2au0 Citations

Stepwise translocation of Dpo4 polymerase during error-free bypass of an oxoG lesion.

PLoS Biol 4 e11 (2006)
Related entries: 2asd, 2asj, 2asl, 2atl

Cited: 92 times
EuropePMC logo PMID: 16379496

Abstract

7,8-dihydro-8-oxoguanine (oxoG), the predominant lesion formed following oxidative damage of DNA by reactive oxygen species, is processed differently by replicative and bypass polymerases. Our kinetic primer extension studies demonstrate that the bypass polymerase Dpo4 preferentially inserts C opposite oxoG, and also preferentially extends from the oxoG*C base pair, thus achieving error-free bypass of this lesion. We have determined the crystal structures of preinsertion binary, insertion ternary, and postinsertion binary complexes of oxoG-modified template-primer DNA and Dpo4. These structures provide insights into the translocation mechanics of the bypass polymerase during a complete cycle of nucleotide incorporation. Specifically, during noncovalent dCTP insertion opposite oxoG (or G), the little-finger domain-DNA phosphate contacts translocate by one nucleotide step, while the thumb domain-DNA phosphate contacts remain fixed. By contrast, during the nucleotidyl transfer reaction that covalently incorporates C opposite oxoG, the thumb-domain-phosphate contacts are translocated by one nucleotide step, while the little-finger contacts with phosphate groups remain fixed. These stepwise conformational transitions accompanying nucleoside triphosphate binding and covalent nucleobase incorporation during a full replication cycle of Dpo4-catalyzed bypass of the oxoG lesion are distinct from the translocation events in replicative polymerases.

Reviews citing this publication (15)

  1. An overview of Y-Family DNA polymerases and a case study of human DNA polymerase η. Yang W. Biochemistry 53 2793-2803 (2014)
  2. Repair and tolerance of oxidative DNA damage in plants. Roldán-Arjona T, Ariza RR. Mutat Res 681 169-179 (2009)
  3. DNA polymerase structure-based insight on the mutagenic properties of 8-oxoguanine. Beard WA, Batra VK, Wilson SH. Mutat Res 703 18-23 (2010)
  4. Chemical and biological consequences of oxidatively damaged guanine in DNA. Delaney S, Jarem DA, Volle CB, Yennie CJ. Free Radic Res 46 420-441 (2012)
  5. Lesion processing: high-fidelity versus lesion-bypass DNA polymerases. Broyde S, Wang L, Rechkoblit O, Geacintov NE, Patel DJ. Trends Biochem Sci 33 209-219 (2008)
  6. Structural diversity of the Y-family DNA polymerases. Pata JD. Biochim Biophys Acta 1804 1124-1135 (2010)
  7. Separate roles of structured and unstructured regions of Y-family DNA polymerases. Ohmori H, Hanafusa T, Ohashi E, Vaziri C. Adv Protein Chem Struct Biol 78 99-146 (2009)
  8. DNA polymerases provide a canon of strategies for translesion synthesis past oxidatively generated lesions. Zahn KE, Wallace SS, Doublié S. Curr Opin Struct Biol 21 358-369 (2011)
  9. Recent insight into the kinetic mechanisms and conformational dynamics of Y-Family DNA polymerases. Maxwell BA, Suo Z. Biochemistry 53 2804-2814 (2014)
  10. Chemistry and structural biology of DNA damage and biological consequences. Stone MP, Huang H, Brown KL, Shanmugam G. Chem Biodivers 8 1571-1615 (2011)
  11. DNA adduct structure-function relationships: comparing solution with polymerase structures. Broyde S, Wang L, Zhang L, Rechkoblit O, Geacintov NE, Patel DJ. Chem Res Toxicol 21 45-52 (2008)
  12. Crystal structure analysis of DNA lesion repair and tolerance mechanisms. Schneider S, Schorr S, Carell T. Curr Opin Struct Biol 19 87-95 (2009)
  13. Haloferax volcanii-a model archaeon for studying DNA replication and repair. Pérez-Arnaiz P, Dattani A, Smith V, Allers T. Open Biol 10 200293 (2020)
  14. Applications of quantum mechanical/molecular mechanical methods to the chemical insertion step of DNA and RNA polymerization. Perera L, Beard WA, Pedersen LG, Wilson SH. Adv Protein Chem Struct Biol 97 83-113 (2014)
  15. A rescue act: Translesion DNA synthesis past N(2) -deoxyguanosine adducts. Nair DT, Kottur J, Sharma R. IUBMB Life 67 564-574 (2015)

Articles citing this publication (77)

  1. What a difference a decade makes: insights into translesion DNA synthesis. Yang W, Woodgate R. Proc Natl Acad Sci U S A 104 15591-15598 (2007)
  2. Genetic effects of oxidative DNA damages: comparative mutagenesis of the imidazole ring-opened formamidopyrimidines (Fapy lesions) and 8-oxo-purines in simian kidney cells. Kalam MA, Haraguchi K, Chandani S, Loechler EL, Moriya M, Greenberg MM, Basu AK. Nucleic Acids Res 34 2305-2315 (2006)
  3. A water-mediated and substrate-assisted catalytic mechanism for Sulfolobus solfataricus DNA polymerase IV. Wang L, Yu X, Hu P, Broyde S, Zhang Y. J Am Chem Soc 129 4731-4737 (2007)
  4. The efficiency and fidelity of 8-oxo-guanine bypass by DNA polymerases delta and eta. McCulloch SD, Kokoska RJ, Garg P, Burgers PM, Kunkel TA. Nucleic Acids Res 37 2830-2840 (2009)
  5. Snapshots of a Y-family DNA polymerase in replication: substrate-induced conformational transitions and implications for fidelity of Dpo4. Wong JH, Fiala KA, Suo Z, Ling H. J Mol Biol 379 317-330 (2008)
  6. Structural and functional elucidation of the mechanism promoting error-prone synthesis by human DNA polymerase kappa opposite the 7,8-dihydro-8-oxo-2'-deoxyguanosine adduct. Irimia A, Eoff RL, Guengerich FP, Egli M. J Biol Chem 284 22467-22480 (2009)
  7. Structure of the human Rev1-DNA-dNTP ternary complex. Swan MK, Johnson RE, Prakash L, Prakash S, Aggarwal AK. J Mol Biol 390 699-709 (2009)
  8. Mutagenic conformation of 8-oxo-7,8-dihydro-2'-dGTP in the confines of a DNA polymerase active site. Batra VK, Beard WA, Hou EW, Pedersen LC, Prasad R, Wilson SH. Nat Struct Mol Biol 17 889-890 (2010)
  9. Molecular basis of transcriptional mutagenesis at 8-oxoguanine. Damsma GE, Cramer P. J Biol Chem 284 31658-31663 (2009)
  10. Single-turnover kinetic analysis of the mutagenic potential of 8-oxo-7,8-dihydro-2'-deoxyguanosine during gap-filling synthesis catalyzed by human DNA polymerases lambda and beta. Brown JA, Duym WW, Fowler JD, Suo Z. J Mol Biol 367 1258-1269 (2007)
  11. Structure of human DNA polymerase kappa inserting dATP opposite an 8-OxoG DNA lesion. Vasquez-Del Carpio R, Silverstein TD, Lone S, Swan MK, Choudhury JR, Johnson RE, Prakash S, Prakash L, Aggarwal AK. PLoS One 4 e5766 (2009)
  12. Translesion synthesis across 1,N2-ethenoguanine by human DNA polymerases. Choi JY, Zang H, Angel KC, Kozekov ID, Goodenough AK, Rizzo CJ, Guengerich FP. Chem Res Toxicol 19 879-886 (2006)
  13. Deletion of Ogg1 DNA glycosylase results in telomere base damage and length alteration in yeast. Lu J, Liu Y. EMBO J 29 398-409 (2010)
  14. Structural insights into the generation of single-base deletions by the Y family DNA polymerase dbh. Wilson RC, Pata JD. Mol Cell 29 767-779 (2008)
  15. Unique active site promotes error-free replication opposite an 8-oxo-guanine lesion by human DNA polymerase iota. Kirouac KN, Ling H. Proc Natl Acad Sci U S A 108 3210-3215 (2011)
  16. DNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion. Freudenthal BD, Beard WA, Wilson SH. Nucleic Acids Res 41 1848-1858 (2013)
  17. Versatility of Y-family Sulfolobus solfataricus DNA polymerase Dpo4 in translesion synthesis past bulky N2-alkylguanine adducts. Zhang H, Eoff RL, Kozekov ID, Rizzo CJ, Egli M, Guengerich FP. J Biol Chem 284 3563-3576 (2009)
  18. Kinetic analysis of correct nucleotide insertion by a Y-family DNA polymerase reveals conformational changes both prior to and following phosphodiester bond formation as detected by tryptophan fluorescence. Beckman JW, Wang Q, Guengerich FP. J Biol Chem 283 36711-36723 (2008)
  19. Quantum mechanics/molecular mechanics investigation of the chemical reaction in Dpo4 reveals water-dependent pathways and requirements for active site reorganization. Wang Y, Schlick T. J Am Chem Soc 130 13240-13250 (2008)
  20. Quantitative analysis of the efficiency and mutagenic spectra of abasic lesion bypass catalyzed by human Y-family DNA polymerases. Sherrer SM, Fiala KA, Fowler JD, Newmister SA, Pryor JM, Suo Z. Nucleic Acids Res 39 609-622 (2011)
  21. Structural basis for error-free replication of oxidatively damaged DNA by yeast DNA polymerase η. Silverstein TD, Jain R, Johnson RE, Prakash L, Prakash S, Aggarwal AK. Structure 18 1463-1470 (2010)
  22. Mechanistic studies of the bypass of a bulky single-base lesion catalyzed by a Y-family DNA polymerase. Sherrer SM, Brown JA, Pack LR, Jasti VP, Fowler JD, Basu AK, Suo Z. J Biol Chem 284 6379-6388 (2009)
  23. Annotation of metagenome short reads using proxygenes. Dalevi D, Ivanova NN, Mavromatis K, Hooper SD, Szeto E, Hugenholtz P, Kyrpides NC, Markowitz VM. Bioinformatics 24 i7-13 (2008)
  24. Bypass of aflatoxin B1 adducts by the Sulfolobus solfataricus DNA polymerase IV. Banerjee S, Brown KL, Egli M, Stone MP. J Am Chem Soc 133 12556-12568 (2011)
  25. Impact of conformational heterogeneity of OxoG lesions and their pairing partners on bypass fidelity by Y family polymerases. Rechkoblit O, Malinina L, Cheng Y, Geacintov NE, Broyde S, Patel DJ. Structure 17 725-736 (2009)
  26. Structural insight into dynamic bypass of the major cisplatin-DNA adduct by Y-family polymerase Dpo4. Wong JH, Brown JA, Suo Z, Blum P, Nohmi T, Ling H. EMBO J 29 2059-2069 (2010)
  27. Variants of mouse DNA polymerase κ reveal a mechanism of efficient and accurate translesion synthesis past a benzo[a]pyrene dG adduct. Liu Y, Yang Y, Tang TS, Zhang H, Wang Z, Friedberg E, Yang W, Guo C. Proc Natl Acad Sci U S A 111 1789-1794 (2014)
