spacer
spacer

PDBsum entry 2fyg

Go to PDB code: 
protein ligands metals links
Viral protein PDB id
2fyg

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
128 a.a. *
Ligands
GOL
Metals
_ZN ×2
Waters ×186
* Residue conservation analysis
PDB id:
2fyg
Name: Viral protein
Title: Crystal structure of nsp10 from sars coronavirus
Structure: Replicase polyprotein 1ab. Chain: a. Fragment: residues 4240-4362. Engineered: yes
Source: Sars coronavirus. Organism_taxid: 227859. Strain: tor-2. Gene: orf1ab. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
1.80Å     R-factor:   0.198     R-free:   0.233
Authors: J.S.Joseph,K.S.Saikatendu,V.Subramanian,B.W.Neuman,A.Brooun, M.Griffith,K.Moy,M.K.Yadav,J.Velasquez,M.J.Buchmeier,R.C.Stevens, P.Kuhn
Key ref: J.S.Joseph et al. (2006). Crystal structure of nonstructural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs. J Virol, 80, 7894-7901. PubMed id: 16873246
Date:
07-Feb-06     Release date:   08-Aug-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P0C6U8  (R1A_CVHSA) -  Replicase polyprotein 1a from Severe acute respiratory syndrome coronavirus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
4382 a.a.
128 a.a.*
Key:    PfamA domain  Secondary structure
* PDB and UniProt seqs differ at 5 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 1: E.C.2.7.7.50  - mRNA guanylyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end diphospho-ribonucleoside in mRNA + GTP + H+ = a 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA + diphosphate
5'-end diphospho-ribonucleoside in mRNA
+ GTP
+ H(+)
= 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA
+ diphosphate
   Enzyme class 2: E.C.3.4.19.12  - ubiquitinyl hydrolase 1.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Thiol-dependent hydrolysis of ester, thiolester, amide, peptide and isopeptide bonds formed by the C-terminal Gly of ubiquitin (a 76-residue protein attached to proteins as an intracellular targeting signal).
   Enzyme class 3: E.C.3.4.22.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 4: E.C.3.4.22.69  - Sars coronavirus main proteinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
J Virol 80:7894-7901 (2006)
PubMed id: 16873246  
 
 
Crystal structure of nonstructural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs.
J.S.Joseph, K.S.Saikatendu, V.Subramanian, B.W.Neuman, A.Brooun, M.Griffith, K.Moy, M.K.Yadav, J.Velasquez, M.J.Buchmeier, R.C.Stevens, P.Kuhn.
 
