spacer
spacer

PDBsum entry 1cqq

Go to PDB code: 
protein ligands links
Hydrolase PDB id
1cqq

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
180 a.a. *
Ligands
AG7
Waters ×663
* Residue conservation analysis
PDB id:
1cqq
Name: Hydrolase
Title: Type 2 rhinovirus 3c protease with ag7088 inhibitor
Structure: Type 2 rhinovirus 3c protease. Chain: a
Source: Human rhinovirus 2. Organism_taxid: 12130
Resolution:
1.85Å     R-factor:   not given    
Authors: D.Matthews,R.A.Ferre
Key ref:
D.A.Matthews et al. (1999). Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. Proc Natl Acad Sci U S A, 96, 11000-11007. PubMed id: 10500114 DOI: 10.1073/pnas.96.20.11000
Date:
10-Aug-99     Release date:   20-Sep-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
P04936  (POLG_HRV2) -  Genome polyprotein from Human rhinovirus 2
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
2150 a.a.
180 a.a.
Key:    Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 2: E.C.2.7.7.48  - RNA-directed Rna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: RNA(n) + a ribonucleoside 5'-triphosphate = RNA(n+1) + diphosphate
RNA(n)
+ ribonucleoside 5'-triphosphate
= RNA(n+1)
+ diphosphate
   Enzyme class 3: E.C.3.4.22.28  - picornain 3C.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Selective cleavage of Gln-|-Gly bond in the poliovirus polyprotein. In other picornavirus reactions Glu may be substituted for Gln, and Ser or Thr for Gly.
   Enzyme class 4: E.C.3.4.22.29  - picornain 2A.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Selective cleavage of Tyr-|-Gly bond in the picornavirus polyprotein. In other picornavirus reactions Glu may be substituted for Gln, and Ser or Thr for Gly.
   Enzyme class 5: E.C.3.6.1.15  - nucleoside-triphosphate phosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a ribonucleoside 5'-triphosphate + H2O = a ribonucleoside 5'-diphosphate + phosphate + H+
ribonucleoside 5'-triphosphate
+ H2O
= ribonucleoside 5'-diphosphate
+ phosphate
+ H(+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1073/pnas.96.20.11000 Proc Natl Acad Sci U S A 96:11000-11007 (1999)
PubMed id: 10500114  
 
 
Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes.
D.A.Matthews, P.S.Dragovich, S.E.Webber, S.A.Fuhrman, A.K.Patick, L.S.Zalman, T.F.Hendrickson, R.A.Love, T.J.Prins, J.T.Marakovits, R.Zhou, J.Tikhe, C.E.Ford, J.W.Meador, R.A.Ferre, E.L.Brown, S.L.Binford, M.A.Brothers, D.M.DeLisle, S.T.Worland.
 
  ABSTRACT  
 
Human rhinoviruses, the most important etiologic agents of the common cold, are messenger-active single-stranded monocistronic RNA viruses that have evolved a highly complex cascade of proteolytic processing events to control viral gene expression and replication. Most maturation cleavages within the precursor polyprotein are mediated by rhinovirus 3C protease (or its immediate precursor, 3CD), a cysteine protease with a trypsin-like polypeptide fold. High-resolution crystal structures of the enzyme from three viral serotypes have been used for the design and elaboration of 3C protease inhibitors representing different structural and chemical classes. Inhibitors having alpha,beta-unsaturated carbonyl groups combined with peptidyl-binding elements specific for 3C protease undergo a Michael reaction mediated by nucleophilic addition of the enzyme's catalytic Cys-147, resulting in covalent-bond formation and irreversible inactivation of the viral protease. Direct inhibition of 3C proteolytic activity in virally infected cells treated with these compounds can be inferred from dose-dependent accumulations of viral precursor polyproteins as determined by SDS/PAGE analysis of radiolabeled proteins. Cocrystal-structure-assisted optimization of 3C-protease-directed Michael acceptors has yielded molecules having extremely rapid in vitro inactivation of the viral protease, potent antiviral activity against multiple rhinovirus serotypes and low cellular toxicity. Recently, one compound in this series, AG7088, has entered clinical trials.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. Rhinovirus 3C protease inhibitors. K[i], inhibition constant; k[obs], observed rate of inactivation; I, inhibitor concentration.
Figure 3.
Fig. 3. Compound III bound to serotype 2 human rhinovirus 3C protease. Color coding is the same as in Fig. 2.
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
19714577 J.M.Rollinger, and M.Schmidtke (2011).
The human rhinovirus: human-pathological impact, mechanisms of antirhinoviral agents, and strategies for their discovery.
  Med Res Rev, 31, 42-92.  
21128685 R.J.Hussey, L.Coates, R.S.Gill, P.T.Erskine, S.F.Coker, E.Mitchell, J.B.Cooper, S.Wood, R.Broadbridge, I.N.Clarke, P.R.Lambden, and P.M.Shoolingin-Jordan (2011).