  28. A new anti conformation for N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (AAF-dG) allows Watson-Crick pairing in the Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4). Wang L, Broyde S. Nucleic Acids Res 34 785-795 (2006)
  29. Mechanism of error-free and semitargeted mutagenic bypass of an aromatic amine lesion by Y-family polymerase Dpo4. Rechkoblit O, Kolbanovskiy A, Malinina L, Geacintov NE, Broyde S, Patel DJ. Nat Struct Mol Biol 17 379-388 (2010)
  30. The Y-family DNA polymerase Dpo4 uses a template slippage mechanism to create single-base deletions. Wu Y, Wilson RC, Pata JD. J Bacteriol 193 2630-2636 (2011)
  31. Conformational changes during nucleotide selection by Sulfolobus solfataricus DNA polymerase Dpo4. Eoff RL, Sanchez-Ponce R, Guengerich FP. J Biol Chem 284 21090-21099 (2009)
  32. Human DNA polymerase η is pre-aligned for dNTP binding and catalysis. Ummat A, Silverstein TD, Jain R, Buku A, Johnson RE, Prakash L, Prakash S, Aggarwal AK. J Mol Biol 415 627-634 (2012)
  33. Nucleotide selection by the Y-family DNA polymerase Dpo4 involves template translocation and misalignment. Brenlla A, Markiewicz RP, Rueda D, Romano LJ. Nucleic Acids Res 42 2555-2563 (2014)
  34. Structure-function relationships in miscoding by Sulfolobus solfataricus DNA polymerase Dpo4: guanine N2,N2-dimethyl substitution produces inactive and miscoding polymerase complexes. Zhang H, Eoff RL, Kozekov ID, Rizzo CJ, Egli M, Guengerich FP. J Biol Chem 284 17687-17699 (2009)
  35. DNA lesion alters global conformational dynamics of Y-family DNA polymerase during catalysis. Maxwell BA, Xu C, Suo Z. J Biol Chem 287 13040-13047 (2012)
  36. Roles of the Y-family DNA polymerase Dbh in accurate replication of the Sulfolobus genome at high temperature. Sakofsky CJ, Foster PL, Grogan DW. DNA Repair (Amst) 11 391-400 (2012)
  37. A highly conserved Tyrosine residue of family B DNA polymerases contributes to dictate translesion synthesis past 8-oxo-7,8-dihydro-2'-deoxyguanosine. de Vega M, Salas M. Nucleic Acids Res 35 5096-5107 (2007)
  38. Effect of N-2-acetylaminofluorene and 2-aminofluorene adducts on DNA binding and synthesis by yeast DNA polymerase eta. Vooradi V, Romano LJ. Biochemistry 48 4209-4216 (2009)
  39. Effect of N2-guanyl modifications on early steps in catalysis of polymerization by Sulfolobus solfataricus P2 DNA polymerase Dpo4 T239W. Zhang H, Guengerich FP. J Mol Biol 395 1007-1018 (2010)
  40. UmuD(2) inhibits a non-covalent step during DinB-mediated template slippage on homopolymeric nucleotide runs. Foti JJ, Delucia AM, Joyce CM, Walker GC. J Biol Chem 285 23086-23095 (2010)
  41. Identification of an unfolding intermediate for a DNA lesion bypass polymerase. Sherrer SM, Maxwell BA, Pack LR, Fiala KA, Fowler JD, Zhang J, Suo Z. Chem Res Toxicol 25 1531-1540 (2012)
  42. Mutagenic nucleotide incorporation and hindered translocation by a food carcinogen C8-dG adduct in Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4): modeling and dynamics studies. Zhang L, Rechkoblit O, Wang L, Patel DJ, Shapiro R, Broyde S. Nucleic Acids Res 34 3326-3337 (2006)
  43. Role of human DNA polymerase κ in extension opposite from a cis-syn thymine dimer. Vasquez-Del Carpio R, Silverstein TD, Lone S, Johnson RE, Prakash L, Prakash S, Aggarwal AK. J Mol Biol 408 252-261 (2011)
  44. Single-Molecule Investigation of Response to Oxidative DNA Damage by a Y-Family DNA Polymerase. Raper AT, Gadkari VV, Maxwell BA, Suo Z. Biochemistry 55 2187-2196 (2016)
  45. Template-switching mechanism of a group II intron-encoded reverse transcriptase and its implications for biological function and RNA-Seq. Lentzsch AM, Yao J, Russell R, Lambowitz AM. J Biol Chem 294 19764-19784 (2019)
  46. The noncatalytic C-terminus of AtPOLK Y-family DNA polymerase affects synthesis fidelity, mismatch extension and translesion replication. García-Ortiz MV, Roldán-Arjona T, Ariza RR. FEBS J 274 3340-3350 (2007)
  47. A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota. Feng X, Liu X, Xu R, Zhao R, Feng W, Liao J, Han W, She Q. Front Microbiol 11 1585 (2020)
  48. Discrimination against major groove adducts by Y-family polymerases of the DinB subfamily. Walsh JM, Ippoliti PJ, Ronayne EA, Rozners E, Beuning PJ. DNA Repair (Amst) 12 713-722 (2013)
  49. Comparison of the in vitro replication of the 7-(2-oxoheptyl)-1,N2-etheno-2'-deoxyguanosine and 1,N2-etheno-2'-deoxyguanosine lesions by Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4). Christov PP, Petrova KV, Shanmugam G, Kozekov ID, Kozekova A, Guengerich FP, Stone MP, Rizzo CJ. Chem Res Toxicol 23 1330-1341 (2010)
  50. Conformational dynamics of a Y-family DNA polymerase during substrate binding and catalysis as revealed by interdomain Förster resonance energy transfer. Maxwell BA, Xu C, Suo Z. Biochemistry 53 1768-1778 (2014)
  51. Translesion DNA Synthesis. Vaisman A, McDonald JP, Woodgate R. EcoSal Plus 5 (2012)
  52. The Werner syndrome protein limits the error-prone 8-oxo-dG lesion bypass activity of human DNA polymerase kappa. Maddukuri L, Ketkar A, Eddy S, Zafar MK, Eoff RL. Nucleic Acids Res 42 12027-12040 (2014)
  53. Frameshift deletion by Sulfolobus solfataricus P2 DNA polymerase Dpo4 T239W is selective for purines and involves normal conformational change followed by slow phosphodiester bond formation. Zhang H, Beckman JW, Guengerich FP. J Biol Chem 284 35144-35153 (2009)
  54. Noncognate DNA damage prevents the formation of the active conformation of the Y-family DNA polymerases DinB and DNA polymerase κ. Nevin P, Lu X, Zhang K, Engen JR, Beuning PJ. FEBS J 282 2646-2660 (2015)
  55. Structural basis of DNA synthesis opposite 8-oxoguanine by human PrimPol primase-polymerase. Rechkoblit O, Johnson RE, Gupta YK, Prakash L, Prakash S, Aggarwal AK. Nat Commun 12 4020 (2021)
  56. A hand-off of DNA between archaeal polymerases allows high-fidelity replication to resume at a discrete intermediate three bases past 8-oxoguanine. Cranford MT, Kaszubowski JD, Trakselis MA. Nucleic Acids Res 48 10986-10997 (2020)
  57. Incorporation of nucleoside probes opposite O⁶-methylguanine by Sulfolobus solfataricus DNA polymerase Dpo4: importance of hydrogen bonding. Stornetta A, Angelov T, Guengerich FP, Sturla SJ. Chembiochem 14 1634-1639 (2013)
  58. Lesion-Induced Mutation in the Hyperthermophilic Archaeon Sulfolobus acidocaldarius and Its Avoidance by the Y-Family DNA Polymerase Dbh. Sakofsky CJ, Grogan DW. Genetics 201 513-523 (2015)
  59. Pyrophosphate release acts as a kinetic checkpoint during high-fidelity DNA replication by the Staphylococcus aureus replicative polymerase PolC. Fagan SP, Mukherjee P, Jaremko WJ, Nelson-Rigg R, Wilson RC, Dangerfield TL, Johnson KA, Lahiri I, Pata JD. Nucleic Acids Res 49 8324-8338 (2021)
  60. Implications for damage recognition during Dpo4-mediated mutagenic bypass of m1G and m3C lesions. Rechkoblit O, Delaney JC, Essigmann JM, Patel DJ. Structure 19 821-832 (2011)
  61. Promutagenic bypass of 7,8-dihydro-8-oxoadenine by translesion synthesis DNA polymerase Dpo4. Jung H, Lee S. Biochem J 477 2859-2871 (2020)
  62. A nucleotide binding rectification Brownian ratchet model for translocation of Y-family DNA polymerases. Xie P. Theor Biol Med Model 8 22 (2011)
  63. Backbone assignment of the catalytic core of a Y-family DNA polymerase. Ma D, Fowler JD, Yuan C, Suo Z. Biomol NMR Assign 4 207-209 (2010)
  64. Mechanism of aromatic amine carcinogen bypass by the Y-family polymerase, Dpo4. Brenlla A, Rueda D, Romano LJ. Nucleic Acids Res 43 9918-9927 (2015)
  65. Backbone assignment of the binary complex of the full length Sulfolobus solfataricus DNA polymerase IV and DNA. Lee E, Fowler JD, Suo Z, Wu Z. Biomol NMR Assign 11 39-43 (2017)
  66. Enzymatic Switching Between Archaeal DNA Polymerases Facilitates Abasic Site Bypass. Feng X, Zhang B, Xu R, Gao Z, Liu X, Yuan G, Ishino S, Feng M, Shen Y, Ishino Y, She Q. Front Microbiol 12 802670 (2021)
  67. Comment Flexibility promotes fidelity. Perry JJ, Hitomi K, Tainer JA. Structure 17 633-634 (2009)
  68. Human Mitochondrial DNA Polymerase Metal Dependent UV Lesion Bypassing Ability. Park J, Baruch-Torres N, Iwai S, Herrmann GK, Brieba LG, Yin YW. Front Mol Biosci 9 808036 (2022)
  69. Kinetics of deoxy-CTP incorporation opposite a dG-C8-N-2-aminofluorene adduct by a high-fidelity DNA polymerase. Burnouf DY, Wagner JE. J Mol Biol 386 951-961 (2009)
  70. A Well-Conserved Archaeal B-Family Polymerase Functions as an Extender in Translesion Synthesis. Feng X, Zhang B, Gao Z, Xu R, Liu X, Ishino S, Feng M, Shen Y, Ishino Y, She Q. mBio 13 e0265921 (2022)
  71. Mechanistic Studies with DNA Polymerases Reveal Complex Outcomes following Bypass of DNA Damage. Eoff RL, Choi JY, Guengerich FP. J Nucleic Acids 2010 830473 (2010)
  72. Advances in Structural and Single-Molecule Methods for Investigating DNA Lesion Bypass and Repair Polymerases. Raper AT, Reed AJ, Gadkari VV, Suo Z. Chem Res Toxicol 30 260-269 (2017)
  73. Computational Evaluation of Nucleotide Insertion Opposite Expanded and Widened DNA by the Translesion Synthesis Polymerase Dpo4. Albrecht L, Wilson KA, Wetmore SD. Molecules 21 E822 (2016)
  74. Dual coding potential of a 2',5'-branched ribonucleotide in DNA. Döring J, Hurek T. RNA 25 105-120 (2019)
  75. Insights into the mismatch discrimination mechanism of Y-family DNA polymerase Dpo4. Jung H, Lee S. Biochem J 478 1769-1781 (2021)
  76. On the Role of Molecular Conformation of the 8-Oxoguanine Lesion in Damaged DNA Processing by Polymerases. Geronimo I, Vidossich P, De Vivo M. J Chem Inf Model 63 1521-1528 (2023)
  77. Processing oxidatively damaged bases at DNA strand breaks by APE1. Whitaker AM, Stark WJ, Freudenthal BD. Nucleic Acids Res 50 9521-9533 (2022)