li C, Zhu X, Liu Y, Wu X. Mol Ther Nucleic Acids 33 164-179 (2023)
  223. Protein Tyrosine Phosphatase Non-Receptor 11 (PTPN11/Shp2) as a Driver Oncogene and a Novel Therapeutic Target in Non-Small Cell Lung Cancer (NSCLC). Richards CE, Elamin YY, Carr A, Gately K, Rafee S, Cremona M, Hanrahan E, Smyth R, Ryan D, Morgan RK, Kennedy S, Hudson L, Fay J, O'Byrne K, Hennessy BT, Toomey S. Int J Mol Sci 24 10545 (2023)
  224. Pushed to extremes: distinct effects of high temperature versus pressure on the structure of STEP. Guerrero L, Ebrahim A, Riley BT, Kim M, Huang Q, Finke AD, Keedy DA. Commun Biol 7 59 (2024)
  225. Single-Nuclei RNA-Sequencing of the Gastrocnemius Muscle in Peripheral Artery Disease. Pass CG, Palzkill V, Tan J, Kim K, Thome T, Yang Q, Fazzone B, Robinson ST, O'Malley KA, Yue F, Scali ST, Berceli SA, Ryan TE. Circ Res 133 791-809 (2023)
  226. Structural insights into the pSer/pThr dependent regulation of the SHP2 tyrosine phosphatase in insulin and CD28 signaling. Zeke A, Takács T, Sok P, Németh K, Kirsch K, Egri P, Póti ÁL, Bento I, Tusnády GE, Reményi A. Nat Commun 13 5439 (2022)
  227. Structure guided studies of the interaction between PTP1B and JAK. Morris R, Keating N, Tan C, Chen H, Laktyushin A, Saiyed T, Liau NPD, Nicola NA, Tiganis T, Kershaw NJ, Babon JJ. Commun Biol 6 641 (2023)
  228. Structure-Activity Relationship of Synthetic Ginkgolic Acid Analogs for Treating Type 2 Diabetes by PTPN9 Inhibition. Kim J, Son J, Ahn D, Nam G, Zhao X, Park H, Jeong W, Chung SJ. Int J Mol Sci 23 3927 (2022)
  229. System-Level Analysis of the Effects of RPTPs on Cellular Signaling Networks. Gerritsen J, Rizzo S, Thévenin D, White FM. Methods Mol Biol 2743 153-163 (2024)
  230. Targeting Nonconserved and Pathogenic Cysteines of Protein Tyrosine Phosphatases with Small Molecules. Bishop AC, Serbina A. Methods Mol Biol 2743 271-283 (2024)