A Structural Study of Norovirus 3C Protease Specificity: Binding of a Designed Active Site-Directed Peptide Inhibitor.
  Biochemistry, 50, 240-249.
PDB code: 2iph
21396941 S.Cui, J.Wang, T.Fan, B.Qin, L.Guo, X.Lei, J.Wang, M.Wang, and Q.Jin (2011).
Crystal structure of human enterovirus 71 3C protease.
  J Mol Biol, 408, 449-461.
PDB code: 3osy
20021285 H.M.Wang, and P.H.Liang (2010).
Picornaviral 3C protease inhibitors and the dual 3C protease/coronaviral 3C-like protease inhibitors.
  Expert Opin Ther Pat, 20, 59-71.  
20066739 X.N.Zhang, Z.G.Song, T.Jiang, B.S.Shi, Y.W.Hu, and Z.H.Yuan (2010).
Rupintrivir is a promising candidate for treating severe cases of Enterovirus-71 infection.
  World J Gastroenterol, 16, 201-209.  
19144641 C.C.Lee, C.J.Kuo, T.P.Ko, M.F.Hsu, Y.C.Tsui, S.C.Chang, S.Yang, S.J.Chen, H.C.Chen, M.C.Hsu, S.R.Shih, P.H.Liang, and A.H.Wang (2009).
Structural basis of inhibition specificities of 3C and 3C-like proteases by zinc-coordinating and peptidomimetic compounds.
  J Biol Chem, 284, 7646-7655.
PDB codes: 2ztx 2zty 2ztz 2zu1 2zu2 2zu3 2zu4 2zu5
19490121 D.S.Libich, M.Schwalbe, S.Kate, H.Venugopal, J.K.Claridge, P.J.Edwards, K.Dutta, and S.M.Pascal (2009).
Intrinsic disorder and coiled-coil formation in prostate apoptosis response factor 4.
  FEBS J, 276, 3710-3728.  
19596868 G.Lefas, and G.Chaconas (2009).
High-throughput screening identifies three inhibitor classes of the telomere resolvase from the lyme disease spirochete.
  Antimicrob Agents Chemother, 53, 4441-4449.  
19563534 K.Takashima, N.Matsunaga, M.Yoshimatsu, K.Hazeki, T.Kaisho, M.Uekata, O.Hazeki, S.Akira, Y.Iizawa, and M.Ii (2009).
Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model.
  Br J Pharmacol, 157, 1250-1262.  
19015331 M.T.Tsai, Y.H.Cheng, Y.N.Liu, N.C.Liao, W.W.Lu, and S.H.Kung (2009).
Real-time monitoring of human enterovirus (HEV)-infected cells and anti-HEV 3C protease potency by fluorescence resonance energy transfer.
  Antimicrob Agents Chemother, 53, 748-755.  
19182223 N.Lewis-Rogers, M.L.Bendall, and K.A.Crandall (2009).
Phylogenetic relationships and molecular adaptation dynamics of human rhinoviruses.
  Mol Biol Evol, 26, 969-981.  
18420805 L.M.Hales, N.J.Knowles, P.S.Reddy, L.Xu, C.Hay, and P.L.Hallenbeck (2008).
Complete genome sequence analysis of Seneca Valley virus-001, a novel oncolytic picornavirus.
  J Gen Virol, 89, 1265-1275.  
18562531 Q.Zhao, S.Li, F.Xue, Y.Zou, C.Chen, M.Bartlam, and Z.Rao (2008).
Structure of the main protease from a global infectious human coronavirus, HCoV-HKU1.
  J Virol, 82, 8647-8655.
PDB code: 3d23
18572216 S.de Breyne, J.M.Bonderoff, K.M.Chumakov, R.E.Lloyd, and C.U.Hellen (2008).
Cleavage of eukaryotic initiation factor eIF5B by enterovirus 3C proteases.
  Virology, 378, 118-122.  
19649165 A.K.Ghosh, K.Xi, M.E.Johnson, S.C.Baker, and A.D.Mesecar (2007).
Progress in Anti-SARS Coronavirus Chemistry, Biology and Chemotherapy.
  Annu Rep Med Chem, 41, 183-196.  
17855091 A.K.Ghosh, K.Xi, V.Grum-Tokars, X.Xu, K.Ratia, W.Fu, K.V.Houser, S.C.Baker, M.E.Johnson, and A.D.Mesecar (2007).
Structure-based design, synthesis, and biological evaluation of peptidomimetic SARS-CoV 3CLpro inhibitors.
  Bioorg Med Chem Lett, 17, 5876-5880.
PDB code: 2qiq
17892319 C.Chennubhotla, and I.Bahar (2007).
Signal propagation in proteins and relation to equilibrium fluctuations.
  PLoS Comput Biol, 3, 1716-1726.  
17441903 P.Darkins, B.F.Gilmore, S.J.Hawthorne, A.Healy, H.Moncrieff, N.McCarthy, M.A.McKervey, D.Brömme, M.Pagano, and B.Walker (2007).
Synthesis of peptidyl ene diones: selective inactivators of the cysteine proteinases.
  Chem Biol Drug Des, 69, 170-179.  
17353353 P.Liu, L.Li, J.J.Millership, H.Kang, J.L.Leibowitz, and D.P.Giedroc (2007).
A U-turn motif-containing stem-loop in the coronavirus 5' untranslated region plays a functional role in replication.
  RNA, 13, 763-780.  
16979372 S.Curry, N.Roqué-Rosell, P.A.Zunszain, and R.J.Leatherbarrow (2007).
Foot-and-mouth disease virus 3C protease: recent structural and functional insights into an antiviral target.
  Int J Biochem Cell Biol, 39, 1-6.  
17908951 S.L.Binford, P.T.Weady, F.Maldonado, M.A.Brothers, D.A.Matthews, and A.K.Patick (2007).
In vitro resistance study of rupintrivir, a novel inhibitor of human rhinovirus 3C protease.
  Antimicrob Agents Chemother, 51, 4366-4373.  
17311346 S.Sacquin-Mora, E.Laforet, and R.Lavery (2007).
Locating the active sites of enzymes using mechanical properties.
  Proteins, 67, 350-359.  
17459935 T.Oka, M.Yamamoto, M.Yokoyama, S.Ogawa, G.S.Hansman, K.Katayama, K.Miyashita, H.Takagi, Y.Tohya, H.Sato, and N.Takeda (2007).
Highly conserved configuration of catalytic amino acid residues among calicivirus-encoded proteases.
  J Virol, 81, 6798-6806.  
17065215 T.R.Sweeney, N.Roqué-Rosell, J.R.Birtley, R.J.Leatherbarrow, and S.Curry (2007).
Structural and mutagenic analysis of foot-and-mouth disease virus 3C protease reveals the role of the beta-ribbon in proteolysis.
  J Virol, 81, 115-124.
PDB code: 2j92
16700049 C.A.Bottoms, T.A.White, and J.J.Tanner (2006).
Exploring structurally conserved solvent sites in protein families.
  Proteins, 64, 404-421.  
16641296 C.E.Zeitler, M.K.Estes, and B.V.Venkataram Prasad (2006).
X-ray crystallographic structure of the Norwalk virus protease at 1.5-A resolution.
  J Virol, 80, 5050-5058.
PDB codes: 2fyq 2fyr
16973565 L.Deszcz, R.Cencic, C.Sousa, E.Kuechler, and T.Skern (2006).
An antiviral peptide inhibitor that is active against picornavirus 2A proteinases but not cellular caspases.
  J Virol, 80, 9619-9627.  
16571831 S.L.Smits, E.J.Snijder, and R.J.de Groot (2006).
Characterization of a torovirus main proteinase.
  J Virol, 80, 4157-4167.  
15917520 A.K.Patick, M.A.Brothers, F.Maldonado, S.Binford, O.Maldonado, S.Fuhrman, A.Petersen, G.J.Smith, L.S.Zalman, L.A.Burns-Naas, and J.Q.Tran (2005).
In vitro antiviral activity and single-dose pharmacokinetics in humans of a novel, orally bioavailable inhibitor of human rhinovirus 3C protease.
  Antimicrob Agents Chemother, 49, 2267-2275.  
15661082 D.A.Groneberg, R.Hilgenfeld, and P.Zabel (2005).
Molecular mechanisms of severe acute respiratory syndrome (SARS).
  Respir Res, 6, 8.  
16128623 H.Yang, W.Xie, X.Xue, K.Yang, J.Ma, W.Liang, Q.Zhao, Z.Zhou, D.Pei, J.Ziebuhr, R.Hilgenfeld, K.Y.Yuen, L.Wong, G.Gao, S.Chen, Z.Chen, D.Ma, M.Bartlam, and Z.Rao (2005).
Design of wide-spectrum inhibitors targeting coronavirus main proteases.
  PLoS Biol, 3, e324.
PDB codes: 1wof 2amd 2amp 2amq 2d2d
18958666 L.A.Burns-Naas, C.Lee, W.Evering, L.Ahern, S.Webber, and M.Zorbas (2005).
Lack of Respiratory and Contact Sensitizing Potential of the Intranasal Antiviral Drug Candidate Rupintrivir (AG7088): A Weight-of-the-Evidence Evaluation.
  J Immunotoxicol, 2, 123-139.  
15939021 L.W.Yang, and I.Bahar (2005).
Coupling between catalytic site and collective dynamics: a requirement for mechanochemical activity of enzymes.
  Structure, 13, 893-904.  
15673742 S.L.Binford, F.Maldonado, M.A.Brothers, P.T.Weady, L.S.Zalman, J.W.Meador, D.A.Matthews, and A.K.Patick (2005).
Conservation of amino acids in human rhinovirus 3C protease correlates with broad-spectrum antiviral activity of rupintrivir, a novel human rhinovirus 3C protease inhibitor.
  Antimicrob Agents Chemother, 49, 619-626.  
15596823 T.C.Appleby, H.Luecke, J.H.Shim, J.Z.Wu, I.W.Cheney, W.Zhong, L.Vogeley, Z.Hong, and N.Yao (2005).
Crystal structure of complete rhinovirus RNA polymerase suggests front loading of protein primer.
  J Virol, 79, 277-288.
PDB code: 1tp7
15279849 A.Hillisch, L.F.Pineda, and R.Hilgenfeld (2004).
Utility of homology models in the drug discovery process.
  Drug Discov Today, 9, 659-669.  
15105133 D.L.Barnard, V.D.Hubbard, D.F.Smee, R.W.Sidwell, K.G.Watson, S.P.Tucker, and P.A.Reece (2004).
In vitro activity of expanded-spectrum pyridazinyl oxime ethers related to pirodavir: novel capsid-binding inhibitors with potent antipicornavirus activity.
  Antimicrob Agents Chemother, 48, 1766-1772.  
15489171 J.E.Blanchard, N.H.Elowe, C.Huitema, P.D.Fortin, J.D.Cechetto, L.D.Eltis, and E.D.Brown (2004).
High-throughput screening identifies inhibitors of the SARS coronavirus main proteinase.
  Chem Biol, 11, 1445-1453.  
14966374 S.R.Shih, C.Chiang, T.C.Chen, C.N.Wu, J.T.Hsu, J.C.Lee, M.J.Hwang, M.L.Li, G.W.Chen, and M.S.Ho (2004).
Mutations at KFRDI and VGK domains of enterovirus 71 3C protease affect its RNA binding and proteolytic activities.
  J Biomed Sci, 11, 239-248.  
12502857 J.Ziebuhr, S.Bayer, J.A.Cowley, and A.E.Gorbalenya (2003).
The 3C-like proteinase of an invertebrate nidovirus links coronavirus and potyvirus homologs.
  J Virol, 77, 1415-1426.  
12119605 E.De Clercq (2002).
Strategies in the design of antiviral drugs.
  Nat Rev Drug Discov, 1, 13-25.  
12093723 K.Anand, G.J.Palm, J.R.Mesters, S.G.Siddell, J.Ziebuhr, and R.Hilgenfeld (2002).
Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain.
  EMBO J, 21, 3213-3224.
PDB code: 1lvo
11911365 R.Zell, K.Sidigi, E.Bucci, A.Stelzner, and M.Görlach (2002).
Determinants of the recognition of enteroviral cloverleaf RNA by coxsackievirus B3 proteinase 3C.
  RNA, 8, 188-201.  
11397506 A.C.Schmidt, R.B.Couch, G.J.Galasso, F.G.Hayden, J.Mills, B.R.Murphy, and R.M.Chanock (2001).
Current research on respiratory viral infections: Third International Symposium.
  Antiviral Res, 50, 157-196.  
11590665 P.D.Griffiths (2001).
Antiviral drugs with extra-cellular sites of action.
  Rev Med Virol, 11, 273-275.  
11166856 R.B.Turner (2001).
The treatment of rhinovirus infections: progress and potential.
  Antiviral Res, 49, 1.  
11206074 A.M.Petros, D.G.Nettesheim, Y.Wang, E.T.Olejniczak, R.P.Meadows, J.Mack, K.Swift, E.D.Matayoshi, H.Zhang, C.B.Thompson, and S.W.Fesik (2000).
Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies.
  Protein Sci, 9, 2528-2534.
PDB code: 1g5j
10974374 L.Kaiser, C.E.Crump, and F.G.Hayden (2000).
In vitro activity of pleconaril and AG7088 against selected serotypes and clinical isolates of human rhinoviruses.
  Antiviral Res, 47, 215-220.  
10770757 L.S.Zalman, M.A.Brothers, P.S.Dragovich, R.Zhou, T.J.Prins, S.T.Worland, and A.K.Patick (2000).
Inhibition of human rhinovirus-induced cytokine production by AG7088, a human rhinovirus 3C protease inhibitor.
  Antimicrob Agents Chemother, 44, 1236-1241.  
10981625 P.J.Gane, and P.M.Dean (2000).
Recent advances in structure-based rational drug design.
  Curr Opin Struct Biol, 10, 401-404.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer