spacer
spacer

PDBsum entry 2ri7

Go to PDB code: 
protein ligands metals links
Transcription/nuclear protein PDB id
2ri7

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
168 a.a. *
Ligands
ALA-ARG-THR-MLY-
GLN-THR
GOL
IPA
Metals
_ZN ×2
Waters ×337
* Residue conservation analysis
PDB id:
2ri7
Name: Transcription/nuclear protein
Title: Crystal structure of phd finger-linker-bromodomain y17e mutant from human bptf in the h3(1-9)k4me2 bound state
Structure: Nucleosome-remodeling factor subunit bptf. Chain: a. Fragment: phd-type 2 domain and bromo domain. Residues 2726-2894. Synonym: bromodomain and phd finger- containing transcription factor, fetal alzheimer antigen, fetal alz- 50 clone 1 protein. Engineered: yes. Mutation: yes. Histone h3.1. Chain: p.
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: bptf, fac1, falz. Expressed in: escherichia coli. Expression_system_taxid: 562. Synthetic: yes. Other_details: this sequence occurs naturally in humans
Resolution:
1.45Å     R-factor:   0.189     R-free:   0.192
Authors: H.Li,D.J.Patel
Key ref:
H.Li et al. (2007). Structural basis for lower lysine methylation state-specific readout by MBT repeats of L3MBTL1 and an engineered PHD finger. Mol Cell, 28, 677-691. PubMed id: 18042461 DOI: 10.1016/j.molcel.2007.10.023
Date:
10-Oct-07     Release date:   11-Dec-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q12830  (BPTF_HUMAN) -  Nucleosome-remodeling factor subunit BPTF from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
3046 a.a.
168 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1016/j.molcel.2007.10.023 Mol Cell 28:677-691 (2007)
PubMed id: 18042461  
 
 
Structural basis for lower lysine methylation state-specific readout by MBT repeats of L3MBTL1 and an engineered PHD finger.
H.Li, W.Fischle, W.Wang, E.M.Duncan, L.Liang, S.Murakami-Ishibe, C.D.Allis, D.J.Patel.
 
  ABSTRACT  
 
Human L3MBTL1, which contains three malignant brain tumor (MBT) repeats, binds monomethylated and dimethylated lysines, but not trimethylated lysines, in several histone sequence contexts. In crystal structures of L3MBTL1 complexes, the monomethyl- and dimethyllysines insert into a narrow and deep cavity of aromatic residue-lined pocket 2, while a proline ring inserts into shallower pocket 1. We have also engineered a single Y to E substitution within the aromatic cage of the BPTF PHD finger, resulting in a reversal of binding preference from trimethyl- to dimethyllysine in an H3K4 sequence context. In both the "cavity insertion" (L3MBTL1) and "surface groove" (PHD finger) modes of methyllysine recognition, a carboxylate group both hydrogen bonds and ion pairs to the methylammonium proton. Our structural and binding studies of these two modules provide insights into the molecular principles governing the decoding of lysine methylation states, thereby highlighting a methylation state-specific layer of histone mark readout impacting on epigenetic regulation.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. Pro-Ser Step-Containing Peptide Binding by L3MBTL1 Pocket 1
(A) Domain architecture of the L3MBTL1 constructs used for structural and functional study in this figure. For the L3MBTL1-H3.3 construct, a Gly-Gly-Gly linker was used to separate L3MBTL1 and the covalently attached histone 3.3[28–34] segment.
(B) Insertion of proline into a shallow cavity of symmetry-related L3MBTL1 pocket 1 in the Kme2-L3MBTL1 complex is shown. The Pro ring is sandwiched within the narrow walls at the base of the pocket. The interior parts of the surface are colored in gray, and exterior parts are colored by their electrostatic potential as described for Figure 1C. The Pro ligand is shown in the dotted van der Waals radius representation. The “EPS” peptide segment is shown, with part of the Ser omitted from the drawing for clarity.
(C) Relative positioning of PS step containing C-terminal L3MBTL1 segment in pocket 1 and Kme2 in pocket 2 on the same L3MBTL1 surface in the Kme2-L3MBTL1 complex.
(D) Stereo view of the PS step containing H3.3 SAPSTGG segment with its Pro ring inserted into pocket 1 of the Kme2-L3MBTL1-H3.3[28–34] complex. Key residues participating in pocket formation are shown in stick representation (cyan) with main-chain atoms omitted for clarity. Water molecules are shown as small red spheres and hydrogen bonds indicated by dashed red lines.
(E) Stereo view of the relative positioning of PS step containing H3.3 SAPSTGG segment in pocket 1 and Kme2 in pocket 2 on the same L3MBTL1 surface in the Kme2- L3MBTL1-H3.3[28–34] complex. Note that the type II β-turn formed at the “APST” motif in pocket 1 helps to direct the C-terminal GG segment of H3.3 toward the Kme2-bound pocket 2. Water molecules are shown as small red spheres and hydrogen bonds indicated by dashed red lines.
Figure 4.
Figure 4. Stereo Views of Pocket 2 Comparing Superpositioned Kme2-Bound Wild-Type and Mutant L3MBTL1 Complexes
(A–D) The wild-type L3MBTL1 complex with bound Kme2 is shown in beige (A–D). The D355N mutant complex is shown in light blue (A), the D355A mutant is shown in dark blue (B), the N358Q mutant is shown in light green (C), and the N358A mutant is shown in dark green (D). Kme2 was not detected in pocket 2 for complexes with D355N (A), D355A (B), N358Q (C), and N358A (D).
Superpositioning is based on least-squares fitting of Cα atoms within the second MBT module (349–416) of L3MBTL1.
 