  ABSTRACT  
 
The severe acute respiratory syndrome coronavirus (SARS-CoV) possesses a large 29.7-kb positive-stranded RNA genome. The first open reading frame encodes replicase polyproteins 1a and 1ab, which are cleaved to generate 16 "nonstructural" proteins, nsp1 to nsp16, involved in viral replication and/or RNA processing. Among these, nsp10 plays a critical role in minus-strand RNA synthesis in a related coronavirus, murine hepatitis virus. Here, we report the crystal structure of SARS-CoV nsp10 at a resolution of 1.8 A as determined by single-wavelength anomalous dispersion using phases derived from hexatantalum dodecabromide. nsp10 is a single domain protein consisting of a pair of antiparallel N-terminal helices stacked against an irregular beta-sheet, a coil-rich C terminus, and two Zn fingers. nsp10 represents a novel fold and is the first structural representative of this family of Zn finger proteins found so far exclusively in coronaviruses. The first Zn finger coordinates a Zn2+ ion in a unique conformation. The second Zn finger, with four cysteines, is a distant member of the "gag-knuckle fold group" of Zn2+-binding domains and appears to maintain the structural integrity of the C-terminal tail. A distinct clustering of basic residues on the protein surface suggests a nucleic acid-binding function. Gel shift assays indicate that in isolation, nsp10 binds single- and double-stranded RNA and DNA with high-micromolar affinity and without obvious sequence specificity. It is possible that nsp10 functions within a larger RNA-binding protein complex. However, its exact role within the replicase complex is still not clear.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20421945 M.Bouvet, C.Debarnot, I.Imbert, B.Selisko, E.J.Snijder, B.Canard, and E.Decroly (2010).
In vitro reconstitution of SARS-coronavirus mRNA cap methylation.
  PLoS Pathog, 6, e1000863.  
20007278 M.C.Hagemeijer, M.H.Verheije, M.Ulasli, I.A.Shaltiël, L.A.de Vries, F.Reggiori, P.J.Rottier, and C.A.de Haan (2010).
Dynamics of coronavirus replication-transcription complexes.
  J Virol, 84, 2134-2149.  
20444893 S.Fang, H.Shen, J.Wang, F.P.Tay, and D.X.Liu (2010).
Functional and genetic studies of the substrate specificity of coronavirus infectious bronchitis virus 3C-like proteinase.
  J Virol, 84, 7325-7336.  
19430490 S.Perlman, and J.Netland (2009).
Coronaviruses post-SARS: update on replication and pathogenesis.
  Nat Rev Microbiol, 7, 439-450.  
18795894 Y.Zhou, W.P.Tzeng, Y.Ye, Y.Huang, S.Li, Y.Chen, T.K.Frey, and J.J.Yang (2009).
A cysteine-rich metal-binding domain from rubella virus non-structural protein is essential for viral protease activity and virus replication.
  Biochem J, 417, 477-483.  
19153232 Z.J.Miknis, E.F.Donaldson, T.C.Umland, R.A.Rimmer, R.S.Baric, and L.W.Schultz (2009).
Severe acute respiratory syndrome coronavirus nsp9 dimerization is essential for efficient viral growth.
  J Virol, 83, 3007-3018.
PDB code: 3ee7
18054092 B.Canard, J.S.Joseph, and P.Kuhn (2008).
International research networks in viral structural proteomics: again, lessons from SARS.
  Antiviral Res, 78, 47-50.  
18367524 B.W.Neuman, J.S.Joseph, K.S.Saikatendu, P.Serrano, A.Chatterjee, M.A.Johnson, L.Liao, J.P.Klaus, J.R.Yates, K.Wüthrich, R.C.Stevens, M.J.Buchmeier, and P.Kuhn (2008).
Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3.
  J Virol, 82, 5279-5294.  
17984082 C.Zhang, O.Crasta, S.Cammer, R.Will, R.Kenyon, D.Sullivan, Q.Yu, W.Sun, R.Jha, D.Liu, T.Xue, Y.Zhang, M.Moore, P.McGarvey, H.Huang, Y.Chen, J.Zhang, R.Mazumder, C.Wu, and B.Sobral (2008).
An emerging cyberinfrastructure for biodefense pathogen and pathogen-host data.
  Nucleic Acids Res, 36, D884-D891.  
18827877 J.Pan, X.Peng, Y.Gao, Z.Li, X.Lu, Y.Chen, M.Ishaq, D.Liu, M.L.Dediego, L.Enjuanes, and D.Guo (2008).
Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication.
  PLoS ONE, 3, e3299.  
18156685 M.Bartlam, X.Xue, and Z.Rao (2008).
The search for a structural basis for therapeutic intervention against the SARS coronavirus.
  Acta Crystallogr A, 64, 204-213.  
17397959 R.L.Graham, J.S.Sparks, L.D.Eckerle, A.C.Sims, and M.R.Denison (2008).
SARS coronavirus replicase proteins in pathogenesis.
  Virus Res, 133, 88.  
18032506 R.Züst, T.B.Miller, S.J.Goebel, V.Thiel, and P.S.Masters (2008).
Genetic interactions between an essential 3' cis-acting RNA pseudoknot, replicase gene products, and the extreme 3' end of the mouse coronavirus genome.
  J Virol, 82, 1214-1228.  
17634238 D.J.Deming, R.L.Graham, M.R.Denison, and R.S.Baric (2007).
Processing of open reading frame 1a replicase proteins nsp7 to nsp10 in murine hepatitis virus strain A59 replication.
  J Virol, 81, 10280-10291.  
17392363 E.F.Donaldson, A.C.Sims, R.L.Graham, M.R.Denison, and R.S.Baric (2007).
Murine hepatitis virus replicase protein nsp10 is a critical regulator of viral RNA synthesis.
  J Virol, 81, 6356-6368.  
17428870 E.F.Donaldson, R.L.Graham, A.C.Sims, M.R.Denison, and R.S.Baric (2007).
Analysis of murine hepatitis virus strain A59 temperature-sensitive mutant TS-LA6 suggests that nsp10 plays a critical role in polyprotein processing.
  J Virol, 81, 7086-7098.  
17409150 J.S.Joseph, K.S.Saikatendu, V.Subramanian, B.W.Neuman, M.J.Buchmeier, R.C.Stevens, and P.Kuhn (2007).
Crystal structure of a monomeric form of severe acute respiratory syndrome coronavirus endonuclease nsp15 suggests a role for hexamerization as an allosteric switch.
  J Virol, 81, 6700-6708.
PDB code: 2ozk
17251282 J.Ziebuhr, B.Schelle, N.Karl, E.Minskaia, S.Bayer, S.G.Siddell, A.E.Gorbalenya, and V.Thiel (2007).
Human coronavirus 229E papain-like proteases have overlapping specificities but distinct functions in viral replication.
  J Virol, 81, 3922-3932.  
17554050 K.L.Maxwell, and L.Frappier (2007).
Viral proteomics.
  Microbiol Mol Biol Rev, 71, 398-411.  
17680348 M.Bartlam, Y.Xu, and Z.Rao (2007).
Structural proteomics of the SARS coronavirus: a model response to emerging infectious diseases.
  J Struct Funct Genomics, 8, 85-97.  
17855519 M.Oostra, E.G.te Lintelo, M.Deijs, M.H.Verheije, P.J.Rottier, and C.A.de Haan (2007).
Localization and membrane topology of coronavirus nonstructural protein 4: involvement of the early secretory pathway in replication.
  J Virol, 81, 12323-12336.  
17202208 M.S.Almeida, M.A.Johnson, T.Herrmann, M.Geralt, and K.Wüthrich (2007).
Novel beta-barrel fold in the nuclear magnetic resonance structure of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus.
  J Virol, 81, 3151-3161.
PDB codes: 2gdt 2hsx
16928755 S.G.Sawicki, D.L.Sawicki, and S.G.Siddell (2007).
A contemporary view of coronavirus transcription.
  J Virol, 81, 20-29.  
17934078 V.C.Cheng, S.K.Lau, P.C.Woo, and K.Y.Yuen (2007).
Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection.
  Clin Microbiol Rev, 20, 660-694.  
17085042 J.R.Mesters, J.Tan, and R.Hilgenfeld (2006).
Viral enzymes.
  Curr Opin Struct Biol, 16, 776-786.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer