1z4w Citations

Structural studies of the parainfluenza virus 5 hemagglutinin-neuraminidase tetramer in complex with its receptor, sialyllactose.

Structure 13 803-15 (2005)
Related entries: 1z4v, 1z4x, 1z4y, 1z4z, 1z50

Cited: 134 times
EuropePMC logo PMID: 15893670

Abstract

The paramyxovirus hemagglutinin-neuraminidase (HN) functions in virus attachment to cells, cleavage of sialic acid from oligosaccharides, and stimulating membrane fusion during virus entry into cells. The structural basis for these diverse functions remains to be fully understood. We report the crystal structures of the parainfluenza virus 5 (SV5) HN and its complexes with sialic acid, the inhibitor DANA, and the receptor sialyllactose. SV5 HN shares common structural features with HN of Newcastle disease virus (NDV) and human parainfluenza 3 (HPIV3), but unlike the previously determined HN structures, the SV5 HN forms a tetramer in solution, which is thought to be the physiological oligomer. The sialyllactose complex reveals intact receptor within the active site, but no major conformational changes in the protein. The SV5 HN structures do not support previously proposed models for HN action in membrane fusion and suggest alternative mechanisms by which HN may promote virus entry into cells.

Reviews citing this publication (32)

  1. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. White JM, Delos SE, Brecher M, Schornberg K. Crit Rev Biochem Mol Biol 43 189-219 (2008)
  2. Viral membrane fusion. Harrison SC. Virology 479-480 498-507 (2015)
  3. Paramyxovirus membrane fusion: lessons from the F and HN atomic structures. Lamb RA, Paterson RG, Jardetzky TS. Virology 344 30-37 (2006)
  4. Sialic Acid Receptors of Viruses. Matrosovich M, Herrler G, Klenk HD. Top Curr Chem 367 1-28 (2015)
  5. Paramyxovirus fusion and entry: multiple paths to a common end. Chang A, Dutch RE. Viruses 4 613-636 (2012)
  6. Viral entry mechanisms: the increasing diversity of paramyxovirus entry. Smith EC, Popa A, Chang A, Masante C, Dutch RE. FEBS J 276 7217-7227 (2009)
  7. Viruses and sialic acids: rules of engagement. Neu U, Bauer J, Stehle T. Curr Opin Struct Biol 21 610-618 (2011)
  8. Respiratory syncytial virus entry and how to block it. Battles MB, McLellan JS. Nat Rev Microbiol 17 233-245 (2019)
  9. Modes of paramyxovirus fusion: a Henipavirus perspective. Lee B, Ataman ZA. Trends Microbiol 19 389-399 (2011)
  10. Sialic acid tissue distribution and influenza virus tropism. Kumlin U, Olofsson S, Dimock K, Arnberg N. Influenza Other Respir Viruses 2 147-154 (2008)
  11. Structural and mechanistic studies of measles virus illuminate paramyxovirus entry. Plemper RK, Brindley MA, Iorio RM. PLoS Pathog 7 e1002058 (2011)
  12. Paramyxovirus glycoprotein incorporation, assembly and budding: a three way dance for infectious particle production. El Najjar F, Schmitt AP, Dutch RE. Viruses 6 3019-3054 (2014)
  13. Measles Virus Fusion Protein: Structure, Function and Inhibition. Plattet P, Alves L, Herren M, Aguilar HC. Viruses 8 112 (2016)
  14. The structural basis of paramyxovirus invasion. Russell CJ, Luque LE. Trends Microbiol 14 243-246 (2006)
  15. Structure and organization of paramyxovirus particles. Cox RM, Plemper RK. Curr Opin Virol 24 105-114 (2017)
  16. Envelope protein dynamics in paramyxovirus entry. Plattet P, Plemper RK. mBio 4 e00413-13 (2013)
  17. Paramyxovirus entry. Bossart KN, Fusco DL, Broder CC. Adv Exp Med Biol 790 95-127 (2013)
  18. Measles virus glycoprotein complex assembly, receptor attachment, and cell entry. Navaratnarajah CK, Leonard VH, Cattaneo R. Curr Top Microbiol Immunol 329 59-76 (2009)
  19. Receptor-mediated cell entry of paramyxoviruses: Mechanisms, and consequences for tropism and pathogenesis. Navaratnarajah CK, Generous AR, Yousaf I, Cattaneo R. J Biol Chem 295 2771-2786 (2020)
  20. Henipavirus mediated membrane fusion, virus entry and targeted therapeutics. Steffen DL, Xu K, Nikolov DB, Broder CC. Viruses 4 280-308 (2012)
  21. Ephrin-B2 and ephrin-B3 as functional henipavirus receptors. Xu K, Broder CC, Nikolov DB. Semin Cell Dev Biol 23 116-123 (2012)
  22. Structural basis of efficient contagion: measles variations on a theme by parainfluenza viruses. Mateo M, Navaratnarajah CK, Cattaneo R. Curr Opin Virol 5 16-23 (2014)
  23. Shared paramyxoviral glycoprotein architecture is adapted for diverse attachment strategies. Bowden TA, Crispin M, Jones EY, Stuart DI. Biochem Soc Trans 38 1349-1355 (2010)
  24. Differential Features of Fusion Activation within the Paramyxoviridae. Azarm KD, Lee B. Viruses 12 E161 (2020)
  25. Specificity switching in virus-receptor complexes. Stehle T, Casasnovas JM. Curr Opin Struct Biol 19 181-188 (2009)
  26. Structure and working of viral fusion machinery. Albertini A, Bressanelli S, Lepault J, Gaudin Y. Curr Top Membr 68 49-80 (2011)
  27. X-ray crystallographic analysis of measles virus hemagglutinin. Hashiguchi T, Maenaka K, Yanagi Y. Uirusu 58 1-10 (2008)
  28. Development of Azaindole-Based Frameworks as Potential Antiviral Agents and Their Future Perspectives. Urvashi, Senthil Kumar JB, Das P, Tandon V. J Med Chem 65 6454-6495 (2022)
  29. Sendai Virus-Vectored Vaccines That Express Envelope Glycoproteins of Respiratory Viruses. Russell CJ, Hurwitz JL. Viruses 13 1023 (2021)
  30. Unique Tropism and Entry Mechanism of Mumps Virus. Kubota M, Hashiguchi T. Viruses 13 1746 (2021)
  31. [Entry mechanism of morbillivirus family]. Fukuhara H, Chen S, Takeda S, Maenaka K. Yakugaku Zasshi 133 549-559 (2013)
  32. [Viral fusion mechanisms]. Tsurudome M. Uirusu 55 207-219 (2005)

Articles citing this publication (102)

  1. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Hashiguchi T, Ose T, Kubota M, Maita N, Kamishikiryo J, Maenaka K, Yanagi Y. Nat Struct Mol Biol 18 135-141 (2011)
  2. Microbial recognition of human cell surface glycoconjugates. Imberty A, Varrot A. Curr Opin Struct Biol 18 567-576 (2008)
  3. Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Bowden TA, Aricescu AR, Gilbert RJ, Grimes JM, Jones EY, Stuart DI. Nat Struct Mol Biol 15 567-572 (2008)
  4. Host cell recognition by the henipaviruses: crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. Xu K, Rajashankar KR, Chan YP, Himanen JP, Broder CC, Nikolov DB. Proc Natl Acad Sci U S A 105 9953-9958 (2008)
  5. Structure of the Newcastle disease virus hemagglutinin-neuraminidase (HN) ectodomain reveals a four-helix bundle stalk. Yuan P, Swanson KA, Leser GP, Paterson RG, Lamb RA, Jardetzky TS. Proc Natl Acad Sci U S A 108 14920-14925 (2011)
  6. Structure of the measles virus hemagglutinin bound to the CD46 receptor. Santiago C, Celma ML, Stehle T, Casasnovas JM. Nat Struct Mol Biol 17 124-129 (2010)
  7. Crystal structure of reovirus attachment protein σ1 in complex with sialylated oligosaccharides. Reiter DM, Frierson JM, Halvorson EE, Kobayashi T, Dermody TS, Stehle T. PLoS Pathog 7 e1002166 (2011)
  8. Functional interaction between paramyxovirus fusion and attachment proteins. Lee JK, Prussia A, Paal T, White LK, Snyder JP, Plemper RK. J Biol Chem 283 16561-16572 (2008)
  9. Addition of N-glycans in the stalk of the Newcastle disease virus HN protein blocks its interaction with the F protein and prevents fusion. Melanson VR, Iorio RM. J Virol 80 623-633 (2006)
  10. Bimolecular complementation of paramyxovirus fusion and hemagglutinin-neuraminidase proteins enhances fusion: implications for the mechanism of fusion triggering. Connolly SA, Leser GP, Jardetzky TS, Lamb RA. J Virol 83 10857-10868 (2009)
  11. The heads of the measles virus attachment protein move to transmit the fusion-triggering signal. Navaratnarajah CK, Oezguen N, Rupp L, Kay L, Leonard VH, Braun W, Cattaneo R. Nat Struct Mol Biol 18 128-134 (2011)
  12. Probing the spatial organization of measles virus fusion complexes. Paal T, Brindley MA, St Clair C, Prussia A, Gaus D, Krumm SA, Snyder JP, Plemper RK. J Virol 83 10480-10493 (2009)
  13. Crystal structure and carbohydrate analysis of Nipah virus attachment glycoprotein: a template for antiviral and vaccine design. Bowden TA, Crispin M, Harvey DJ, Aricescu AR, Grimes JM, Jones EY, Stuart DI. J Virol 82 11628-11636 (2008)
  14. Structure and mutagenesis of the parainfluenza virus 5 hemagglutinin-neuraminidase stalk domain reveals a four-helix bundle and the role of the stalk in fusion promotion. Bose S, Welch BD, Kors CA, Yuan P, Jardetzky TS, Lamb RA. J Virol 85 12855-12866 (2011)
  15. A second receptor binding site on human parainfluenza virus type 3 hemagglutinin-neuraminidase contributes to activation of the fusion mechanism. Porotto M, Fornabaio M, Kellogg GE, Moscona A. J Virol 81 3216-3228 (2007)
  16. Fusion activation by a headless parainfluenza virus 5 hemagglutinin-neuraminidase stalk suggests a modular mechanism for triggering. Bose S, Zokarkar A, Welch BD, Leser GP, Jardetzky TS, Lamb RA. Proc Natl Acad Sci U S A 109 E2625-34 (2012)
  17. A novel receptor-induced activation site in the Nipah virus attachment glycoprotein (G) involved in triggering the fusion glycoprotein (F). Aguilar HC, Ataman ZA, Aspericueta V, Fang AQ, Stroud M, Negrete OA, Kammerer RA, Lee B. J Biol Chem 284 1628-1635 (2009)
  18. Dimeric architecture of the Hendra virus attachment glycoprotein: evidence for a conserved mode of assembly. Bowden TA, Crispin M, Harvey DJ, Jones EY, Stuart DI. J Virol 84 6208-6217 (2010)
  19. Glycoprotein interactions in paramyxovirus fusion. Iorio RM, Melanson VR, Mahon PJ. Future Virol 4 335-351 (2009)
  20. Structural rearrangements of the central region of the morbillivirus attachment protein stalk domain trigger F protein refolding for membrane fusion. Ader N, Brindley MA, Avila M, Origgi FC, Langedijk JP, Örvell C, Vandevelde M, Zurbriggen A, Plemper RK, Plattet P. J Biol Chem 287 16324-16334 (2012)
  21. Triggering the measles virus membrane fusion machinery. Brindley MA, Takeda M, Plattet P, Plemper RK. Proc Natl Acad Sci U S A 109 E3018-27 (2012)
  22. A stabilized headless measles virus attachment protein stalk efficiently triggers membrane fusion. Brindley MA, Suter R, Schestak I, Kiss G, Wright ER, Plemper RK. J Virol 87 11693-11703 (2013)
  23. Affinity thresholds for membrane fusion triggering by viral glycoproteins. Hasegawa K, Hu C, Nakamura T, Marks JD, Russell SJ, Peng KW. J Virol 81 13149-13157 (2007)
  24. Trisaccharide containing α2,3-linked sialic acid is a receptor for mumps virus. Kubota M, Takeuchi K, Watanabe S, Ohno S, Matsuoka R, Kohda D, Nakakita SI, Hiramatsu H, Suzuki Y, Nakayama T, Terada T, Shimizu K, Shimizu N, Shiroishi M, Yanagi Y, Hashiguchi T. Proc Natl Acad Sci U S A 113 11579-11584 (2016)
  25. Mechanism of fusion triggering by human parainfluenza virus type III: communication between viral glycoproteins during entry. Porotto M, Palmer SG, Palermo LM, Moscona A. J Biol Chem 287 778-793 (2012)
  26. Blue native PAGE and biomolecular complementation reveal a tetrameric or higher-order oligomer organization of the physiological measles virus attachment protein H. Brindley MA, Plemper RK. J Virol 84 12174-12184 (2010)
  27. Mechanism for active membrane fusion triggering by morbillivirus attachment protein. Ader N, Brindley M, Avila M, Örvell C, Horvat B, Hiltensperger G, Schneider-Schaulies J, Vandevelde M, Zurbriggen A, Plemper RK, Plattet P. J Virol 87 314-326 (2013)
  28. Structural basis for norovirus inhibition and fucose mimicry by citrate. Hansman GS, Shahzad-Ul-Hussan S, McLellan JS, Chuang GY, Georgiev I, Shimoike T, Katayama K, Bewley CA, Kwong PD. J Virol 86 284-292 (2012)
  29. Recombinant parainfluenza virus 5 (PIV5) expressing the influenza A virus hemagglutinin provides immunity in mice to influenza A virus challenge. Tompkins SM, Lin Y, Leser GP, Kramer KA, Haas DL, Howerth EW, Xu J, Kennett MJ, Durbin RK, Durbin JE, Tripp R, Lamb RA, He B. Virology 362 139-150 (2007)
  30. Capture and imaging of a prehairpin fusion intermediate of the paramyxovirus PIV5. Kim YH, Donald JE, Grigoryan G, Leser GP, Fadeev AY, Lamb RA, DeGrado WF. Proc Natl Acad Sci U S A 108 20992-20997 (2011)
  31. The second receptor binding site of the globular head of the Newcastle disease virus hemagglutinin-neuraminidase activates the stalk of multiple paramyxovirus receptor binding proteins to trigger fusion. Porotto M, Salah Z, DeVito I, Talekar A, Palmer SG, Xu R, Wilson IA, Moscona A. J Virol 86 5730-5741 (2012)
  32. Mutations in the parainfluenza virus 5 fusion protein reveal domains important for fusion triggering and metastability. Bose S, Heath CM, Shah PA, Alayyoubi M, Jardetzky TS, Lamb RA. J Virol 87 13520-13531 (2013)
  33. Paramyxoviruses: different receptors - different mechanisms of fusion. Iorio RM, Mahon PJ. Trends Microbiol 16 135-137 (2008)
  34. Structure of the ulster strain newcastle disease virus hemagglutinin-neuraminidase reveals auto-inhibitory interactions associated with low virulence. Yuan P, Paterson RG, Leser GP, Lamb RA, Jardetzky TS. PLoS Pathog 8 e1002855 (2012)
  35. Domain architecture and oligomerization properties of the paramyxovirus PIV 5 hemagglutinin-neuraminidase (HN) protein. Yuan P, Leser GP, Demeler B, Lamb RA, Jardetzky TS. Virology 378 282-291 (2008)
  36. Nipah virus attachment glycoprotein stalk C-terminal region links receptor binding to fusion triggering. Liu Q, Bradel-Tretheway B, Monreal AI, Saludes JP, Lu X, Nicola AV, Aguilar HC. J Virol 89 1838-1850 (2015)
  37. Measles virus hemagglutinin: structural insights into cell entry and measles vaccine. Hashiguchi T, Maenaka K, Yanagi Y. Front Microbiol 2 247 (2011)
  38. Nonnucleoside inhibitor of measles virus RNA-dependent RNA polymerase complex activity. White LK, Yoon JJ, Lee JK, Sun A, Du Y, Fu H, Snyder JP, Plemper RK. Antimicrob Agents Chemother 51 2293-2303 (2007)
  39. Atomic-resolution conformational analysis of the GM3 ganglioside in a lipid bilayer and its implications for ganglioside-protein recognition at membrane surfaces. DeMarco ML, Woods RJ. Glycobiology 19 344-355 (2009)
  40. Molecular determinants defining the triggering range of prefusion F complexes of canine distemper virus. Avila M, Alves L, Khosravi M, Ader-Ebert N, Origgi F, Schneider-Schaulies J, Zurbriggen A, Plemper RK, Plattet P. J Virol 88 2951-2966 (2014)
  41. Evidence of a potential receptor-binding site on the Nipah virus G protein (NiV-G): identification of globular head residues with a role in fusion promotion and their localization on an NiV-G structural model. Guillaume V, Aslan H, Ainouze M, Guerbois M, Wild TF, Buckland R, Langedijk JP. J Virol 80 7546-7554 (2006)
  42. Molecular recognition of human ephrinB2 cell surface receptor by an emergent African henipavirus. Lee B, Pernet O, Ahmed AA, Zeltina A, Beaty SM, Bowden TA. Proc Natl Acad Sci U S A 112 E2156-65 (2015)
  43. Engineered intermonomeric disulfide bonds in the globular domain of Newcastle disease virus hemagglutinin-neuraminidase protein: implications for the mechanism of fusion promotion. Mahon PJ, Mirza AM, Musich TA, Iorio RM. J Virol 82 10386-10396 (2008)
  44. Paramyxovirus Glycoproteins and the Membrane Fusion Process. Aguilar HC, Henderson BA, Zamora JL, Johnston GP. Curr Clin Microbiol Rep 3 142-154 (2016)
  45. Identification of key residues in virulent canine distemper virus hemagglutinin that control CD150/SLAM-binding activity. Zipperle L, Langedijk JP, Orvell C, Vandevelde M, Zurbriggen A, Plattet P. J Virol 84 9618-9624 (2010)
  46. Mapping antigenic diversity and strain specificity of mumps virus: a bioinformatics approach. Kulkarni-Kale U, Ojha J, Manjari GS, Deobagkar DD, Mallya AD, Dhere RM, Kapre SV. Virology 359 436-446 (2007)
  47. Sequential conformational changes in the morbillivirus attachment protein initiate the membrane fusion process. Ader-Ebert N, Khosravi M, Herren M, Avila M, Alves L, Bringolf F, Örvell C, Langedijk JP, Zurbriggen A, Plemper RK, Plattet P. PLoS Pathog 11 e1004880 (2015)
  48. Premature activation of the paramyxovirus fusion protein before target cell attachment with corruption of the viral fusion machinery. Farzan SF, Palermo LM, Yokoyama CC, Orefice G, Fornabaio M, Sarkar A, Kellogg GE, Greengard O, Porotto M, Moscona A. J Biol Chem 286 37945-37954 (2011)
  49. Idiosyncratic Mòjiāng virus attachment glycoprotein directs a host-cell entry pathway distinct from genetically related henipaviruses. Rissanen I, Ahmed AA, Azarm K, Beaty S, Hong P, Nambulli S, Duprex WP, Lee B, Bowden TA. Nat Commun 8 16060 (2017)
  50. Regulation of paramyxovirus fusion activation: the hemagglutinin-neuraminidase protein stabilizes the fusion protein in a pretriggered state. Porotto M, Salah ZW, Gui L, DeVito I, Jurgens EM, Lu H, Yokoyama CC, Palermo LM, Lee KK, Moscona A. J Virol 86 12838-12848 (2012)
  51. Measles virus glycoprotein complexes preassemble intracellularly and relax during transport to the cell surface in preparation for fusion. Brindley MA, Chaudhury S, Plemper RK. J Virol 89 1230-1241 (2015)
  52. New insights into the Hendra virus attachment and entry process from structures of the virus G glycoprotein and its complex with Ephrin-B2. Xu K, Chan YP, Rajashankar KR, Khetawat D, Yan L, Kolev MV, Broder CC, Nikolov DB. PLoS One 7 e48742 (2012)
  53. Electron tomography imaging of surface glycoproteins on human parainfluenza virus 3: association of receptor binding and fusion proteins before receptor engagement. Gui L, Jurgens EM, Ebner JL, Porotto M, Moscona A, Lee KK. mBio 6 e02393-14 (2015)
  54. Identification of a region in the stalk domain of the nipah virus receptor binding protein that is critical for fusion activation. Talekar A, DeVito I, Salah Z, Palmer SG, Chattopadhyay A, Rose JK, Xu R, Wilson IA, Moscona A, Porotto M. J Virol 87 10980-10996 (2013)
  55. Measles virus fusion machinery activated by sialic acid binding globular domain. Talekar A, Moscona A, Porotto M. J Virol 87 13619-13627 (2013)
  56. Novel divergent nidovirus in a python with pneumonia. Bodewes R, Lempp C, Schürch AC, Habierski A, Hahn K, Lamers M, von Dörnberg K, Wohlsein P, Drexler JF, Haagmans BL, Smits SL, Baumgärtner W, Osterhaus ADME. J Gen Virol 95 2480-2485 (2014)
  57. Modeled structural basis for the recognition of α2-3-sialyllactose by soluble Klotho. Wright JD, An SW, Xie J, Yoon J, Nischan N, Kohler JJ, Oliver N, Lim C, Huang CL. FASEB J 31 3574-3586 (2017)
  58. Fixation of oligosaccharides to a surface may increase the susceptibility to human parainfluenza virus 1, 2, or 3 hemagglutinin-neuraminidase. Tappert MM, Smith DF, Air GM. J Virol 85 12146-12159 (2011)
  59. Isolation and characterization of novel bat paramyxovirus B16-40 potentially belonging to the proposed genus Shaanvirus. Noh JY, Jeong DG, Yoon SW, Kim JH, Choi YG, Kang SY, Kim HK. Sci Rep 8 12533 (2018)
  60. Mutation at residue 523 creates a second receptor binding site on human parainfluenza virus type 1 hemagglutinin-neuraminidase protein. Bousse T, Takimoto T. J Virol 80 9009-9016 (2006)
  61. Canine Distemper Virus Fusion Activation: Critical Role of Residue E123 of CD150/SLAM. Khosravi M, Bringolf F, Röthlisberger S, Bieringer M, Schneider-Schaulies J, Zurbriggen A, Origgi F, Plattet P. J Virol 90 1622-1637 (2016)
  62. Genetic characterization of an isolate of canine distemper virus from a Tibetan Mastiff in China. Li W, Li T, Liu Y, Gao Y, Yang S, Feng N, Sun H, Wang S, Wang L, Bu Z, Xia X. Virus Genes 49 45-57 (2014)
  63. Identification of potential inhibitors of coronavirus hemagglutinin-esterase using molecular docking, molecular dynamics simulation and binding free energy calculation. Patel CN, Kumar SP, Pandya HA, Rawal RM. Mol Divers 25 421-433 (2021)
  64. A histidine switch in hemagglutinin-neuraminidase triggers paramyxovirus-cell membrane fusion. Krishnan A, Verma SK, Mani P, Gupta R, Kundu S, Sarkar DP. J Virol 83 1727-1741 (2009)
  65. Characterization of naturally occurring parainfluenza virus type 2 (hPIV-2) variants. Terrier O, Cartet G, Ferraris O, Morfin F, Thouvenot D, Hong SS, Lina B. J Clin Virol 43 86-92 (2008)
  66. Effects of hemagglutinin-neuraminidase protein mutations on cell-cell fusion mediated by human parainfluenza type 2 virus. Tsurudome M, Nishio M, Ito M, Tanahashi S, Kawano M, Komada H, Ito Y. J Virol 82 8283-8295 (2008)
  67. Soluble klotho regulates TRPC6 calcium signaling via lipid rafts, independent of the FGFR-FGF23 pathway. Wright JD, An SW, Xie J, Lim C, Huang CL. FASEB J 33 9182-9193 (2019)
  68. Differences in antigenic sites and other functional regions between genotype A and G mumps virus surface proteins. Gouma S, Vermeire T, Van Gucht S, Martens L, Hutse V, Cremer J, Rota PA, Leroux-Roels G, Koopmans M, van Binnendijk R, Vandermarliere E. Sci Rep 8 13337 (2018)
  69. A single amino acid substitution in the haemagglutinin-neuraminidase protein of Newcastle disease virus results in increased fusion promotion and decreased neuraminidase activities without changes in virus pathotype. Estevez C, King DJ, Luo M, Yu Q. J Gen Virol 92 544-551 (2011)
  70. Molecular characterization of the hemagglutinin-neuraminidase gene of porcine rubulavirus isolates associated with neurological disorders in fattening and adult pigs. Sánchez-Betancourt JI, Santos-López G, Alonso R, Doporto JM, Ramírez-Mendoza H, Mendoza S, Hernández J, Reyes-Leyva J, Trujillo ME. Res Vet Sci 85 359-367 (2008)
  71. Morbillivirus and henipavirus attachment protein cytoplasmic domains differently affect protein expression, fusion support and particle assembly. Sawatsky B, Bente DA, Czub M, von Messling V. J Gen Virol 97 1066-1076 (2016)
  72. Potent Henipavirus Neutralization by Antibodies Recognizing Diverse Sites on Hendra and Nipah Virus Receptor Binding Protein. Dong J, Cross RW, Doyle MP, Kose N, Mousa JJ, Annand EJ, Borisevich V, Agans KN, Sutton R, Nargi R, Majedi M, Fenton KA, Reichard W, Bombardi RG, Geisbert TW, Crowe JE. Cell 183 1536-1550.e17 (2020)
  73. Structural basis for Glycan-receptor binding by mumps virus hemagglutinin-neuraminidase. Forgione RE, Di Carluccio C, Kubota M, Manabe Y, Fukase K, Molinaro A, Hashiguchi T, Marchetti R, Silipo A. Sci Rep 10 1589 (2020)
  74. A 176 amino acid polypeptide derived from the mumps virus HN ectodomain shows immunological and biological properties similar to the HN protein. Herrera E, Barcenas P, Hernández R, Méndez A, Pérez-Ishiwara G, Barrón B. Virol J 7 195 (2010)
  75. Comment Evil versus 'eph-ective' use of ephrin-B2. Lee B, Ataman ZA, Jin L. Nat Struct Mol Biol 15 540-542 (2008)
  76. Measles virus fusion shifts into gear. Saphire EO, Oldstone MB. Nat Struct Mol Biol 18 115-116 (2011)
  77. Mutations in the putative dimer-dimer interfaces of the measles virus hemagglutinin head domain affect membrane fusion triggering. Nakashima M, Shirogane Y, Hashiguchi T, Yanagi Y. J Biol Chem 288 8085-8091 (2013)
  78. Parainfluenza Virus 5 Infection in Neurological Disease and Encephalitis of Cattle. Hierweger MM, Werder S, Seuberlich T. Int J Mol Sci 21 E498 (2020)
  79. Structure-based design of stabilized recombinant influenza neuraminidase tetramers. Ellis D, Lederhofer J, Acton OJ, Tsybovsky Y, Kephart S, Yap C, Gillespie RA, Creanga A, Olshefsky A, Stephens T, Pettie D, Murphy M, Sydeman C, Ahlrichs M, Chan S, Borst AJ, Park YJ, Lee KK, Graham BS, Veesler D, King NP, Kanekiyo M. Nat Commun 13 1825 (2022)
  80. Probing the functions of the paramyxovirus glycoproteins F and HN with a panel of synthetic antibodies. Welch BD, Paduch M, Leser GP, Bergman Z, Kors CA, Paterson RG, Jardetzky TS, Kossiakoff AA, Lamb RA. J Virol 88 11713-11725 (2014)
  81. Sialidase-catalyzed one-pot multienzyme (OPME) synthesis of sialidase transition-state analogue inhibitors. Xiao A, Li Y, Li X, Santra A, Yu H, Li W, Chen X. ACS Catal 8 43-47 (2018)
  82. A structure-based rationale for sialic acid independent host-cell entry of Sosuga virus. Stelfox AJ, Bowden TA. Proc Natl Acad Sci U S A 116 21514-21520 (2019)
  83. Human parainfluenza virus fusion complex glycoproteins imaged in action on authentic viral surfaces. Marcink TC, Wang T, des Georges A, Porotto M, Moscona A. PLoS Pathog 16 e1008883 (2020)
  84. Optimization of oncolytic effect of Newcastle disease virus Clone30 by selecting sensitive tumor host and constructing more oncolytic viruses. Liu T, Zhang Y, Cao Y, Jiang S, Sun R, Yin J, Gao Z, Ren G, Wang Z, Yu Q, Sui G, Sun X, Sun W, Xiao W, Li D. Gene Ther 28 697-717 (2021)
  85. Stimulation of Nipah Fusion: Small Intradomain Changes Trigger Extensive Interdomain Rearrangements. Dutta P, Siddiqui A, Botlani M, Varma S. Biophys J 111 1621-1630 (2016)
  86. Disruption of the Dimer-Dimer Interaction of the Mumps Virus Attachment Protein Head Domain, Aided by an Anion Located at the Interface, Compromises Membrane Fusion Triggering. Kubota M, Okabe I, Nakakita SI, Ueo A, Shirogane Y, Yanagi Y, Hashiguchi T. J Virol 94 e01732-19 (2020)
  87. Mutagenesis of Paramyxovirus Hemagglutinin-Neuraminidase Membrane-Proximal Stalk Region Influences Stability, Receptor Binding, and Neuraminidase Activity. Adu-Gyamfi E, Kim LS, Jardetzky TS, Lamb RA. J Virol 90 7778-7788 (2016)
  88. The Fusion Protein Specificity of the Parainfluenza Virus Hemagglutinin-Neuraminidase Protein Is Not Solely Defined by the Primary Structure of Its Stalk Domain. Tsurudome M, Ito M, Ohtsuka J, Hara K, Komada H, Nishio M, Nosaka T. J Virol 89 12374-12387 (2015)
  89. The Hemagglutinin-Neuraminidase (HN) Head Domain and the Fusion (F) Protein Stalk Domain of the Parainfluenza Viruses Affect the Specificity of the HN-F Interaction. Tsurudome M, Ohtsuka J, Ito M, Nishio M, Nosaka T. Front Microbiol 9 391 (2018)
  90. CD164 is a host factor for lymphocytic choriomeningitis virus entry. Bakkers MJG, Moon-Walker A, Herlo R, Brusic V, Stubbs SH, Hastie KM, Saphire EO, Kirchhausen TL, Whelan SPJ. Proc Natl Acad Sci U S A 119 e2119676119 (2022)
  91. Comprehensive Analysis and Characterization of Linear Antigenic Domains on HN Protein from Genotype VII Newcastle Disease Virus Using Yeast Surface Display System. Li T, Wang G, Shi B, Liu P, Si W, Wang B, Jiang L, Zhou L, Xiu J, Liu H. PLoS One 10 e0131723 (2015)
  92. Cross-Reactive and Cross-Neutralizing Activity of Human Mumps Antibodies Against a Novel Mumps Virus From Bats. Beaty SM, Nachbagauer R, Hirsh A, Vigant F, Duehr J, Azarm KD, Stelfox AJ, Bowden TA, Duprex WP, Krammer F, Lee B. J Infect Dis 215 209-213 (2017)
  93. Synthesis and chemical characterization of several perfluorinated sialic acid glycals and evaluation of their in vitro antiviral activity against Newcastle disease virus. Rota P, Papini N, La Rocca P, Montefiori M, Cirillo F, Piccoli M, Scurati R, Olsen L, Allevi P, Anastasia L. Medchemcomm 8 1505-1513 (2017)
  94. Molecular detection and whole genome characterization of Canine Parainfluenza type 5 in Thailand. Charoenkul K, Nasamran C, Janetanakit T, Chaiyawong S, Bunpapong N, Boonyapisitsopa S, Tangwangvivat R, Amonsin A. Sci Rep 11 3866 (2021)
  95. Neuraminidase-deficient Sendai virus HN mutants provide protection from homologous superinfection. A Baumann C, J Neubert W. Arch Virol 155 217-227 (2010)
  96. Parainfluenza virus entry at the onset of infection. Marcink TC, Porotto M, Moscona A. Adv Virus Res 111 1-29 (2021)
  97. Functional analysis of amino acids at stalk/head interface of human parainfluenza virus type 3 hemagglutinin-neuraminidase protein in the membrane fusion process. Jiang J, Wen H, Chi M, Liu Y, Liu J, Cao Z, Zhao L, Song Y, Liu N, Chi L, Wang Z. Virus Genes 54 333-342 (2018)
  98. Crystal structure and solution state of the C-terminal head region of the narmovirus receptor binding protein. Stelfox AJ, Oguntuyo KY, Rissanen I, Harlos K, Rambo R, Lee B, Bowden TA. mBio 14 e0139123 (2023)
  99. Enhancement of adherence of Helicobacter pylori to host cells by virus: possible mechanism of development of symptoms of gastric disease. Wu H, Nakano T, Suzuki Y, Ooi Y, Sano K. Med Mol Morphol 50 103-111 (2017)
  100. Expression and characterization of hemagglutinin-neuraminidase protein from Newcastle disease virus in Bacillus subtilis WB800. Shafaati M, Ghorbani M, Mahmoodi M, Ebadi M, Jalalirad R. J Genet Eng Biotechnol 20 77 (2022)
  101. Kinetic analysis of paramyxovirus-sialoglycan receptor interactions reveals virion motility. Wu X, Goebbels M, Chao L, Wennekes T, van Kuppeveld FJM, de Vries E, de Haan CAM. PLoS Pathog 19 e1011273 (2023)
  102. Structural and enzymatic characterization of the sialidase SiaPG from Porphyromonas gingivalis. Dong WB, Jiang YL, Zhu ZL, Zhu J, Li Y, Xia R, Zhou K. Acta Crystallogr F Struct Biol Commun 79 87-94 (2023)