spacer
spacer

PDBsum entry 4xpi

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Oxidoreductase PDB id
4xpi

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
479 a.a.
522 a.a.
Ligands
HCA ×2
ICS ×2
GOL ×15
1CL ×2
TRS ×2
Metals
_CA ×2
Waters ×921
PDB id:
4xpi
Name: Oxidoreductase
Title: Fe protein independent substrate reduction by nitrogenase variants altered in intramolecular electron transfer
Structure: Nitrogenase molybdenum-iron protein alpha chain. Chain: a, c. Synonym: dinitrogenase,nitrogenase component i. Engineered: yes. Nitrogenase molybdenum-iron protein beta chain. Chain: b, d. Synonym: dinitrogenase,nitrogenase component i. Engineered: yes. Mutation: yes
Source: Azotobacter vinelandii. Organism_taxid: 354. Gene: nifd. Expressed in: azotobacter vinelandii. Expression_system_taxid: 354. Gene: nifk.
Resolution:
1.97Å     R-factor:   0.216     R-free:   0.264
Authors: K.Danyal,A.J.Rasmusen,S.M.Keable,S.Shaw,O.Zadvornyy,S.Duval,D.R.Dean, S.Raugei,J.W.Peters,L.C.Seefeldt
Key ref: K.Danyal et al. (2015). Fe protein-independent substrate reduction by nitrogenase MoFe protein variants. Biochemistry, 54, 2456-2462. PubMed id: 25831270 DOI: 10.1021/acs.biochem.5b00140
Date:
17-Jan-15     Release date:   14-Oct-15    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P07328  (NIFD_AZOVI) -  Nitrogenase molybdenum-iron protein alpha chain from Azotobacter vinelandii
Seq:
Struc:
492 a.a.
479 a.a.
Protein chains
Pfam   ArchSchema ?
P07329  (NIFK_AZOVI) -  Nitrogenase molybdenum-iron protein beta chain from Azotobacter vinelandii
Seq:
Struc:
 
Seq:
Struc:
523 a.a.
522 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: Chains A, B, C, D: E.C.1.18.6.1  - nitrogenase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Nitrogenase
      Reaction: N2 + 8 reduced [2Fe-2S]-[ferredoxin] + 16 ATP + 16 H2O = H2 + 8 oxidized [2Fe-2S]-[ferredoxin] + 2 NH4+ + 16 ADP + 16 phosphate + 6 H+
N2
+ 8 × reduced [2Fe-2S]-[ferredoxin]
+ 16 × ATP
+ 16 × H2O
= H2
+ 8 × oxidized [2Fe-2S]-[ferredoxin]
+ 2 × NH4(+)
+ 16 × ADP
+ 16 × phosphate
+ 6 × H(+)
      Cofactor: Iron-sulfur; Vanadium cation or Mo cation
Iron-sulfur
Vanadium cation
or Mo cation
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/acs.biochem.5b00140 Biochemistry 54:2456-2462 (2015)
PubMed id: 25831270  
 
 
Fe protein-independent substrate reduction by nitrogenase MoFe protein variants.
K.Danyal, A.J.Rasmussen, S.M.Keable, B.S.Inglet, S.Shaw, O.A.Zadvornyy, S.Duval, D.R.Dean, S.Raugei, J.W.Peters, L.C.Seefeldt.
 
  ABSTRACT  
 
The reduction of substrates catalyzed by nitrogenase normally requires nucleotide-dependent Fe protein delivery of electrons to the MoFe protein, which contains the active site FeMo cofactor. Here, it is reported that independent substitution of three amino acids (β-98(Tyr→His), α-64(Tyr→His), and β-99(Phe→His)) located between the P cluster and FeMo cofactor within the MoFe protein endows it with the ability to reduce protons to H2, azide to ammonia, and hydrazine to ammonia without the need for Fe protein or ATP. Instead, electrons can be provided by the low-potential reductant polyaminocarboxylate-ligated Eu(II) (Em values of -1.1 to -0.84 V vs the normal hydrogen electrode). The crystal structure of the β-98(Tyr→His) variant MoFe protein was determined, revealing only small changes near the amino acid substitution that affect the solvent structure and the immediate vicinity between the P cluster and the FeMo cofactor, with no global conformational changes observed. Computational normal-mode analysis of the nitrogenase complex reveals coupling in the motions of the Fe protein and the region of the MoFe protein with these three amino acids, which suggests a possible mechanism for how Fe protein might communicate subtle changes deep within the MoFe protein that profoundly affect intramolecular electron transfer and substrate reduction.
 

 

spacer

spacer