  The above figures are reprinted by permission from Cell Press: Mol Cell (2007, 28, 677-691) copyright 2007.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22398447 A.J.Kuo, J.Song, P.Cheung, S.Ishibe-Murakami, S.Yamazoe, J.K.Chen, D.J.Patel, and O.Gozani (2012).
The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome.
  Nature, 484, 115-119.
PDB codes: 4dov 4dow
23211769 C.A.Musselman, M.E.Lalonde, J.Côté, and T.G.Kutateladze (2012).
Perceiving the epigenetic landscape through histone readers.
  Nat Struct Mol Biol, 19, 1218-1227.  
22120668 K.Acs, M.S.Luijsterburg, L.Ackermann, F.A.Salomons, T.Hoppe, and N.P.Dantuma (2011).
The AAA-ATPase VCP/p97 promotes 53BP1 recruitment by removing L3MBTL1 from DNA double-strand breaks.
  Nat Struct Mol Biol, 18, 1345-1350.  
21243712 P.Voigt, and D.Reinberg (2011).
Histone tails: ideal motifs for probing epigenetics through chemical biology approaches.
  Chembiochem, 12, 236-252.  
20974918 C.Xu, C.Bian, W.Yang, M.Galka, H.Ouyang, C.Chen, W.Qiu, H.Liu, A.E.Jones, F.MacKenzie, P.Pan, S.S.Li, H.Wang, and J.Min (2010).
Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2).
  Proc Natl Acad Sci U S A, 107, 19266-19271.
PDB codes: 3jpx 3jzg 3jzh 3jzn 3k26 3k27
20837520 D.H.Kim, and S.Sung (2010).
The Plant Homeo Domain finger protein, VIN3-LIKE 2, is necessary for photoperiod-mediated epigenetic regulation of the floral repressor, MAF5.
  Proc Natl Acad Sci U S A, 107, 17029-17034.  
20862720 D.Schwarzer (2010).
Chemical tools in chromatin research.
  J Pept Sci, 16, 530-537.  
20826339 F.He, T.Umehara, K.Saito, T.Harada, S.Watanabe, T.Yabuki, T.Kigawa, M.Takahashi, K.Kuwasako, K.Tsuda, T.Matsuda, M.Aoki, E.Seki, N.Kobayashi, P.Güntert, S.Yokoyama, and Y.Muto (2010).
Structural insight into the zinc finger CW domain as a histone modification reader.
  Structure, 18, 1127-1139.
PDB codes: 2e61 2rr4
20923397 K.L.Yap, and M.M.Zhou (2010).
Keeping it in the family: diverse histone recognition by conserved structural folds.
  Crit Rev Biochem Mol Biol, 45, 488-505.  
20512922 L.M.Congdon, S.I.Houston, C.S.Veerappan, T.M.Spektor, and J.C.Rice (2010).
PR-Set7-mediated monomethylation of histone H4 lysine 20 at specific genomic regions induces transcriptional repression.
  J Cell Biochem, 110, 609-619.  
20677832 S.Park, U.Osmers, G.Raman, R.H.Schwantes, M.O.Diaz, and J.H.Bushweller (2010).
The PHD3 domain of MLL acts as a CYP33-regulated switch between MLL-mediated activation and repression .
  Biochemistry, 49, 6576-6586.
PDB codes: 2kyu 2kyx
20307547 S.Roy, C.A.Musselman, I.Kachirskaia, R.Hayashi, K.C.Glass, J.C.Nix, O.Gozani, E.Appella, and T.G.Kutateladze (2010).
Structural insight into p53 recognition by the 53BP1 tandem Tudor domain.
  J Mol Biol, 398, 489-496.
PDB codes: 3lgf 3lgl 3lh0
20637214 T.C.Miller, T.J.Rutherford, C.M.Johnson, M.Fiedler, and M.Bienz (2010).
Allosteric remodelling of the histone H3 binding pocket in the Pygo2 PHD finger triggered by its binding to the B9L/BCL9 co-factor.
  J Mol Biol, 401, 969-984.
PDB code: 2xb1
21243036 W.P.Janzen, T.J.Wigle, J.Jin, and S.V.Frye (2010).
Epigenetics: Tools and Technologies.
  Drug Discov Today Technol, 7, e59-e65.  
19001096 A.N.Scharf, K.Meier, V.Seitz, E.Kremmer, A.Brehm, and A.Imhof (2009).
Monomethylation of lysine 20 on histone H4 facilitates chromatin maturation.
  Mol Cell Biol, 29, 57-67.  
20048137 C.A.Musselman, and T.G.Kutateladze (2009).
PHD fingers: epigenetic effectors and potential drug targets.
  Mol Interv, 9, 314-323.  
19494831 C.Grimm, R.Matos, N.Ly-Hartig, U.Steuerwald, D.Lindner, V.Rybin, J.Müller, and C.W.Müller (2009).
Molecular recognition of histone lysine methylation by the Polycomb group repressor dSfmbt.
  EMBO J, 28, 1965-1977.
PDB code: 3h6z
19575660 D.H.Kim, M.R.Doyle, S.Sung, and R.M.Amasino (2009).
Vernalization: winter and the timing of flowering in plants.
  Annu Rev Cell Dev Biol, 25, 277-299.  
19886812 E.I.Campos, and D.Reinberg (2009).
Histones: annotating chromatin.
  Annu Rev Genet, 43, 559-599.  
19841675 J.Eryilmaz, P.Pan, M.F.Amaya, A.Allali-Hassani, A.Dong, M.A.Adams-Cioaba, F.Mackenzie, M.Vedadi, and J.Min (2009).
Structural studies of a four-MBT repeat protein MBTD1.
  PLoS One, 4, e7274.
PDB code: 3feo
19442115 K.S.Champagne, and T.G.Kutateladze (2009).
Structural insight into histone recognition by the ING PHD fingers.
  Curr Drug Targets, 10, 432-441.  
19234526 M.A.Adams-Cioaba, and J.Min (2009).
Structure and function of histone methylation binding proteins.
  Biochem Cell Biol, 87, 93.  
19184981 P.V.Peña, C.A.Musselman, A.J.Kuo, O.Gozani, and T.G.Kutateladze (2009).
NMR assignments and histone specificity of the ING2 PHD finger.
  Magn Reson Chem, 47, 352-358.  
19233876 Y.Guo, N.Nady, C.Qi, A.Allali-Hassani, H.Zhu, P.Pan, M.A.Adams-Cioaba, M.F.Amaya, A.Dong, M.Vedadi, M.Schapira, R.J.Read, C.H.Arrowsmith, and J.Min (2009).
Methylation-state-specific recognition of histones by the MBT repeat protein L3MBTL2.
  Nucleic Acids Res, 37, 2204-2210.
PDB codes: 3cey 3f70
18666832 C.Stockdale, M.R.Swiderski, J.D.Barry, and R.McCulloch (2008).
Antigenic variation in Trypanosoma brucei: joining the DOTs.
  PLoS Biol, 6, e185.  
18818090 C.Xu, G.Cui, M.V.Botuyan, and G.Mer (2008).
Structural basis for the recognition of methylated histone H3K36 by the Eaf3 subunit of histone deacetylase complex Rpd3S.
  Structure, 16, 1740-1750.
PDB codes: 2k3x 2k3y
18682226 H.van Ingen, F.M.van Schaik, H.Wienk, J.Ballering, H.Rehmann, A.C.Dechesne, J.A.Kruijzer, R.M.Liskamp, H.T.Timmers, and R.Boelens (2008).
Structural insight into the recognition of the H3K4me3 mark by the TFIID subunit TAF3.
  Structure, 16, 1245-1256.  
18474616 J.K.Sims, and J.C.Rice (2008).
PR-Set7 establishes a repressive trans-tail histone code that regulates differentiation.
  Mol Cell Biol, 28, 4459-4468.  
18225984 K.A.Gelato, and W.Fischle (2008).
Role of histone modifications in defining chromatin structure and function.
  Biol Chem, 389, 353-363.  
18682256 L.A.Baker, C.D.Allis, and G.G.Wang (2008).
PHD fingers in human diseases: disorders arising from misinterpreting epigenetic marks.
  Mutat Res, 647, 3.  
18498752 M.Fiedler, M.J.Sánchez-Barrena, M.Nekrasov, J.Mieszczanek, V.Rybin, J.Müller, P.Evans, and M.Bienz (2008).
Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex.
  Mol Cell, 30, 507-518.
PDB codes: 2vp7 2vpb 2vpd 2vpe 2vpg
18765789 M.Lange, B.Kaynak, U.B.Forster, M.Tönjes, J.J.Fischer, C.Grimm, J.Schlesinger, S.Just, I.Dunkel, T.Krueger, S.Mebus, H.Lehrach, R.Lurz, J.Gobom, W.Rottbauer, S.Abdelilah-Seyfried, and S.Sperling (2008).
Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex.
  Genes Dev, 22, 2370-2384.  
18319261 M.S.Huen, S.M.Sy, J.M.van Deursen, and J.Chen (2008).
Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication.
  J Biol Chem, 283, 11073-11077.  
18538573 N.Nady, J.Min, M.S.Kareta, F.Chédin, and C.H.Arrowsmith (2008).
A SPOT on the chromatin landscape? Histone peptide arrays as a tool for epigenetic research.
  Trends Biochem Sci, 33, 305-313.  
18505818 P.Li, H.Yao, Z.Zhang, M.Li, Y.Luo, P.R.Thompson, D.S.Gilmour, and Y.Wang (2008).
Regulation of p53 target gene expression by peptidylarginine deiminase 4.
  Mol Cell Biol, 28, 4745-4758.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer