1hcr Citations

Hin recombinase bound to DNA: the origin of specificity in major and minor groove interactions.

Science 263 348-55 (1994)
Cited: 142 times
EuropePMC logo PMID: 8278807

Abstract

The structure of the 52-amino acid DNA-binding domain of the prokaryotic Hin recombinase, complexed with a DNA recombination half-site, has been solved by x-ray crystallography at 2.3 angstrom resolution. The Hin domain consists of a three-alpha-helix bundle, with the carboxyl-terminal helix inserted into the major groove of DNA, and two flanking extended polypeptide chains that contact bases in the minor groove. The overall structure displays features resembling both a prototypical bacterial helix-turn-helix and the eukaryotic homeodomain, and in many respects is an intermediate between these two DNA-binding motifs. In addition, a new structural motif is seen: the six-amino acid carboxyl-terminal peptide of the Hin domain runs along the minor groove at the edge of the recombination site, with the peptide backbone facing the floor of the groove and side chains extending away toward the exterior. The x-ray structure provides an almost complete explanation for DNA mutant binding studies in the Hin system and for DNA specificity observed in the Hin-related family of DNA invertases.

Reviews - 1hcr mentioned but not cited (4)

  1. An overview of the structures of protein-DNA complexes. Luscombe NM, Austin SE, Berman HM, Thornton JM. Genome Biol 1 REVIEWS001 (2000)
  2. Bullied no more: when and how DNA shoves proteins around. Fogg JM, Randall GL, Pettitt BM, Sumners WL, Harris SA, Zechiedrich L. Q Rev Biophys 45 257-299 (2012)
  3. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)
  4. The DNA-binding region of RAG 1 is not a homeodomain. Banerjee-Basu S, Baxevanis AD. Genome Biol 3 INTERACTIONS1004 (2002)

Articles - 1hcr mentioned but not cited (22)

  1. POPS: A fast algorithm for solvent accessible surface areas at atomic and residue level. Cavallo L, Kleinjung J, Fraternali F. Nucleic Acids Res 31 3364-3366 (2003)
  2. DNA conformations and their sequence preferences. Svozil D, Kalina J, Omelka M, Schneider B. Nucleic Acids Res 36 3690-3706 (2008)
  3. Staphylococcal protein A: unfolding pathways, unfolded states, and differences between the B and E domains. Alonso DO, Daggett V. Proc Natl Acad Sci U S A 97 133-138 (2000)
  4. Structure of the RAG1 nonamer binding domain with DNA reveals a dimer that mediates DNA synapsis. Yin FF, Bailey S, Innis CA, Ciubotaru M, Kamtekar S, Steitz TA, Schatz DG. Nat Struct Mol Biol 16 499-508 (2009)
  5. Energetics of protein-DNA interactions. Donald JE, Chen WW, Shakhnovich EI. Nucleic Acids Res 35 1039-1047 (2007)
  6. Energetics of the protein-DNA-water interaction. Spyrakis F, Cozzini P, Bertoli C, Marabotti A, Kellogg GE, Mozzarelli A. BMC Struct Biol 7 4 (2007)
  7. Assessment of the optimization of affinity and specificity at protein-DNA interfaces. Ashworth J, Baker D. Nucleic Acids Res 37 e73 (2009)
  8. Standard atomic volumes in double-stranded DNA and packing in protein--DNA interfaces. Nadassy K, Tomás-Oliveira I, Alberts I, Janin J, Wodak SJ. Nucleic Acids Res 29 3362-3376 (2001)
  9. An all-atom knowledge-based energy function for protein-DNA threading, docking decoy discrimination, and prediction of transcription-factor binding profiles. Xu B, Yang Y, Liang H, Zhou Y. Proteins 76 718-730 (2009)
  10. Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models. Stovgaard K, Andreetta C, Ferkinghoff-Borg J, Hamelryck T. BMC Bioinformatics 11 429 (2010)
  11. Contact prediction for beta and alpha-beta proteins using integer linear optimization and its impact on the first principles 3D structure prediction method ASTRO-FOLD. Rajgaria R, Wei Y, Floudas CA. Proteins 78 1825-1846 (2010)
  12. Detecting DNA-binding helix-turn-helix structural motifs using sequence and structure information. Pellegrini-Calace M, Thornton JM. Nucleic Acids Res 33 2129-2140 (2005)
  13. A Landauer Formula for Bioelectronic Applications. Papp E, Jelenfi DP, Veszeli MT, Vattay G. Biomolecules 9 E599 (2019)
  14. Exploring DNA structure with Cn3D. Porter SG, Day J, McCarty RE, Shearn A, Shingles R, Fletcher L, Murphy S, Pearlman R. CBE Life Sci Educ 6 65-73 (2007)
  15. Re-visiting protein-centric two-tier classification of existing DNA-protein complexes. Malhotra S, Sowdhamini R. BMC Bioinformatics 13 165 (2012)
  16. Reciprocal domain evolution within a transactivator in a restricted sequence space. Juarez K, Flores H, Dávila S, Olvera L, González V, Morett E. Proc Natl Acad Sci U S A 97 3314-3318 (2000)
  17. How round is a protein? Exploring protein structures for globularity using conformal mapping. Hass J, Koehl P. Front Mol Biosci 1 26 (2014)
  18. Three enhancements to the inference of statistical protein-DNA potentials. AlQuraishi M, McAdams HH. Proteins 81 426-442 (2013)
  19. DNA phosphate crowding correlates with protein cationic side chain density and helical curvature in protein/DNA crystal structures. Grant BN, Dourlain EM, Araneda JN, Throneberry ML, McFail-Isom LA. Nucleic Acids Res 41 7547-7555 (2013)
  20. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system. AlQuraishi M, Tang S, Xia X. BMC Bioinformatics 16 390 (2015)
  21. Knowledge-based three-body potential for transcription factor binding site prediction. Qin W, Zhao G, Carson M, Jia C, Lu H. IET Syst Biol 10 23-29 (2016)
  22. Exploring protein structural dissimilarity to facilitate structure classification. Jain P, Hirst JD. BMC Struct Biol 9 60 (2009)


Reviews citing this publication (27)

  1. Homeodomain-DNA recognition. Gehring WJ, Qian YQ, Billeter M, Furukubo-Tokunaga K, Schier AF, Resendez-Perez D, Affolter M, Otting G, Wüthrich K. Cell 78 211-223 (1994)
  2. Role of heat shock proteins in protection from and pathogenesis of infectious diseases. Zügel U, Kaufmann SH. Clin Microbiol Rev 12 19-39 (1999)
  3. Resident aliens: the Tc1/mariner superfamily of transposable elements. Plasterk RH, Izsvák Z, Ivics Z. Trends Genet 15 326-332 (1999)
  4. Fold change in evolution of protein structures. Grishin NV. J Struct Biol 134 167-185 (2001)
  5. Polyproline-II helix in proteins: structure and function. Adzhubei AA, Sternberg MJ, Makarov AA. J Mol Biol 425 2100-2132 (2013)
  6. Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements. Hallet B, Sherratt DJ. FEMS Microbiol Rev 21 157-178 (1997)
  7. The importance of extended conformations and, in particular, the PII conformation for the molecular recognition of peptides. Siligardi G, Drake AF. Biopolymers 37 281-292 (1995)
  8. Targeting the minor groove of DNA. Wemmer DE, Dervan PB. Curr Opin Struct Biol 7 355-361 (1997)
  9. The bounty of RAGs: recombination signal complexes and reaction outcomes. Swanson PC. Immunol Rev 200 90-114 (2004)
  10. Genetic map of Salmonella typhimurium, edition VIII. Sanderson KE, Hessel A, Rudd KE. Microbiol Rev 59 241-303 (1995)
  11. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. Bervoets I, Charlier D. FEMS Microbiol Rev 43 304-339 (2019)
  12. Acquisition and rearrangement of sequence motifs in the evolution of bacteriophage tail fibres. Sandmeier H. Mol Microbiol 12 343-350 (1994)
  13. DNA recognition by synthetic constructs. Pazos E, Mosquera J, Vázquez ME, Mascareñas JL. Chembiochem 12 1958-1973 (2011)
  14. Molecular biology of S-layers. Bahl H, Scholz H, Bayan N, Chami M, Leblon G, Gulik-Krzywicki T, Shechter E, Fouet A, Mesnage S, Tosi-Couture E, Gounon P, Mock M, Conway de Macario E, Macario AJ, Fernández-Herrero LA, Olabarría G, Berenguer J, Blaser MJ, Kuen B, Lubitz W, Sára M, Pouwels PH, Kolen CP, Boot HJ, Resch S. FEMS Microbiol Rev 20 47-98 (1997)
  15. Assembly of the Tc1 and mariner transposition initiation complexes depends on the origins of their transposase DNA binding domains. Brillet B, Bigot Y, Augé-Gouillou C. Genetica 130 105-120 (2007)
  16. Transposons: Moving Forward from Preclinical Studies to Clinical Trials. Tipanee J, VandenDriessche T, Chuah MK. Hum Gene Ther 28 1087-1104 (2017)
  17. The origins of V(D)J recombination. Lewis SM, Wu GE. Cell 88 159-162 (1997)
  18. Homeodomain-type DNA recognition. Billeter M. Prog Biophys Mol Biol 66 211-225 (1996)
  19. Analysis and design of three-stranded coiled coils and three-helix bundles. Schneider JP, Lombardi A, DeGrado WF. Fold Des 3 R29-40 (1998)
  20. Site-specific recombination in gram-positive theta-replicating plasmids. Alonso JC, Ayora S, Canosa I, Weise F, Rojo F. FEMS Microbiol Lett 142 1-10 (1996)
  21. Direct recognition of the trp operator by the trp holorepressor--a review. Youderian P, Arvidson DN. Gene 150 1-8 (1994)
  22. Recombination. Pieces of the site-specific recombination puzzle. Oram M, Szczelkun MD, Halford SE. Curr Biol 5 1106-1109 (1995)
  23. Evolution of immunoglobulin and T-cell receptor gene assembly. Lewis SM. Ann N Y Acad Sci 870 58-67 (1999)
  24. Falling out of the fold: tumorigenic mutations and p53. Erlanson DA, Verdine GL. Chem Biol 1 79-84 (1994)
  25. Review: borders, patterns, and distinctive families of homeodomains. Gindilis V, Banikazemi M, Vyasankin A, Verlinsky O, Matveyev I, Verlinsky Y. J Assist Reprod Genet 11 244-269 (1994)
  26. A homology-based molecular model of the proline-rich homeodomain protein Prh, from haematopoietic cells. Neidle S, Goodwin GH. FEBS Lett 345 93-98 (1994)
  27. Unraveling transposition: gamma delta resolvase in complex with DNA. Mondragón A. Structure 3 755-758 (1995)

Articles citing this publication (89)

  1. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Ogata K, Morikawa S, Nakamura H, Sekikawa A, Inoue T, Kanai H, Sarai A, Ishii S, Nishimura Y. Cell 79 639-648 (1994)
  2. Protein-DNA interactions: A structural analysis. Jones S, van Heyningen P, Berman HM, Thornton JM. J Mol Biol 287 877-896 (1999)
  3. Crystal structure of a paired domain-DNA complex at 2.5 A resolution reveals structural basis for Pax developmental mutations. Xu W, Rould MA, Jun S, Desplan C, Pabo CO. Cell 80 639-650 (1995)
  4. Structure of serum response factor core bound to DNA. Pellegrini L, Tan S, Richmond TJ. Nature 376 490-498 (1995)
  5. Crystal structure of the site-specific recombinase gamma delta resolvase complexed with a 34 bp cleavage site. Yang W, Steitz TA. Cell 82 193-207 (1995)
  6. Crystal structure of the human Pax6 paired domain-DNA complex reveals specific roles for the linker region and carboxy-terminal subdomain in DNA binding. Xu HE, Rould MA, Xu W, Epstein JA, Maas RL, Pabo CO. Genes Dev 13 1263-1275 (1999)
  7. The DNA-binding domain of HIV-1 integrase has an SH3-like fold. Eijkelenboom AP, Lutzke RA, Boelens R, Plasterk RH, Kaptein R, Hård K. Nat Struct Biol 2 807-810 (1995)
  8. The homeodomain region of Rag-1 reveals the parallel mechanisms of bacterial and V(D)J recombination. Spanopoulou E, Zaitseva F, Wang FH, Santagata S, Baltimore D, Panayotou G. Cell 87 263-276 (1996)
  9. Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition? Pabo CO, Nekludova L. J Mol Biol 301 597-624 (2000)
  10. RAG1 mediates signal sequence recognition and recruitment of RAG2 in V(D)J recombination. Difilippantonio MJ, McMahan CJ, Eastman QM, Spanopoulou E, Schatz DG. Cell 87 253-262 (1996)
  11. Structural and thermodynamic strategies for site-specific DNA binding proteins. Jen-Jacobson L, Engler LE, Jacobson LA. Structure 8 1015-1023 (2000)
  12. Protein folds and functions. Martin AC, Orengo CA, Hutchinson EG, Jones S, Karmirantzou M, Laskowski RA, Mitchell JB, Taroni C, Thornton JM. Structure 6 875-884 (1998)
  13. Involvement of a bifunctional, paired-like DNA-binding domain and a transpositional enhancer in Sleeping Beauty transposition. Izsvák Z, Khare D, Behlke J, Heinemann U, Plasterk RH, Ivics Z. J Biol Chem 277 34581-34588 (2002)
  14. Elusive affinities. Janin J. Proteins 21 30-39 (1995)
  15. Alternatively spliced insertions in the paired domain restrict the DNA sequence specificity of Pax6 and Pax8. Kozmik Z, Czerny T, Busslinger M. EMBO J 16 6793-6803 (1997)
  16. V(D)J recombination signal recognition: distinct, overlapping DNA-protein contacts in complexes containing RAG1 with and without RAG2. Swanson PC, Desiderio S. Immunity 9 115-125 (1998)
  17. A role for CH...O interactions in protein-DNA recognition. Mandel-Gutfreund Y, Margalit H, Jernigan RL, Zhurkin VB. J Mol Biol 277 1129-1140 (1998)
  18. Helix bending as a factor in protein/DNA recognition. Dickerson RE, Chiu TK. Biopolymers 44 361-403 (1997)
  19. Fine structure of E. coli RNA polymerase-promoter interactions: alpha subunit binding to the UP element minor groove. Ross W, Ernst A, Gourse RL. Genes Dev 15 491-506 (2001)
  20. An alternative splicing event in the Pax-3 paired domain identifies the linker region as a key determinant of paired domain DNA-binding activity. Vogan KJ, Underhill DA, Gros P. Mol Cell Biol 16 6677-6686 (1996)
  21. Crystal structure of the specific DNA-binding domain of Tc3 transposase of C.elegans in complex with transposon DNA. van Pouderoyen G, Ketting RF, Perrakis A, Plasterk RH, Sixma TK. EMBO J 16 6044-6054 (1997)
  22. DNA recognition code of transcription factors in the helix-turn-helix, probe helix, hormone receptor, and zinc finger families. Suzuki M, Yagi N. Proc Natl Acad Sci U S A 91 12357-12361 (1994)
  23. Unusual Rel-like architecture in the DNA-binding domain of the transcription factor NFATc. Wolfe SA, Zhou P, Dötsch V, Chen L, You A, Ho SN, Crabtree GR, Wagner G, Verdine GL. Nature 385 172-176 (1997)
  24. Stereochemical basis of DNA bending by transcription factors. Suzuki M, Yagi N. Nucleic Acids Res 23 2083-2091 (1995)
  25. Changes in solvation during DNA binding and cleavage are critical to altered specificity of the EcoRI endonuclease. Robinson CR, Sligar SG. Proc Natl Acad Sci U S A 95 2186-2191 (1998)
  26. A novel class of winged helix-turn-helix protein: the DNA-binding domain of Mu transposase. Clubb RT, Omichinski JG, Savilahti H, Mizuuchi K, Gronenborn AM, Clore GM. Structure 2 1041-1048 (1994)
  27. A functional analysis of the spacer of V(D)J recombination signal sequences. Lee AI, Fugmann SD, Cowell LG, Ptaszek LM, Kelsoe G, Schatz DG. PLoS Biol 1 E1 (2003)
  28. Footprint analysis of the RAG protein recombination signal sequence complex for V(D)J type recombination. Nagawa F, Ishiguro K, Tsuboi A, Yoshida T, Ishikawa A, Takemori T, Otsuka AJ, Sakano H. Mol Cell Biol 18 655-663 (1998)
  29. Intron-encoded endonuclease I-TevI binds as a monomer to effect sequential cleavage via conformational changes in the td homing site. Mueller JE, Smith D, Bryk M, Belfort M. EMBO J 14 5724-5735 (1995)
  30. Methylphosphonate mapping of phosphate contacts critical for RNA recognition by the human immunodeficiency virus tat and rev proteins. Pritchard CE, Grasby JA, Hamy F, Zacharek AM, Singh M, Karn J, Gait MJ. Nucleic Acids Res 22 2592-2600 (1994)
  31. C-H.O hydrogen bonds in minor groove of A-tracts in DNA double helices. Ghosh A, Bansal M. J Mol Biol 294 1149-1158 (1999)
  32. Solution structure of the DNA-binding domain of the heat shock transcription factor determined by multidimensional heteronuclear magnetic resonance spectroscopy. Damberger FF, Pelton JG, Harrison CJ, Nelson HC, Wemmer DE. Protein Sci 3 1806-1821 (1994)
  33. Protein and drug interactions in the minor groove of DNA. Morávek Z, Neidle S, Schneider B. Nucleic Acids Res 30 1182-1191 (2002)
  34. Heterogeneity in molecular recognition by restriction endonucleases: osmotic and hydrostatic pressure effects on BamHI, Pvu II, and EcoRV specificity. Robinson CR, Sligar SG. Proc Natl Acad Sci U S A 92 3444-3448 (1995)
  35. Identification of basic residues in RAG2 critical for DNA binding by the RAG1-RAG2 complex. Fugmann SD, Schatz DG. Mol Cell 8 899-910 (2001)
  36. Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Merickel SK, Haykinson MJ, Johnson RC. Genes Dev 12 2803-2816 (1998)
  37. Two DNA invertases contribute to flagellar phase variation in Salmonella enterica serovar Typhimurium strain LT2. Kutsukake K, Nakashima H, Tominaga A, Abo T. J Bacteriol 188 950-957 (2006)
  38. Design and Synthesis of a Peptide That Binds Specific DNA Sequences through Simultaneous Interaction in the Major and in the Minor Groove This work was supported by the Spanish M.E.C. (PB97-0524) and the Xunta de Galicia (PGIDT00PXI20912PR). M.E.V. and A.M.C. thank the Xunta de Galicia and the University of Santiago for their predoctoral fellowships. We are very grateful to Prof. G. L. Verdine for his input and support in the early phases of this work. We also thank Prof. J. Benavente for allowing us to use the radioactivity facilities and Prof. C. Abell for critical reading of the manuscript. Vázquez ME, Caamaño AM, Martínez-Costas J, Castedo L, Mascareñas JL. Angew Chem Int Ed Engl 40 4723-4725 (2001)
  39. Stepwise selection of TetR variants recognizing tet operator 4C with high affinity and specificity. Helbl V, Hillen W. J Mol Biol 276 313-318 (1998)
  40. The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Haykinson MJ, Johnson LM, Soong J, Johnson RC. Curr Biol 6 163-177 (1996)
  41. Inhibition of major-groove-binding proteins by pyrrole-imidazole polyamides with an Arg-Pro-Arg positive patch. Bremer RE, Baird EE, Dervan PB. Chem Biol 5 119-133 (1998)
  42. Interactions of the site-specific recombinases XerC and XerD with the recombination site dif. Blakely GW, Sherratt DJ. Nucleic Acids Res 22 5613-5620 (1994)
  43. Classification of protein-DNA complexes based on structural descriptors. Prabakaran P, Siebers JG, Ahmad S, Gromiha MM, Singarayan MG, Sarai A. Structure 14 1355-1367 (2006)
  44. Thermodynamics of sequence-specific protein-DNA interactions. Härd T, Lundbäck T. Biophys Chem 62 121-139 (1996)
  45. Binding of the estrogen receptor to DNA. The role of waters. Kosztin D, Bishop TC, Schulten K. Biophys J 73 557-570 (1997)
  46. Stepwise selection of TetR variants recognizing tet operator 6C with high affinity and specificity. Helbl V, Tiebel B, Hillen W. J Mol Biol 276 319-324 (1998)
  47. Hydration of DNA in aqueous solution: NMR evidence for a kinetic destabilization of the minor groove hydration of d-(TTAA)2 versus d-(AATT)2 segments. Liepinsh E, Leupin W, Otting G. Nucleic Acids Res 22 2249-2254 (1994)
  48. Characteristics of Salmonella enterica serovar 4,[5],12:i:- as a monophasic variant of serovar Typhimurium. Ido N, Lee K, Iwabuchi K, Izumiya H, Uchida I, Kusumoto M, Iwata T, Ohnishi M, Akiba M. PLoS One 9 e104380 (2014)
  49. A synthetic miniprotein that binds specific DNA sequences by contacting both the major and the minor groove. Blanco JB, Vázquez ME, Martinez-Costas J, Castedo L, Mascareñas JL. Chem Biol 10 713-722 (2003)
  50. FeON-FeOFF: the Helicobacter pylori Fur regulator commutates iron-responsive transcription by discriminative readout of opposed DNA grooves. Agriesti F, Roncarati D, Musiani F, Del Campo C, Iurlaro M, Sparla F, Ciurli S, Danielli A, Scarlato V. Nucleic Acids Res 42 3138-3151 (2014)
  51. The beta recombinase of plasmid pSM19035 binds to two adjacent sites, making different contacts at each of them. Rojo F, Alonso JC. Nucleic Acids Res 23 3181-3188 (1995)
  52. The yeast transcription factor Mac1 binds to DNA in a modular fashion. Jamison McDaniels CP, Jensen LT, Srinivasan C, Winge DR, Tullius TD. J Biol Chem 274 26962-26967 (1999)
  53. Role of heat shock proteins in diseases and their therapeutic potential. Kaul G, Thippeswamy H. Indian J Microbiol 51 124-131 (2011)
  54. Testing water-mediated DNA recognition by the Hin recombinase. Chiu TK, Sohn C, Dickerson RE, Johnson RC. EMBO J 21 801-814 (2002)
  55. The Drosophila melanogaster BTB proteins bric à brac bind DNA through a composite DNA binding domain containing a pipsqueak and an AT-Hook motif. Lours C, Bardot O, Godt D, Laski FA, Couderc JL. Nucleic Acids Res 31 5389-5398 (2003)
  56. Classification of multi-helical DNA-binding domains and application to predict the DBD structures of sigma factor, LysR, OmpR/PhoB, CENP-B, Rapl, and Xy1S/Ada/AraC. Suzuki M, Brenner SE. FEBS Lett 372 215-221 (1995)
  57. Thermodynamics of specific and nonspecific DNA binding by two DNA-binding domains conjugated to fluorescent probes. Thompson M, Woodbury NW. Biophys J 81 1793-1804 (2001)
  58. Binding geometry of alpha-helices that recognize DNA. Suzuki M, Gerstein M. Proteins 23 525-535 (1995)
  59. Importance of minor groove binding zinc fingers within the transcription factor IIIA-DNA complex. Neely L, Trauger JW, Baird EE, Dervan PB, Gottesfeld JM. J Mol Biol 274 439-445 (1997)
  60. Participation of water in Hin recombinase--DNA recognition. Robinson CR, Sligar SG. Protein Sci 5 2119-2124 (1996)
  61. The SKN-1 amino-terminal arm is a DNA specificity segment. Kophengnavong T, Carroll AS, Blackwell TK. Mol Cell Biol 19 3039-3050 (1999)
  62. Modeling helix-turn-helix protein-induced DNA bending with knowledge-based distance restraints. Tzou WS, Hwang MJ. Biophys J 77 1191-1205 (1999)
  63. Prevalence and Distribution Characteristics of blaKPC-2 and blaNDM-1 Genes in Klebsiella pneumoniae. Zhang X, Li F, Cui S, Mao L, Li X, Awan F, Lv W, Zeng Z. Infect Drug Resist 13 2901-2910 (2020)
  64. Statistical models for discerning protein structures containing the DNA-binding helix-turn-helix motif. McLaughlin WA, Berman HM. J Mol Biol 330 43-55 (2003)
  65. The solution structure of the methylated form of the N-terminal 16-kDa domain of Escherichia coli Ada protein. Takinowaki H, Matsuda Y, Yoshida T, Kobayashi Y, Ohkubo T. Protein Sci 15 487-497 (2006)
  66. Sequence dependencies of DNA deformability and hydration in the minor groove. Yonetani Y, Kono H. Biophys J 97 1138-1147 (2009)
  67. Site-specific DNA Inversion by Serine Recombinases. Johnson RC. Microbiol Spectr 3 1-36 (2015)
  68. In vivo identification of intermediate stages of the DNA inversion reaction catalyzed by the Salmonella Hin recombinase. Nanassy OZ, Hughes KT. Genetics 149 1649-1663 (1998)
  69. Preparation and properties of pure, full-length IclR protein of Escherichia coli. Use of time-of-flight mass spectrometry to investigate the problems encountered. Donald LJ, Chernushevich IV, Zhou J, Verentchikov A, Poppe-Schriemer N, Hosfield DJ, Westmore JB, Ens W, Duckworth HW, Standing KG. Protein Sci 5 1613-1624 (1996)
  70. Multiple interfaces between a serine recombinase and an enhancer control site-specific DNA inversion. McLean MM, Chang Y, Dhar G, Heiss JK, Johnson RC. Elife 2 e01211 (2013)
  71. Structural and dynamic basis of a supercoiling-responsive DNA element. Bae SH, Yun SH, Sun D, Lim HM, Choi BS. Nucleic Acids Res 34 254-261 (2006)
  72. Determination of the structure of the DNA binding domain of gamma delta resolvase in solution. Liu T, DeRose EF, Mullen GP. Protein Sci 3 1286-1295 (1994)
  73. Intracellular receptor-type transcription factor, LasR, contains a highly conserved amphipathic region which precedes the putative helix-turn-helix DNA binding motif. Fukushima J, Ishiwata T, Kurata M, You Z, Okuda K. Nucleic Acids Res 22 3706-3707 (1994)
  74. News Minor groove DNA-recognition by alpha-helices. Sauer RT. Nat Struct Biol 2 7-9 (1995)
  75. Sequence-selective DNA binding with cell-permeable oligoguanidinium-peptide conjugates. Mosquera J, Sánchez MI, Valero J, de Mendoza J, Vázquez ME, Mascareñas JL. Chem Commun (Camb) 51 4811-4814 (2015)
  76. Probing the role of structural water in a duplex oligodeoxyribonucleotide containing a water-mimicking base analog. Kosztin D, Gumport RI, Schulten K. Nucleic Acids Res 27 3550-3556 (1999)
  77. The DNA-bending protein, HMG1, is required for correct cleavage of 23 bp recombination signal sequences by recombination activating gene proteins in vitro. Yoshida T, Tsuboi A, Ishiguro Ki, Nagawa F, Sakano H. Int Immunol 12 721-729 (2000)
  78. Effect of DNA superhelicity and bound proteins on mechanistic aspects of the Hin-mediated and Fis-enhanced inversion. Huang J, Zhang Q, Schlick T. Biophys J 85 804-817 (2003)
  79. Mutants of Escherichia coli Trp repressor with changes of conserved, helix-turn-helix residue threonine 81 have altered DNA-binding specificities. Pfau J, Arvidson DN, Youderian P. Mol Microbiol 13 1001-1012 (1994)
  80. Structure-specific nuclease activity of RAGs is modulated by sequence, length and phase position of flanking double-stranded DNA. Kumari R, Raghavan SC. FEBS J 282 4-18 (2015)
  81. Change in conformation by DNA-peptide association: molecular dynamics of the Hin-recombinase-hixL complex. Komeiji Y, Uebayasi M. Biophys J 77 123-138 (1999)
  82. Crystal structure of a putative HTH-type transcriptional regulator yxaF from Bacillus subtilis. Seetharaman J, Kumaran D, Bonanno JB, Burley SK, Swaminathan S. Proteins 63 1087-1091 (2006)
  83. Gin mutants that can be suppressed by a Fis-independent mutation. Spaeny-Dekking L, Schlicher E, Franken K, van de Putte P, Goosen N. J Bacteriol 177 222-228 (1995)
  84. Proteolytic cleavage of gram-positive beta recombinase is required for crystallization. Orth P, Jekow P, Alonso JC, Hinrichs W. Protein Eng 12 371-373 (1999)
  85. Simultaneous binding of a polyamide dimer and an oligonucleotide in the minor and major grooves of DNA. Parks ME, Dervan PB. Bioorg Med Chem 4 1045-1050 (1996)
  86. A study of the CopF repressor of plasmid pAMbeta1 by phage display. d'Alençon E, Ehrlich SD. J Bacteriol 182 2973-2977 (2000)
  87. Cin-mediated recombination at secondary crossover sites on the Escherichia coli chromosome. Rozsa FW, Viollier P, Fussenegger M, Hiestand-Nauer R, Arber W. J Bacteriol 177 1159-1168 (1995)
  88. Identification and purification of a soluble region in the breast cancer susceptibility protein BRCA2. Finch D, Webb M. Protein Expr Purif 40 177-182 (2005)
  89. Co-integrate Col3m bla NDM-1-harboring plasmids in clinical Providencia rettgeri isolates from Argentina. De Belder D, Martino F, Tijet N, Melano RG, Faccone D, De Mendieta JM, Rapoport M, Albornoz E, Petroni A, Tuduri E, Derdoy L, Cogut S, Errecalde L, Pasteran F, Corso A, Gomez SA. Microbiol Spectr e0165123 (2023)


Related citations provided by authors (1)

  1. Crystallization and Prelimanary X-Ray Analysis of the DNA Binding Domain of the Hin Recombinase with its DNA Binding Site. Feng J-A, Simon M, Mack DP, Dervan PB, Johnson RC, Dickerson RE J. Mol. Biol. 232 982-986 (1993)