1m6b Citations

Structure of the extracellular region of HER3 reveals an interdomain tether.

Science 297 1330-3 (2002)
Cited: 256 times
EuropePMC logo PMID: 12154198

Abstract

We have determined the 2.6 angstrom crystal structure of the entire extracellular region of human HER3 (ErbB3), a member of the epidermal growth factor receptor (EGFR) family. The structure consists of four domains with structural homology to domains found in the type I insulin-like growth factor receptor. The HER3 structure reveals a contact between domains II and IV that constrains the relative orientations of ligand-binding domains and provides a structural basis for understanding both multiple-affinity forms of EGFRs and conformational changes induced in the receptor by ligand binding during signaling. These results also suggest new therapeutic approaches to modulating the behavior of members of the EGFR family.

Reviews - 1m6b mentioned but not cited (4)

  1. Structure-based view of epidermal growth factor receptor regulation. Ferguson KM. Annu Rev Biophys 37 353-373 (2008)
  2. A structural perspective on the regulation of the epidermal growth factor receptor. Kovacs E, Zorn JA, Huang Y, Barros T, Kuriyan J. Annu Rev Biochem 84 739-764 (2015)
  3. Insulin and epidermal growth factor receptor family members share parallel activation mechanisms. Ferguson KM, Hu C, Lemmon MA. Protein Sci 29 1331-1344 (2020)
  4. Cryo-electron Microscopic Analysis of Single-Pass Transmembrane Receptors. Cai K, Zhang X, Bai XC. Chem Rev 122 13952-13988 (2022)

Articles - 1m6b mentioned but not cited (23)

  1. Human cancer protein-protein interaction network: a structural perspective. Kar G, Gursoy A, Keskin O. PLoS Comput Biol 5 e1000601 (2009)
  2. Structural evidence for loose linkage between ligand binding and kinase activation in the epidermal growth factor receptor. Lu C, Mi LZ, Grey MJ, Zhu J, Graef E, Yokoyama S, Springer TA. Mol Cell Biol 30 5432-5443 (2010)
  3. EGFR oligomerization organizes kinase-active dimers into competent signalling platforms. Needham SR, Roberts SK, Arkhipov A, Mysore VP, Tynan CJ, Zanetti-Domingues LC, Kim ET, Losasso V, Korovesis D, Hirsch M, Rolfe DJ, Clarke DT, Winn MD, Lajevardipour A, Clayton AH, Pike LJ, Perani M, Parker PJ, Shan Y, Shaw DE, Martin-Fernandez ML. Nat Commun 7 13307 (2016)
  4. Single-molecule imaging and fluorescence lifetime imaging microscopy show different structures for high- and low-affinity epidermal growth factor receptors in A431 cells. Webb SE, Roberts SK, Needham SR, Tynan CJ, Rolfe DJ, Winn MD, Clarke DT, Barraclough R, Martin-Fernandez ML. Biophys J 94 803-819 (2008)
  5. Differential binding patterns of monoclonal antibody 2C4 to the ErbB3-p185her2/neu and the EGFR-p185her2/neu complexes. Cai Z, Zhang G, Zhou Z, Bembas K, Drebin JA, Greene MI, Zhang H. Oncogene 27 3870-3874 (2008)
  6. Anti-HER3 domain 1 and 3 antibodies reduce tumor growth by hindering HER2/HER3 dimerization and AKT-induced MDM2, XIAP, and FoxO1 phosphorylation. Lazrek Y, Dubreuil O, Garambois V, Gaborit N, Larbouret C, Le Clorennec C, Thomas G, Leconet W, Jarlier M, Pugnière M, Vié N, Robert B, Monnet C, Bouayadi K, Kharrat H, Mondon P, Pèlegrin A, Chardès T. Neoplasia 15 335-347 (2013)
  7. Her2 activation mechanism reflects evolutionary preservation of asymmetric ectodomain dimers in the human EGFR family. Arkhipov A, Shan Y, Kim ET, Dror RO, Shaw DE. Elife 2 e00708 (2013)
  8. Inhibition of ErbB3 by a monoclonal antibody that locks the extracellular domain in an inactive configuration. Lee S, Greenlee EB, Amick JR, Ligon GF, Lillquist JS, Natoli EJ, Hadari Y, Alvarado D, Schlessinger J. Proc Natl Acad Sci U S A 112 13225-13230 (2015)
  9. A Sox10 expression screen identifies an amino acid essential for Erbb3 function. Buac K, Watkins-Chow DE, Loftus SK, Larson DM, Incao A, Gibney G, Pavan WJ. PLoS Genet 4 e1000177 (2008)
  10. Systems analysis of drug-induced receptor tyrosine kinase reprogramming following targeted mono- and combination anti-cancer therapy. Goltsov A, Deeni Y, Khalil HS, Soininen T, Kyriakidis S, Hu H, Langdon SP, Harrison DJ, Bown J. Cells 3 563-591 (2014)
  11. Co-occurring gain-of-function mutations in HER2 and HER3 modulate HER2/HER3 activation, oncogenesis, and HER2 inhibitor sensitivity. Hanker AB, Brown BP, Meiler J, Marín A, Jayanthan HS, Ye D, Lin CC, Akamatsu H, Lee KM, Chatterjee S, Sudhan DR, Servetto A, Brewer MR, Koch JP, Sheehan JH, He J, Lalani AS, Arteaga CL. Cancer Cell 39 1099-1114.e8 (2021)
  12. Identification of a novel HER3 activating mutation homologous to EGFR-L858R in lung cancer. Umelo I, Noeparast A, Chen G, Renard M, Geers C, Vansteenkiste J, Giron P, De Wever O, Teugels E, De Grève J. Oncotarget 7 3068-3083 (2016)
  13. Activating HER3 mutations in breast cancer. Mishra R, Alanazi S, Yuan L, Solomon T, Thaker TM, Jura N, Garrett JT. Oncotarget 9 27773-27788 (2018)
  14. Engineered Multivalency Enhances Affibody-Based HER3 Inhibition and Downregulation in Cancer Cells. Schardt JS, Oubaid JM, Williams SC, Howard JL, Aloimonos CM, Bookstaver ML, Lamichhane TN, Sokic S, Liyasova MS, O'Neill M, Andresson T, Hussain A, Lipkowitz S, Jay SM. Mol Pharm 14 1047-1056 (2017)
  15. Epitope mapping by random peptide phage display reveals essential residues for vaccinia extracellular enveloped virion spread. He Y, Wang Y, Struble EB, Zhang P, Chowdhury S, Reed JL, Kennedy M, Scott DE, Fisher RW. Virol J 9 217 (2012)
  16. A reinforced merging methodology for mapping unique peptide motifs in members of protein families. Chang HT, Pai TW, Fan TC, Su BH, Wu PC, Tang CY, Chang CT, Liu SH, Chang MD. BMC Bioinformatics 7 38 (2006)
  17. Biallelic ERBB3 loss-of-function variants are associated with a novel multisystem syndrome without congenital contracture. Li N, Xu Y, Zhang Y, Li G, Yu T, Yao R, Zhou Y, Shen Y, Yin L, Wang X, Wang J. Orphanet J Rare Dis 14 265 (2019)
  18. Structures of the HER2-HER3-NRG1β complex reveal a dynamic dimer interface. Diwanji D, Trenker R, Thaker TM, Wang F, Agard DA, Verba KA, Jura N. Nature 600 339-343 (2021)
  19. Extensive conformational and physical plasticity protects HER2-HER3 tumorigenic signaling. Campbell MR, Ruiz-Saenz A, Zhang Y, Peterson E, Steri V, Oeffinger J, Sampang M, Jura N, Moasser MM. Cell Rep 38 110285 (2022)
  20. Crystal structures of HER3 extracellular domain 4 in complex with the designed ankyrin-repeat protein D5. Radom F, Vonrhein C, Mittl PRE, Plückthun A. Acta Crystallogr F Struct Biol Commun 77 192-201 (2021)
  21. Efficient expression, purification, and visualization by cryo-EM of unliganded near full-length HER3. Diwanji D, Trenker R, Jura N, Verba KA. Methods Enzymol 667 611-632 (2022)
  22. Expression, purification, crystallization and preliminary X-ray analysis of the HER3-9E12 Fab complex. He K, Huang A, Huang Y, Takeda H. Acta Crystallogr F Struct Biol Commun 70 786-789 (2014)
  23. Nanoscape, a data-driven 3D real-time interactive virtual cell environment. Kadir SR, Lilja A, Gunn N, Strong C, Hughes RT, Bailey BJ, Rae J, Parton RG, McGhee J. Elife 10 (2021)


Reviews citing this publication (72)

  1. Cell signaling by receptor tyrosine kinases. Lemmon MA, Schlessinger J. Cell 141 1117-1134 (2010)
  2. ERBB receptors and cancer: the complexity of targeted inhibitors. Hynes NE, Lane HA. Nat Rev Cancer 5 341-354 (2005)
  3. Epidermal growth factor receptor (EGFR) signaling in cancer. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS. Gene 366 2-16 (2006)
  4. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Baselga J, Swain SM. Nat Rev Cancer 9 463-475 (2009)
  5. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Schlessinger J. Cell 110 669-672 (2002)
  6. An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Burgess AW, Cho HS, Eigenbrot C, Ferguson KM, Garrett TP, Leahy DJ, Lemmon MA, Sliwkowski MX, Ward CW, Yokoyama S. Mol Cell 12 541-552 (2003)
  7. The ErbB/HER family of protein-tyrosine kinases and cancer. Roskoski R. Pharmacol Res 79 34-74 (2014)
  8. The ERBB network: at last, cancer therapy meets systems biology. Yarden Y, Pines G. Nat Rev Cancer 12 553-563 (2012)
  9. ErbB receptors: directing key signaling networks throughout life. Holbro T, Hynes NE. Annu Rev Pharmacol Toxicol 44 195-217 (2004)
  10. Targeting the EGFR signaling pathway in cancer therapy. Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK. Expert Opin Ther Targets 16 15-31 (2012)
  11. Structural biology of insulin and IGF1 receptors: implications for drug design. De Meyts P, Whittaker J. Nat Rev Drug Discov 1 769-783 (2002)
  12. ErbB receptors: from oncogenes to targeted cancer therapies. Zhang H, Berezov A, Wang Q, Zhang G, Drebin J, Murali R, Greene MI. J Clin Invest 117 2051-2058 (2007)
  13. The EGF receptor family: spearheading a merger of signaling and therapeutics. Bublil EM, Yarden Y. Curr Opin Cell Biol 19 124-134 (2007)
  14. The epidermal growth factor receptor family: biology driving targeted therapeutics. Wieduwilt MJ, Moasser MM. Cell Mol Life Sci 65 1566-1584 (2008)
  15. The origin of protein interactions and allostery in colocalization. Kuriyan J, Eisenberg D. Nature 450 983-990 (2007)
  16. The ErbB/HER receptor protein-tyrosine kinases and cancer. Roskoski R. Biochem Biophys Res Commun 319 1-11 (2004)
  17. Signal transduction and oncogenesis by ErbB/HER receptors. Marmor MD, Skaria KB, Yarden Y. Int J Radiat Oncol Biol Phys 58 903-913 (2004)
  18. Roles for growth factors in cancer progression. Witsch E, Sela M, Yarden Y. Physiology (Bethesda) 25 85-101 (2010)
  19. The EGFR family: not so prototypical receptor tyrosine kinases. Lemmon MA, Schlessinger J, Ferguson KM. Cold Spring Harb Perspect Biol 6 a020768 (2014)
  20. EGFR family: structure physiology signalling and therapeutic targets. Burgess AW. Growth Factors 26 263-274 (2008)
  21. The ERBB3 receptor in cancer and cancer gene therapy. Sithanandam G, Anderson LM. Cancer Gene Ther 15 413-448 (2008)
  22. Role of receptor tyrosine kinase transmembrane domains in cell signaling and human pathologies. Li E, Hristova K. Biochemistry 45 6241-6251 (2006)
  23. Role of ErbB Receptors in Cancer Cell Migration and Invasion. Appert-Collin A, Hubert P, Crémel G, Bennasroune A. Front Pharmacol 6 283 (2015)
  24. Ligand-induced ErbB receptor dimerization. Lemmon MA. Exp Cell Res 315 638-648 (2009)
  25. ErbB receptors, their ligands, and the consequences of their activation and inhibition in the myocardium. Fuller SJ, Sivarajah K, Sugden PH. J Mol Cell Cardiol 44 831-854 (2008)
  26. Targeting of erbB3 receptor to overcome resistance in cancer treatment. Ma J, Lyu H, Huang J, Liu B. Mol Cancer 13 105 (2014)
  27. Tyrosine kinase receptors as attractive targets of cancer therapy. Bennasroune A, Gardin A, Aunis D, Crémel G, Hubert P. Crit Rev Oncol Hematol 50 23-38 (2004)
  28. Molecular pathways: HER3 targeted therapy. Gala K, Chandarlapaty S. Clin Cancer Res 20 1410-1416 (2014)
  29. Signaling through ERBB receptors: multiple layers of diversity and control. Warren CM, Landgraf R. Cell Signal 18 923-933 (2006)
  30. The insulin and EGF receptor structures: new insights into ligand-induced receptor activation. Ward CW, Lawrence MC, Streltsov VA, Adams TE, McKern NM. Trends Biochem Sci 32 129-137 (2007)
  31. Asymmetric tyrosine kinase arrangements in activation or autophosphorylation of receptor tyrosine kinases. Bae JH, Schlessinger J. Mol Cells 29 443-448 (2010)
  32. Mechanistic diversity of cytokine receptor signaling across cell membranes. Stroud RM, Wells JA. Sci STKE 2004 re7 (2004)
  33. Mutational activation of ErbB family receptor tyrosine kinases: insights into mechanisms of signal transduction and tumorigenesis. Riese DJ, Gallo RM, Settleman J. Bioessays 29 558-565 (2007)
  34. Targeting EGFR and HER-2 receptor tyrosine kinases for cancer drug discovery and development. Kamath S, Buolamwini JK. Med Res Rev 26 569-594 (2006)
  35. Interaction of antibodies with ErbB receptor extracellular regions. Schmitz KR, Ferguson KM. Exp Cell Res 315 659-670 (2009)
  36. Activation of the EGF Receptor by Ligand Binding and Oncogenic Mutations: The "Rotation Model". Purba ER, Saita EI, Maruyama IN. Cells 6 (2017)
  37. ErbB-directed immunotherapy: antibodies in current practice and promising new agents. Friedländer E, Barok M, Szöllosi J, Vereb G. Immunol Lett 116 126-140 (2008)
  38. Anomalous diffraction in crystallographic phase evaluation. Hendrickson WA. Q Rev Biophys 47 49-93 (2014)
  39. The ErbB kinase domain: structural perspectives into kinase activation and inhibition. Bose R, Zhang X. Exp Cell Res 315 649-658 (2009)
  40. Physical-chemical principles underlying RTK activation, and their implications for human disease. He L, Hristova K. Biochim Biophys Acta 1818 995-1005 (2012)
  41. HER2 therapy. HER2 (ERBB2): functional diversity from structurally conserved building blocks. Landgraf R. Breast Cancer Res 9 202 (2007)
  42. Dynamic equilibrium between multiple active and inactive conformations explains regulation and oncogenic mutations in ErbB receptors. Landau M, Ben-Tal N. Biochim Biophys Acta 1785 12-31 (2008)
  43. Roles for neuregulins in human cancer. Stove C, Bracke M. Clin Exp Metastasis 21 665-684 (2004)
  44. Systemic cancer therapy: evolution over the last 60 years. Dy GK, Adjei AA. Cancer 113 1857-1887 (2008)
  45. Transmembrane helix-helix interactions involved in ErbB receptor signaling. Cymer F, Schneider D. Cell Adh Migr 4 299-312 (2010)
  46. ERBB3 mutations in cancer: biological aspects, prevalence and therapeutics. Kiavue N, Cabel L, Melaabi S, Bataillon G, Callens C, Lerebours F, Pierga JY, Bidard FC. Oncogene 39 487-502 (2020)
  47. Targeting HER3 using mono- and bispecific antibodies or alternative scaffolds. Malm M, Frejd FY, Ståhl S, Löfblom J. MAbs 8 1195-1209 (2016)
  48. The transition model of RTK activation: A quantitative framework for understanding RTK signaling and RTK modulator activity. Paul MD, Hristova K. Cytokine Growth Factor Rev 49 23-31 (2019)
  49. Role of erbB3 receptors in cancer therapeutic resistance. Lee Y, Ma J, Lyu H, Huang J, Kim A, Liu B. Acta Biochim Biophys Sin (Shanghai) 46 190-198 (2014)
  50. Targeting the heparin-binding epidermal growth factor-like growth factor in ovarian cancer therapy. Tsujioka H, Yotsumoto F, Hikita S, Ueda T, Kuroki M, Miyamoto S. Curr Opin Obstet Gynecol 23 24-30 (2011)
  51. Autoinhibited proteins as promising drug targets. Peterson JR, Golemis EA. J Cell Biochem 93 68-73 (2004)
  52. ErbB receptors and epithelial-cadherin-catenin complex in human carcinomas. Yasmeen A, Bismar TA, Al Moustafa AE. Future Oncol 2 765-781 (2006)
  53. Therapeutic targeting of EGFR in malignant gliomas. Ye F, Gao Q, Cai MJ. Expert Opin Ther Targets 14 303-316 (2010)
  54. ErbB receptor negative regulatory mechanisms: implications in cancer. Sweeney C, Miller JK, Shattuck DL, Carraway KL. J Mammary Gland Biol Neoplasia 11 89-99 (2006)
  55. Development of Effective Therapeutics Targeting HER3 for Cancer Treatment. Liu X, Liu S, Lyu H, Riker AI, Zhang Y, Liu B. Biol Proced Online 21 5 (2019)
  56. Piecing it together: Unraveling the elusive structure-function relationship in single-pass membrane receptors. Valley CC, Lewis AK, Sachs JN. Biochim Biophys Acta Biomembr 1859 1398-1416 (2017)
  57. ADAM17: An Emerging Therapeutic Target for Lung Cancer. Saad MI, Rose-John S, Jenkins BJ. Cancers (Basel) 11 (2019)
  58. Advances in Targeting the Epidermal Growth Factor Receptor Pathway by Synthetic Products and Its Regulation by Epigenetic Modulators As a Therapy for Glioblastoma. Nadeem Abbas M, Kausar S, Wang F, Zhao Y, Cui H. Cells 8 (2019)
  59. ErbB Proteins as Molecular Target of Dietary Phytochemicals in Malignant Diseases. Filippi A, Ciolac OA, Ganea C, Mocanu MM. J Oncol 2017 1532534 (2017)
  60. ErbB-2 signaling in advanced prostate cancer progression and potential therapy Miller DR, Ingersoll MA, Lin MF. Endocr Relat Cancer 26 R195-R209 (2019)
  61. Thirty Years of HER3: From Basic Biology to Therapeutic Interventions. Haikala HM, Jänne PA. Clin Cancer Res 27 3528-3539 (2021)
  62. Human epidermal growth factor receptor 3 in head and neck squamous cell carcinomas. Rysman B, Mouawad F, Gros A, Lansiaux A, Chevalier D, Meignan S. Head Neck 38 Suppl 1 E2412-8 (2016)
  63. Mechanisms of Action of EGFR Tyrosine Kinase Receptor Incorporated in Extracellular Vesicles. Zanetti-Domingues LC, Bonner SE, Martin-Fernandez ML, Huber V. Cells 9 (2020)
  64. Mechanistic insights into differential requirement of receptor dimerization for oncogenic activation of mutant EGFR and its clinical perspective. Cho J. BMB Rep 53 133-141 (2020)
  65. Structural Perspectives on Extracellular Recognition and Conformational Changes of Several Type-I Transmembrane Receptors. Chataigner LMP, Leloup N, Janssen BJC. Front Mol Biosci 7 129 (2020)
  66. HER3 in cancer: from the bench to the bedside. Gandullo-Sánchez L, Ocaña A, Pandiella A. J Exp Clin Cancer Res 41 310 (2022)
  67. It Takes More than Two to Tango: Complex, Hierarchal, and Membrane-Modulated Interactions in the Regulation of Receptor Tyrosine Kinases. Kovacs T, Zakany F, Nagy P. Cancers (Basel) 14 944 (2022)
  68. PET and SPECT Imaging of the EGFR Family (RTK Class I) in Oncology. Rinne SS, Orlova A, Tolmachev V. Int J Mol Sci 22 (2021)
  69. Rational Design of Constrained Peptides as Protein Interface Inhibitors. Murali R, Zhang H, Cai Z, Lam L, Greene M. Antibodies (Basel) 10 (2021)
  70. Role of Glycans on Key Cell Surface Receptors That Regulate Cell Proliferation and Cell Death. Gao Y, Luan X, Melamed J, Brockhausen I. Cells 10 (2021)
  71. Small Molecule Compounds of Natural Origin Target Cellular Receptors to Inhibit Cancer Development and Progression. Wang J, Li D, Zhao B, Kim J, Sui G, Shi J. Int J Mol Sci 23 2672 (2022)
  72. The Radiolabeled HER3 Targeting Molecules for Tumor Imaging. Molavipordanjani S, Hosseinimehr SJ. Iran J Pharm Res 20 141-152 (2021)

Articles citing this publication (157)

  1. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J. Cell 125 1137-1149 (2006)
  2. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW, Leahy DJ. Nature 421 756-760 (2003)
  3. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX. Cancer Cell 5 317-328 (2004)
  4. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P, Ferguson KM. Cancer Cell 7 301-311 (2005)
  5. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Ferguson KM, Berger MB, Mendrola JM, Cho HS, Leahy DJ, Lemmon MA. Mol Cell 11 507-517 (2003)
  6. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM. Nat Biotechnol 22 198-203 (2004)
  7. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Garrett TP, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, Kofler M, Jorissen RN, Nice EC, Burgess AW, Ward CW. Mol Cell 11 495-505 (2003)
  8. Architecture and membrane interactions of the EGF receptor. Arkhipov A, Shan Y, Das R, Endres NF, Eastwood MP, Wemmer DE, Kuriyan J, Shaw DE. Cell 152 557-569 (2013)
  9. Oncogenic ERBB3 mutations in human cancers. Jaiswal BS, Kljavin NM, Stawiski EW, Chan E, Parikh C, Durinck S, Chaudhuri S, Pujara K, Guillory J, Edgar KA, Janakiraman V, Scholz RP, Bowman KK, Lorenzo M, Li H, Wu J, Yuan W, Peters BA, Kan Z, Stinson J, Mak M, Modrusan Z, Eigenbrot C, Firestein R, Stern HM, Rajalingam K, Schaefer G, Merchant MA, Sliwkowski MX, de Sauvage FJ, Seshagiri S. Cancer Cell 23 603-617 (2013)
  10. Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Jura N, Shan Y, Cao X, Shaw DE, Kuriyan J. Proc Natl Acad Sci U S A 106 21608-21613 (2009)
  11. A two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies. Schaefer G, Haber L, Crocker LM, Shia S, Shao L, Dowbenko D, Totpal K, Wong A, Lee CV, Stawicki S, Clark R, Fields C, Lewis Phillips GD, Prell RA, Danilenko DM, Franke Y, Stephan JP, Hwang J, Wu Y, Bostrom J, Sliwkowski MX, Fuh G, Eigenbrot C. Cancer Cell 20 472-486 (2011)
  12. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Liu YC, Yen HY, Chen CY, Chen CH, Cheng PF, Juan YH, Chen CH, Khoo KH, Yu CJ, Yang PC, Hsu TL, Wong CH. Proc Natl Acad Sci U S A 108 11332-11337 (2011)
  13. Closed state of both binding domains of homodimeric mGlu receptors is required for full activity. Kniazeff J, Bessis AS, Maurel D, Ansanay H, Prézeau L, Pin JP. Nat Struct Mol Biol 11 706-713 (2004)
  14. Epidermal growth factor receptor dimerization and activation require ligand-induced conformational changes in the dimer interface. Dawson JP, Berger MB, Lin CC, Schlessinger J, Lemmon MA, Ferguson KM. Mol Cell Biol 25 7734-7742 (2005)
  15. Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis. Clayton AH, Walker F, Orchard SG, Henderson C, Fuchs D, Rothacker J, Nice EC, Burgess AW. J Biol Chem 280 30392-30399 (2005)
  16. Structural basis for negative cooperativity in growth factor binding to an EGF receptor. Alvarado D, Klein DE, Lemmon MA. Cell 142 568-579 (2010)
  17. The origins of phagocytosis and eukaryogenesis. Yutin N, Wolf MY, Wolf YI, Koonin EV. Biol Direct 4 9 (2009)
  18. The extracellular region of ErbB4 adopts a tethered conformation in the absence of ligand. Bouyain S, Longo PA, Li S, Ferguson KM, Leahy DJ. Proc Natl Acad Sci U S A 102 15024-15029 (2005)
  19. Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3. Chen CH, Chernis GA, Hoang VQ, Landgraf R. Proc Natl Acad Sci U S A 100 9226-9231 (2003)
  20. Mechanism of activation and inhibition of the HER4/ErbB4 kinase. Qiu C, Tarrant MK, Choi SH, Sathyamurthy A, Bose R, Banjade S, Pal A, Bornmann WG, Lemmon MA, Cole PA, Leahy DJ. Structure 16 460-467 (2008)
  21. ErbB3/HER3 does not homodimerize upon neuregulin binding at the cell surface. Berger MB, Mendrola JM, Lemmon MA. FEBS Lett 569 332-336 (2004)
  22. Stabilizing the open conformation of the integrin headpiece with a glycan wedge increases affinity for ligand. Luo BH, Springer TA, Takagi J. Proc Natl Acad Sci U S A 100 2403-2408 (2003)
  23. Matuzumab binding to EGFR prevents the conformational rearrangement required for dimerization. Schmiedel J, Blaukat A, Li S, Knöchel T, Ferguson KM. Cancer Cell 13 365-373 (2008)
  24. Simultaneous visualization of the extracellular and cytoplasmic domains of the epidermal growth factor receptor. Mi LZ, Lu C, Li Z, Nishida N, Walz T, Springer TA. Nat Struct Mol Biol 18 984-989 (2011)
  25. Single-molecule analysis of epidermal growth factor binding on the surface of living cells. Teramura Y, Ichinose J, Takagi H, Nishida K, Yanagida T, Sako Y. EMBO J 25 4215-4222 (2006)
  26. FGFR3 dimer stabilization due to a single amino acid pathogenic mutation. Li E, You M, Hristova K. J Mol Biol 356 600-612 (2006)
  27. An antibody that locks HER3 in the inactive conformation inhibits tumor growth driven by HER2 or neuregulin. Garner AP, Bialucha CU, Sprague ER, Garrett JT, Sheng Q, Li S, Sineshchekova O, Saxena P, Sutton CR, Chen D, Chen Y, Wang H, Liang J, Das R, Mosher R, Gu J, Huang A, Haubst N, Zehetmeier C, Haberl M, Elis W, Kunz C, Heidt AB, Herlihy K, Murtie J, Schuller A, Arteaga CL, Sellers WR, Ettenberg SA. Cancer Res 73 6024-6035 (2013)
  28. A structure-based model for ligand binding and dimerization of EGF receptors. Klein P, Mattoon D, Lemmon MA, Schlessinger J. Proc Natl Acad Sci U S A 101 929-934 (2004)
  29. Structural basis for EGF receptor inhibition by the therapeutic antibody IMC-11F8. Li S, Kussie P, Ferguson KM. Structure 16 216-227 (2008)
  30. The tethered configuration of the EGF receptor extracellular domain exerts only a limited control of receptor function. Mattoon D, Klein P, Lemmon MA, Lax I, Schlessinger J. Proc Natl Acad Sci U S A 101 923-928 (2004)
  31. A single ligand is sufficient to activate EGFR dimers. Liu P, Cleveland TE, Bouyain S, Byrne PO, Longo PA, Leahy DJ. Proc Natl Acad Sci U S A 109 10861-10866 (2012)
  32. Functional and structural stability of the epidermal growth factor receptor in detergent micelles and phospholipid nanodiscs. Mi LZ, Grey MJ, Nishida N, Walz T, Lu C, Springer TA. Biochemistry 47 10314-10323 (2008)
  33. Ligand-induced structural transitions in ErbB receptor extracellular domains. Dawson JP, Bu Z, Lemmon MA. Structure 15 942-954 (2007)
  34. Mechanisms of activation of receptor tyrosine kinases: monomers or dimers. Maruyama IN. Cells 3 304-330 (2014)
  35. The FRET signatures of noninteracting proteins in membranes: simulations and experiments. King C, Sarabipour S, Byrne P, Leahy DJ, Hristova K. Biophys J 106 1309-1317 (2014)
  36. Structural basis for eliciting a cytotoxic effect in HER2-overexpressing cancer cells via binding to the extracellular domain of HER2. Jost C, Schilling J, Tamaskovic R, Schwill M, Honegger A, Plückthun A. Structure 21 1979-1991 (2013)
  37. ErbB2 resembles an autoinhibited invertebrate epidermal growth factor receptor. Alvarado D, Klein DE, Lemmon MA. Nature 461 287-291 (2009)
  38. Structural classification of small, disulfide-rich protein domains. Cheek S, Krishna SS, Grishin NV. J Mol Biol 359 215-237 (2006)
  39. Functional isolation of activated and unilaterally phosphorylated heterodimers of ERBB2 and ERBB3 as scaffolds in ligand-dependent signaling. Zhang Q, Park E, Kani K, Landgraf R. Proc Natl Acad Sci U S A 109 13237-13242 (2012)
  40. HER3 genomic gain and sensitivity to gefitinib in advanced non-small-cell lung cancer patients. Cappuzzo F, Toschi L, Domenichini I, Bartolini S, Ceresoli GL, Rossi E, Ludovini V, Cancellieri A, Magrini E, Bemis L, Franklin WA, Crino L, Bunn PA, Hirsch FR, Varella-Garcia M. Br J Cancer 93 1334-1340 (2005)
  41. Joint identification of multiple genetic variants via elastic-net variable selection in a genome-wide association analysis. Cho S, Kim K, Kim YJ, Lee JK, Cho YS, Lee JY, Han BG, Kim H, Ott J, Park T. Ann Hum Genet 74 416-428 (2010)
  42. The extracellular domain of fibroblast growth factor receptor 3 inhibits ligand-independent dimerization. Chen L, Placone J, Novicky L, Hristova K. Sci Signal 3 ra86 (2010)
  43. Cell-specific aptamers as emerging therapeutics. Meyer C, Hahn U, Rentmeister A. J Nucleic Acids 2011 904750 (2011)
  44. Mechanisms for kinase-mediated dimerization of the epidermal growth factor receptor. Lu C, Mi LZ, Schürpf T, Walz T, Springer TA. J Biol Chem 287 38244-38253 (2012)
  45. Energetics of ErbB1 transmembrane domain dimerization in lipid bilayers. Chen L, Merzlyakov M, Cohen T, Shai Y, Hristova K. Biophys J 96 4622-4630 (2009)
  46. The alternatively spliced acid box region plays a key role in FGF receptor autoinhibition. Kalinina J, Dutta K, Ilghari D, Beenken A, Goetz R, Eliseenkova AV, Cowburn D, Mohammadi M. Structure 20 77-88 (2012)
  47. Lethal congenital contractural syndrome type 2 (LCCS2) is caused by a mutation in ERBB3 (Her3), a modulator of the phosphatidylinositol-3-kinase/Akt pathway. Narkis G, Ofir R, Manor E, Landau D, Elbedour K, Birk OS. Am J Hum Genet 81 589-595 (2007)
  48. Two GxxxG-like motifs facilitate promiscuous interactions of the human ErbB transmembrane domains. Escher C, Cymer F, Schneider D. J Mol Biol 389 10-16 (2009)
  49. Protein domain-level landscape of cancer-type-specific somatic mutations. Yang F, Petsalaki E, Rolland T, Hill DE, Vidal M, Roth FP. PLoS Comput Biol 11 e1004147 (2015)
  50. In vitro enzymatic characterization of near full length EGFR in activated and inhibited states. Qiu C, Tarrant MK, Boronina T, Longo PA, Kavran JM, Cole RN, Cole PA, Leahy DJ. Biochemistry 48 6624-6632 (2009)
  51. Sustained high levels of neuregulin-1 in the longest-lived rodents; a key determinant of rodent longevity. Edrey YH, Casper D, Huchon D, Mele J, Gelfond JA, Kristan DM, Nevo E, Buffenstein R. Aging Cell 11 213-222 (2012)
  52. Kinase-mediated quasi-dimers of EGFR. Bublil EM, Pines G, Patel G, Fruhwirth G, Ng T, Yarden Y. FASEB J 24 4744-4755 (2010)
  53. Ectodomain orientation, conformational plasticity and oligomerization of ErbB1 receptors investigated by molecular dynamics. Kästner J, Loeffler HH, Roberts SK, Martin-Fernandez ML, Winn MD. J Struct Biol 167 117-128 (2009)
  54. Compensatory ErbB3/c-Src signaling enhances carcinoma cell survival to ionizing radiation. Contessa JN, Abell A, Mikkelsen RB, Valerie K, Schmidt-Ullrich RK. Breast Cancer Res Treat 95 17-27 (2006)
  55. Molecular modeling of nearly full-length ErbB2 receptor. Bagossi P, Horváth G, Vereb G, Szöllösi J, Tözsér J. Biophys J 88 1354-1363 (2005)
  56. Homodimerization controls the fibroblast growth factor 9 subfamily's receptor binding and heparan sulfate-dependent diffusion in the extracellular matrix. Kalinina J, Byron SA, Makarenkova HP, Olsen SK, Eliseenkova AV, Larochelle WJ, Dhanabal M, Blais S, Ornitz DM, Day LA, Neubert TA, Pollock PM, Mohammadi M. Mol Cell Biol 29 4663-4678 (2009)
  57. The heregulin/human epidermal growth factor receptor as a new growth factor system in melanoma with multiple ways of deregulation. Stove C, Stove V, Derycke L, Van Marck V, Mareel M, Bracke M. J Invest Dermatol 121 802-812 (2003)
  58. Insights into the evolution of the ErbB receptor family and their ligands from sequence analysis. Stein RA, Staros JV. BMC Evol Biol 6 79 (2006)
  59. Atomistic insights into regulatory mechanisms of the HER2 tyrosine kinase domain: a molecular dynamics study. Telesco SE, Radhakrishnan R. Biophys J 96 2321-2334 (2009)
  60. High cell-surface density of HER2 deforms cell membranes. Chung I, Reichelt M, Shao L, Akita RW, Koeppen H, Rangell L, Schaefer G, Mellman I, Sliwkowski MX. Nat Commun 7 12742 (2016)
  61. Inhibition of protein-protein interaction of HER2-EGFR and HER2-HER3 by a rationally designed peptidomimetic. Banappagari S, Corti M, Pincus S, Satyanarayanajois S. J Biomol Struct Dyn 30 594-606 (2012)
  62. A growing family: adding mutated Erbb4 as a novel cancer target. Rudloff U, Samuels Y. Cell Cycle 9 1487-1503 (2010)
  63. Dynamically varying interactions between heregulin and ErbB proteins detected by single-molecule analysis in living cells. Hiroshima M, Saeki Y, Okada-Hatakeyama M, Sako Y. Proc Natl Acad Sci U S A 109 13984-13989 (2012)
  64. EGF and NRG induce phosphorylation of HER3/ERBB3 by EGFR using distinct oligomeric mechanisms. van Lengerich B, Agnew C, Puchner EM, Huang B, Jura N. Proc Natl Acad Sci U S A 114 E2836-E2845 (2017)
  65. HER/ErbB receptor interactions and signaling patterns in human mammary epithelial cells. Zhang Y, Opresko L, Shankaran H, Chrisler WB, Wiley HS, Resat H. BMC Cell Biol 10 78 (2009)
  66. Study of inhibition effect of herceptin on interaction between heregulin and erbB receptors HER3/HER2 by single-molecule force spectroscopy. Shi X, Xu L, Yu J, Fang X. Exp Cell Res 315 2847-2855 (2009)
  67. Comment Targeting HER2 in prostate cancer: where to next? Solit DB, Rosen N. J Clin Oncol 25 241-243 (2007)
  68. FN1, SPARC, and SERPINE1 are highly expressed and significantly related to a poor prognosis of gastric adenocarcinoma revealed by microarray and bioinformatics. Li L, Zhu Z, Zhao Y, Zhang Q, Wu X, Miao B, Cao J, Fei S. Sci Rep 9 7827 (2019)
  69. Mutational activation of ErbB2 reveals a new protein kinase autoinhibition mechanism. Fan YX, Wong L, Ding J, Spiridonov NA, Johnson RC, Johnson GR. J Biol Chem 283 1588-1596 (2008)
  70. Preparation and characterization of Alexa Fluor 594-labeled epidermal growth factor for fluorescence resonance energy transfer studies: application to the epidermal growth factor receptor. Whitson KB, Beechem JM, Beth AH, Staros JV. Anal Biochem 324 227-236 (2004)
  71. Stochastic simulations of ErbB homo and heterodimerisation: potential impacts of receptor conformational state and spatial segregation. Hsieh MY, Yang S, Raymond-Stinz MA, Steinberg S, Vlachos DG, Shu W, Wilson B, Edwards JS. IET Syst Biol 2 256-272 (2008)
  72. Computational modelling of ErbB family phosphorylation dynamics in response to transforming growth factor alpha and heregulin indicates spatial compartmentation of phosphatase activity. Hendriks BS, Cook J, Burke JM, Beusmans JM, Lauffenburger DA, de Graaf D. Syst Biol (Stevenage) 153 22-33 (2006)
  73. Novel HER3/MUC4 oncogenic signaling aggravates the tumorigenic phenotypes of pancreatic cancer cells. Lakshmanan I, Seshacharyulu P, Haridas D, Rachagani S, Gupta S, Joshi S, Guda C, Yan Y, Jain M, Ganti AK, Ponnusamy MP, Batra SK. Oncotarget 6 21085-21099 (2015)
  74. Structural insights into the down-regulation of overexpressed p185(her2/neu) protein of transformed cells by the antibody chA21. Zhou H, Zha Z, Liu Y, Zhang H, Zhu J, Hu S, Shen G, Cheng L, Niu L, Greene MI, Teng M, Liu J. J Biol Chem 286 31676-31683 (2011)
  75. Extended and flexible domain solution structure of the extracellular matrix protein anosmin-1 by X-ray scattering, analytical ultracentrifugation and constrained modelling. Hu Y, Sun Z, Eaton JT, Bouloux PM, Perkins SJ. J Mol Biol 350 553-570 (2005)
  76. News Ready to partner. Sliwkowski MX. Nat Struct Biol 10 158-159 (2003)
  77. FGFR3 transmembrane domain interactions persist in the presence of its extracellular domain. Sarabipour S, Hristova K. Biophys J 105 165-171 (2013)
  78. The ErbB4 receptor in fetal rat lung fibroblasts and epithelial type II cells. Liu W, Zscheppang K, Murray S, Nielsen HC, Dammann CE. Biochim Biophys Acta 1772 737-747 (2007)
  79. Computational analysis of molecular basis of 1:1 interactions of NRG-1beta wild-type and variants with ErbB3 and ErbB4. Luo C, Xu L, Zheng S, Luo X, Shen J, Jiang H, Liu X, Zhou M. Proteins 59 742-756 (2005)
  80. Differential killing of CD56-expressing cells by drug-conjugated human antibodies targeting membrane-distal and membrane-proximal non-overlapping epitopes. Feng Y, Wang Y, Zhu Z, Li W, Sussman RT, Randall M, Bosse KR, Maris JM, Dimitrov DS. MAbs 8 799-810 (2016)
  81. Engineered bivalent ligands to bias ErbB receptor-mediated signaling and phenotypes. Jay SM, Kurtagic E, Alvarez LM, de Picciotto S, Sanchez E, Hawkins JF, Prince RN, Guerrero Y, Treasure CL, Lee RT, Griffith LG. J Biol Chem 286 27729-27740 (2011)
  82. Evidence for extended YFP-EGFR dimers in the absence of ligand on the surface of living cells. Kozer N, Henderson C, Jackson JT, Nice EC, Burgess AW, Clayton AH. Phys Biol 8 066002 (2011)
  83. A computational analysis of in vivo VEGFR activation by multiple co-expressed ligands. Clegg LE, Mac Gabhann F. PLoS Comput Biol 13 e1005445 (2017)
  84. Analysis of Somatic Mutations in Cancer: Molecular Mechanisms of Activation in the ErbB Family of Receptor Tyrosine Kinases. Shih AJ, Telesco SE, Radhakrishnan R. Cancers (Basel) 3 1195-1231 (2011)
  85. Case-control study of association between the functional candidate gene ERBB3 and schizophrenia in Caucasian population. Li D, Feng G, He L. World J Biol Psychiatry 10 595-598 (2009)
  86. HER-3 peptide vaccines/mimics: Combined therapy with IGF-1R, HER-2, and HER-1 peptides induces synergistic antitumor effects against breast and pancreatic cancer cells. Miller MJ, Foy KC, Overholser JP, Nahta R, Kaumaya PT. Oncoimmunology 3 e956012 (2014)
  87. Crystal structure of LGR4-Rspo1 complex: insights into the divergent mechanisms of ligand recognition by leucine-rich repeat G-protein-coupled receptors (LGRs). Xu JG, Huang C, Yang Z, Jin M, Fu P, Zhang N, Luo J, Li D, Liu M, Zhou Y, Zhu Y. J Biol Chem 290 2455-2465 (2015)
  88. Juglanthraquinone C Induces Intracellular ROS Increase and Apoptosis by Activating the Akt/Foxo Signal Pathway in HCC Cells. Hou YQ, Yao Y, Bao YL, Song ZB, Yang C, Gao XL, Zhang WJ, Sun LG, Yu CL, Huang YX, Wang GN, Li YX. Oxid Med Cell Longev 2016 4941623 (2016)
  89. Model-based analysis of HER activation in cells co-expressing EGFR, HER2 and HER3. Shankaran H, Zhang Y, Tan Y, Resat H. PLoS Comput Biol 9 e1003201 (2013)
  90. Novel agents that downregulate EGFR, HER2, and HER3 in parallel. Ferreira RB, Law ME, Jahn SC, Davis BJ, Heldermon CD, Reinhard M, Castellano RK, Law BK. Oncotarget 6 10445-10459 (2015)
  91. Single nucleotide polymorphisms of HER2 related to osteosarcoma susceptibility. Xin DJ, Shen GD, Song J. Int J Clin Exp Pathol 8 9494-9499 (2015)
  92. A novel ErbB2 epitope targeted by human antitumor immunoagents. Troise F, Monti M, Merlino A, Cozzolino F, Fedele C, Russo Krauss I, Sica F, Pucci P, D'Alessio G, De Lorenzo C. FEBS J 278 1156-1166 (2011)
  93. ErbB2 blockade with Herceptin (trastuzumab) enhances peripheral nerve regeneration after repair of acute or chronic peripheral nerve injury. Hendry JM, Alvarez-Veronesi MC, Placheta E, Zhang JJ, Gordon T, Borschel GH. Ann Neurol 80 112-126 (2016)
  94. Kinase activator-receiver preference in ErbB heterodimers is determined by intracellular regions and is not coupled to extracellular asymmetry. Ward MD, Leahy DJ. J Biol Chem 290 1570-1579 (2015)
  95. Co-conserved features associated with cis regulation of ErbB tyrosine kinases. Mirza A, Mustafa M, Talevich E, Kannan N. PLoS One 5 e14310 (2010)
  96. Dynamic transition states of ErbB1 phosphorylation predicted by spatial stochastic modeling. Pryor MM, Low-Nam ST, Halász AM, Lidke DS, Wilson BS, Edwards JS. Biophys J 105 1533-1543 (2013)
  97. Extracellular domain determinants of LET-23 (EGF) receptor tyrosine kinase activity in Caenorhabditis elegans. Moghal N, Sternberg PW. Oncogene 22 5471-5480 (2003)
  98. Molecular dynamics (MD) investigations of preformed structures of the transmembrane domain of the oncogenic Neu receptor dimer in a DMPC bilayer. Aller P, Voiry L, Garnier N, Genest M. Biopolymers 77 184-197 (2005)
  99. Structural analysis of an epidermal growth factor/transforming growth factor-alpha chimera with unique ErbB binding specificity. Wingens M, Walma T, van Ingen H, Stortelers C, van Leeuwen JE, van Zoelen EJ, Vuister GW. J Biol Chem 278 39114-39123 (2003)
  100. Th1 cytokines sensitize HER-expressing breast cancer cells to lapatinib. Showalter LE, Oechsle C, Ghimirey N, Steele C, Czerniecki BJ, Koski GK. PLoS One 14 e0210209 (2019)
  101. Evaluation of dimerization-inhibitory activities of cyclic peptides containing a β-hairpin loop sequence of the EGF receptor. Mizuguchi T, Ohara N, Iida M, Ninomiya R, Wada S, Kiso Y, Saito K, Akaji K. Bioorg Med Chem 20 5730-5737 (2012)
  102. Insight into the recognition patterns of the ErbB receptor family transmembrane domains: heterodimerization models through molecular dynamics search. Samna Soumana O, Garnier N, Genest M. Eur Biophys J 37 851-864 (2008)
  103. The ErbB4 extracellular region retains a tethered-like conformation in the absence of the tether. Liu P, Bouyain S, Eigenbrot C, Leahy DJ. Protein Sci 21 152-155 (2012)
  104. The first radiosynthesis of [(11)C]AZD8931 as a new potential PET agent for imaging of EGFR, HER2 and HER3 signaling. Wang M, Gao M, Zheng QH. Bioorg Med Chem Lett 24 4455-4459 (2014)
  105. Aberrant Protein Phosphorylation in Cancer by Using Raman Biomarkers. Abramczyk H, Imiela A, Brożek-Płuska B, Kopeć M, Surmacki J, Śliwińska A. Cancers (Basel) 11 (2019)
  106. Size and conformational features of ErbB2 and ErbB3 receptors: a TEM and DLS comparative study. Vicente-Alique E, Núñez-Ramírez R, Vega JF, Hu P, Martínez-Salazar J. Eur Biophys J 40 835-842 (2011)
  107. Structural basis for adhesion G protein-coupled receptor Gpr126 function. Leon K, Cunningham RL, Riback JA, Feldman E, Li J, Sosnick TR, Zhao M, Monk KR, Araç D. Nat Commun 11 194 (2020)
  108. Suppression of heregulin β signaling by the single N-glycan deletion mutant of soluble ErbB3 protein. Takahashi M, Hasegawa Y, Ikeda Y, Wada Y, Tajiri M, Ariki S, Takamiya R, Nishitani C, Araki M, Yamaguchi Y, Taniguchi N, Kuroki Y. J Biol Chem 288 32910-32921 (2013)
  109. Transmembrane helix packing of ErbB/Neu receptor in membrane environment: a molecular dynamics study. Aller P, Garnier N, Genest M. J Biomol Struct Dyn 24 209-228 (2006)
  110. A betacellulin mutant promotes differentiation of pancreatic acinar AR42J cells into insulin-producing cells with low affinity of binding to ErbB1. Nagaoka T, Fukuda T, Hashizume T, Nishiyama T, Tada H, Yamada H, Salomon DS, Yamada S, Kojima I, Seno M. J Mol Biol 380 83-94 (2008)
  111. Endothelial Cells Promote Colorectal Cancer Cell Survival by Activating the HER3-AKT Pathway in a Paracrine Fashion. Wang R, Bhattacharya R, Ye X, Fan F, Boulbes DR, Ellis LM. Mol Cancer Res 17 20-29 (2019)
  112. Exploring the dynamics and interaction of a full ErbB2 receptor and Trastuzumab-Fab antibody in a lipid bilayer model using Martini coarse-grained force field. Franco-Gonzalez JF, Ramos J, Cruz VL, Martinez-Salazar J. J Comput Aided Mol Des 28 1093-1107 (2014)
  113. Growth factor receptors and apoptosis regulators: signaling pathways, prognosis, chemosensitivity and treatment outcomes of breast cancer. Sarkar S, Mandal M. Breast Cancer (Auckl) 3 47-60 (2009)
  114. Increased expression of the integral membrane protein ErbB2 in Chinese hamster ovary cells expressing the anti-apoptotic gene Bcl-xL. O'Connor S, Li E, Majors BS, He L, Placone J, Baycin D, Betenbaugh MJ, Hristova K. Protein Expr Purif 67 41-47 (2009)
  115. Inhibition of HER3 activation and tumor growth with a human antibody binding to a conserved epitope formed by domain III and IV. Schmitt LC, Rau A, Seifert O, Honer J, Hutt M, Schmid S, Zantow J, Hust M, Dübel S, Olayioye MA, Kontermann RE. MAbs 9 831-843 (2017)
  116. Rational optimization of a bispecific ligand trap targeting EGF receptor family ligands. Jin P, Zhang J, Beryt M, Turin L, Brdlik C, Feng Y, Bai X, Liu J, Jorgensen B, Shepard HM. Mol Med 15 11-20 (2009)
  117. The function of human epidermal growth factor receptor-3 and its role in tumors (Review). Li Q, Yuan Z, Cao B. Oncol Rep 30 2563-2570 (2013)
  118. ndmaSNF: cancer subtype discovery based on integrative framework assisted by network diffusion model. Yang C, Ge SG, Zheng CH. Oncotarget 8 89021-89032 (2017)
  119. Aptamer based strategy for cytosensing and evaluation of HER-3 on the surface of MCF-7 cells by using the signal amplification of nucleic acid-functionalized nanocrystals. Lv S, Guan Y, Wang D, Du Y. Anal Chim Acta 772 26-32 (2013)
  120. B-cell epitope peptide vaccination targeting dimer interface of epidermal growth factor receptor (EGFR). Zhu L, Zhao L, Wu M, Chen Z, Li H. Immunol Lett 153 33-40 (2013)
  121. Conformational flexibility of the ErbB2 ectodomain and trastuzumab antibody complex as revealed by molecular dynamics and principal component analysis. Franco-Gonzalez JF, Cruz VL, Ramos J, Martínez-Salazar J. J Mol Model 19 1227-1236 (2013)
  122. Discovery of ERBB3 inhibitors for non-small cell lung cancer (NSCLC) via virtual screening. Guo R, Zhang Y, Li X, Song X, Li D, Zhao Y. J Mol Model 22 135 (2016)
  123. Investigating Molecular Mechanisms of Activation and Mutation of the HER2 Receptor Tyrosine Kinase through Computational Modeling and Simulation. Telesco SE, Shih A, Liu Y, Radhakrishnan R. Cancer Res J 4 1-35 (2011)
  124. Rigidity of the extracellular part of HER2: Evidence from engineering subdomain interfaces and shared-helix DARPin-DARPin fusions. Jost C, Stüber JC, Honegger A, Wu Y, Batyuk A, Plückthun A. Protein Sci 26 1796-1806 (2017)
  125. Simulation of homology models for the extracellular domains (ECD) of ErbB3, ErbB4 and the ErbB2-ErbB3 complex in their active conformations. Franco-Gonzalez JF, Ramos J, Cruz VL, Martínez-Salazar J. J Mol Model 19 931-941 (2013)
  126. Critical roles for EGFR and EGFR-HER2 clusters in EGF binding of SW620 human carcinoma cells. Wollman AJM, Fournier C, Llorente-Garcia I, Harriman O, Payne-Dwyer AL, Shashkova S, Zhou P, Liu TC, Ouaret D, Wilding J, Kusumi A, Bodmer W, Leake MC. J R Soc Interface 19 20220088 (2022)
  127. EGFR and Cortactin: Markers for potential double target therapy in oral squamous cell carcinoma. Bissinger O, Kolk A, Drecoll E, Straub M, Lutz C, Wolff KD, Götz C. Exp Ther Med 14 4620-4626 (2017)
  128. EGFR forms ligand-independent oligomers that are distinct from the active state. Byrne PO, Hristova K, Leahy DJ. J Biol Chem 295 13353-13362 (2020)
  129. Humoral immune responses to EGFR-derived peptides predict progression-free and overall survival of non-small cell lung cancer patients receiving gefitinib. Azuma K, Komatsu N, Hattori S, Matsueda S, Kawahara A, Sasada T, Itoh K, Hoshino T. PLoS One 9 e86667 (2014)
  130. Investigating extracellular in situ EGFR structure and conformational changes using FRET microscopy. Roberts SK, Tynan CJ, Winn M, Martin-Fernandez ML. Biochem Soc Trans 40 189-194 (2012)
  131. Prophylactic vaccination targeting ERBB3 decreases polyp burden in a mouse model of human colorectal cancer. Bautz DJ, Sherpa AT, Threadgill DW. Oncoimmunology 6 e1255395 (2017)
  132. Structure of HER receptors and intracellular localisation of downstream effector elements gives insight into mechanism of tumour growth promotion. Witton CJ. Breast Cancer Res 5 206-207 (2003)
  133. Letter Targeting human epidermal growth factor receptor 2: it is time to kill kinase death human epidermal growth factor receptor 3. Menendez JA, Lupu R. J Clin Oncol 25 2496-8; author reply 2499 (2007)
  134. A novel proteotoxic combination therapy for EGFR+ and HER2+ cancers. Wang M, Ferreira RB, Law ME, Davis BJ, Yaaghubi E, Ghilardi AF, Sharma A, Avery BA, Rodriguez E, Chiang CW, Narayan S, Heldermon CD, Castellano RK, Law BK. Oncogene 38 4264-4282 (2019)
  135. A peptide antagonist of ErbB receptors, Inherbin3, induces neurite outgrowth from rat cerebellar granule neurons through ErbB1 inhibition. Xu R, Pankratova S, Christiansen SH, Woldbye D, Højland A, Bock E, Berezin V. Neurochem Res 38 2550-2558 (2013)
  136. Deciphering the stepwise binding mode of HRG1β to HER3 by surface plasmon resonance and interaction map. Peess C, von Proff L, Goller S, Andersson K, Gerg M, Malmqvist M, Bossenmaier B, Schräml M. PLoS One 10 e0116870 (2015)
  137. Development of bispecific molecules for the in situ detection of protein-protein interactions and protein phosphorylation. van Dieck J, Schmid V, Heindl D, Dziadek S, Schraeml M, Gerg M, Massoner P, Engel AM, Tiefenthaler G, Vural S, Stritt S, Tetzlaff F, Soukupova M, Kopetzki E, Bossenmaier B, Thomas M, Klein C, Mertens A, Heller A, Tacke M. Chem Biol 21 357-368 (2014)
  138. Homo- and Heteroassociations Drive Activation of ErbB3. Váradi T, Schneider M, Sevcsik E, Kiesenhofer D, Baumgart F, Batta G, Kovács T, Platzer R, Huppa JB, Szöllősi J, Schütz GJ, Brameshuber M, Nagy P. Biophys J 117 1935-1947 (2019)
  139. Human epidermal growth factor receptor (HER1) aligned on the plasma membrane adopts key features of Drosophila EGFR asymmetry. Martin-Fernandez ML. Biochem Soc Trans 40 184-188 (2012)
  140. Identification of a novel antagonist of the ErbB1 receptor capable of inhibiting migration of human glioblastoma cells. Staberg M, Riemer C, Xu R, Dmytriyeva O, Bock E, Berezin V. Cell Oncol (Dordr) 36 201-211 (2013)
  141. The era of ErbB-receptor-targeted therapies: advances toward personalized medicine. Bacus S, Spector NL, Yarden Y. Per Med 2 301-315 (2005)
  142. Theme: oncology--molecular mechanisms determining the efficacy of EGF receptor-specific tyrosine kinase inhibitors help to identify biomarker candidates. Yamauchi M, Gotoh N. Biomark Med 3 139-151 (2009)
  143. Conformational changes in receptor tyrosine kinase signaling: an ErbB garden of delights. Carraway KL, Kozloski GA. F1000 Biol Rep 1 72 (2009)
  144. Discovery of novel tricyclic pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amine derivatives as VEGFR-2 inhibitors. Abdel Aziz YM, Said MM, El Shihawy HA, Abouzid KA. Bioorg Chem 60 1-12 (2015)
  145. Extracellular Juxtamembrane Motif Critical for TrkB Preformed Dimer and Activation. Shen J, Sun D, Shao J, Chen Y, Pang K, Guo W, Lu B. Cells 8 (2019)
  146. Ligand binding effects on the activation of the EGFR extracellular domain. Shao Q, Zhu W. Phys Chem Chem Phys 21 8141-8151 (2019)
  147. Single-molecule functional anatomy of endogenous HER2-HER3 heterodimers. Choi B, Cha M, Eun GS, Lee DH, Lee S, Ehsan M, Chae PS, Heo WD, Park Y, Yoon TY. Elife 9 (2020)
  148. Comment A trigger squeezed. Eigenbrot C. Structure 16 332-334 (2008)
  149. Disentangling ERBB Signaling in Breast Cancer Subtypes-A Model-Based Analysis. Kemmer S, Berdiel-Acer M, Reinz E, Sonntag J, Tarade N, Bernhardt S, Fehling-Kaschek M, Hasmann M, Korf U, Wiemann S, Timmer J. Cancers (Basel) 14 2379 (2022)
  150. Functional genomic characterization of a synthetic anti-HER3 antibody reveals a role for ubiquitination by RNF41 in the anti-proliferative response. Turowec JP, Lau EWT, Wang X, Brown KR, Fellouse FA, Jawanda KK, Pan J, Moffat J, Sidhu SS. J Biol Chem 294 1396-1409 (2019)
  151. research-article Human epidermal growth factor receptor 2-targeted therapies in breast cancer. Nahta R. Expert Opin Biol Ther 13 949-952 (2013)
  152. In-cell structural dynamics of an EGF receptor during ligand-induced dimer-oligomer transition. Kozer N, Clayton AHA. Eur Biophys J 49 21-37 (2020)
  153. Inhibitory Effect of Polyclonal Antibodies Against HER3 Extracellular Subdomains on Breast Cancer Cell Lines. Mansouri-Fard S, Ghaedi M, Shokri MR, Bahadori T, Khoshnoodi J, Golsaz-Shirazi F, Jeddi-Tehrani M, Amiri MM, Shokri F. Asian Pac J Cancer Prev 21 439-447 (2020)
  154. PDGFR dimer-specific activation, trafficking and downstream signaling dynamics. Rogers MA, Campaña MB, Long R, Fantauzzo KA. J Cell Sci 135 jcs259686 (2022)
  155. Pathways of topological rank analysis (PoTRA): a novel method to detect pathways involved in hepatocellular carcinoma. Li C, Liu L, Dinu V. PeerJ 6 e4571 (2018)
  156. The chromosome-scale genome assembly of the yellowtail clownfish Amphiprion clarkii provides insights into the melanic pigmentation of anemonefish. Moore B, Herrera M, Gairin E, Li C, Miura S, Jolly J, Mercader M, Izumiyama M, Kawai E, Ravasi T, Laudet V, Ryu T. G3 (Bethesda) 13 jkad002 (2023)
  157. Trastuzumab Blocks the Receiver Function of HER2 Leading to the Population Shifts of HER2-Containing Homodimers and Heterodimers. Zhao J, Mohan N, Nussinov R, Ma B, Wu WJ. Antibodies (Basel) 10 (2021)