spacer
spacer

PDBsum entry 3l2v

Go to PDB code: 
protein dna_rna ligands metals Protein-protein interface(s) links
Recombination/DNA PDB id
3l2v

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
365 a.a. *
163 a.a. *
DNA/RNA
Ligands
NH4
RLT
GOL ×4
Metals
_MN ×3
_ZN
* Residue conservation analysis
PDB id:
3l2v
Name: Recombination/DNA
Title: Crystal structure of the prototype foamy virus (pfv) intasome in complex with manganese and mk0518 (raltegravir)
Structure: Integrase. Chain: a, b. Synonym: in, p42in. Engineered: yes. 5'-d( Ap Tp Tp Gp Tp Cp Ap Tp Gp Gp Ap Ap Tp Tp Tp Tp Gp Tp A)-3'. Chain: c. Engineered: yes. Other_details: 19 nucleotide preprocessed pfv donor DNA.
Source: Human spumaretrovirus. Sfvcpz(hu). Organism_taxid: 11963. Strain: hsrv2. Gene: pol. Expressed in: escherichia coli. Expression_system_taxid: 562. Synthetic: yes. Synthetic: yes
Resolution:
3.20Å     R-factor:   0.206     R-free:   0.232
Authors: S.Hare,S.S.Gupta,P.Cherepanov
Key ref: S.Hare et al. (2010). Retroviral intasome assembly and inhibition of DNA strand transfer. Nature, 464, 232-236. PubMed id: 20118915
Date:
15-Dec-09     Release date:   09-Feb-10    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P14350  (POL_FOAMV) -  Pro-Pol polyprotein from Human spumaretrovirus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1143 a.a.
365 a.a.*
Protein chain
Pfam   ArchSchema ?
P14350  (POL_FOAMV) -  Pro-Pol polyprotein from Human spumaretrovirus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1143 a.a.
163 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

DNA/RNA chains
  A-T-T-G-T-C-A-T-G-G-A-A-T-T-T-T-G-T-A 19 bases
  T-A-C-A-A-A-A-T-T-C-C-A-T-G-A-C-A 17 bases

 Enzyme reactions 
   Enzyme class 2: Chains A, B: E.C.2.7.7.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 3: Chains A, B: E.C.2.7.7.49  - RNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 4: Chains A, B: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 5: Chains A, B: E.C.3.1.-.-
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 6: Chains A, B: E.C.3.1.26.4  - ribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Endonucleolytic cleavage to 5'-phosphomonoester.
   Enzyme class 7: Chains A, B: E.C.3.4.23.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
Nature 464:232-236 (2010)
PubMed id: 20118915  
 
 
Retroviral intasome assembly and inhibition of DNA strand transfer.
S.Hare, S.S.Gupta, E.Valkov, A.Engelman, P.Cherepanov.
 
  ABSTRACT  
 
Integrase is an essential retroviral enzyme that binds both termini of linear viral DNA and inserts them into a host cell chromosome. The structure of full-length retroviral integrase, either separately or in complex with DNA, has been lacking. Furthermore, although clinically useful inhibitors of HIV integrase have been developed, their mechanism of action remains speculative. Here we present a crystal structure of full-length integrase from the prototype foamy virus in complex with its cognate DNA. The structure shows the organization of the retroviral intasome comprising an integrase tetramer tightly associated with a pair of viral DNA ends. All three canonical integrase structural domains are involved in extensive protein-DNA and protein-protein interactions. The binding of strand-transfer inhibitors displaces the reactive viral DNA end from the active site, disarming the viral nucleoprotein complex. Our findings define the structural basis of retroviral DNA integration, and will allow modelling of the HIV-1 intasome to aid in the development of antiretroviral drugs.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
22421880 A.Engelman, and P.Cherepanov (2012).
The structural biology of HIV-1: mechanistic and therapeutic insights.
  Nat Rev Microbiol, 10, 279-290.  
22173432 Y.Pommier, and C.Marchand (2012).
Interfacial inhibitors: targeting macromolecular complexes.
  Nat Rev Drug Discov, 11, 25-36.  
21156026 A.Levin, H.Benyamini, Z.Hayouka, A.Friedler, and A.Loyter (2011).
Peptides that bind the HIV-1 integrase and modulate its enzymatic activity--kinetic studies and mode of action.
  FEBS J, 278, 316-330.  
  21434946 B.Y.Nguyen, R.D.Isaacs, H.Teppler, R.Y.Leavitt, P.Sklar, M.Iwamoto, L.A.Wenning, M.D.Miller, J.Chen, R.Kemp, W.Xu, R.A.Fromtling, J.P.Vacca, S.D.Young, M.Rowley, M.W.Lower, K.M.Gottesdiener, and D.J.Hazuda (2011).
Raltegravir: the first HIV-1 integrase strand transfer inhibitor in the HIV armamentarium.
  Ann N Y Acad Sci, 1222, 83-89.  
21459813 J.L.Blanco, V.Varghese, S.Y.Rhee, J.M.Gatell, and R.W.Shafer (2011).
HIV-1 integrase inhibitor resistance and its clinical implications.
  J Infect Dis, 203, 1204-1214.  
21275045 L.Q.Al-Mawsawi, and N.Neamati (2011).
Allosteric inhibitor development targeting HIV-1 integrase.
  ChemMedChem, 6, 228-241.  
21531158 M.Huang, G.H.Grant, and W.G.Richards (2011).
Binding modes of diketo-acid inhibitors of HIV-1 integrase: A comparative molecular dynamics simulation study.
  J Mol Graph Model, 29, 956-964.  
21246739 M.Rinaldi, C.Tintori, L.Franchi, G.Vignaroli, A.Innitzer, S.Massa, J.A.Esté, E.Gonzalo, F.Christ, Z.Debyser, and M.Botta (2011).
A versatile and practical synthesis toward the development of novel HIV-1 integrase inhibitors.
  ChemMedChem, 6, 343-352.  
21290034 M.Rouffet, and S.M.Cohen (2011).
Emerging trends in metalloprotein inhibition.
  Dalton Trans, 40, 3445-3454.  
21213249 N.C.Fitzkee, D.A.Torchia, and A.Bax (2011).
Measuring rapid hydrogen exchange in the homodimeric 36 kDa HIV-1 integrase catalytic core domain.
  Protein Sci, 20, 500-512.  
21277766 P.Cherepanov, G.N.Maertens, and S.Hare (2011).
Structural insights into the retroviral DNA integration apparatus.
  Curr Opin Struct Biol, 21, 249-256.  
21385662 P.Vandurm, A.Guiguen, C.Cauvin, B.Georges, K.Le Van, C.Michaux, C.Cardona, G.Mbemba, J.F.Mouscadet, L.Hevesi, C.Van Lint, and J.Wouters (2011).
Synthesis, biological evaluation and molecular modeling studies of quinolonyl diketo acid derivatives: new structural insight into the HIV-1 integrase inhibition.
  Eur J Med Chem, 46, 1749-1756.  
21226976 T.Schlick, R.Collepardo-Guevara, L.A.Halvorsen, S.Jung, and X.Xiao (2011).
Biomolecularmodeling and simulation: a field coming of age.
  Q Rev Biophys, 44, 191-228.  
20854710 W.Yang (2011).
Nucleases: diversity of structure, function and mechanism.
  Q Rev Biophys, 44, 1.  
21493066 X.Z.Zhao, K.Maddali, M.Metifiot, S.J.Smith, B.C.Vu, C.Marchand, S.H.Hughes, Y.Pommier, and T.R.Burke (2011).
Development of tricyclic hydroxy-1H-pyrrolopyridine-trione containing HIV-1 integrase inhibitors.
  Bioorg Med Chem Lett, 21, 2986-2990.  
20882120 D.Grandgenett, and S.Korolev (2010).
Retrovirus Integrase-DNA Structure Elucidates Concerted Integration Mechanisms.
  Viruses, 2, 1185-1189.  
21124862 F.A.Santoni, O.Hartley, and J.Luban (2010).
Deciphering the code for retroviral integration target site selection.
  PLoS Comput Biol, 6, e1001008.  
21068843 G.N.Maertens, S.Hare, and P.Cherepanov (2010).
The mechanism of retroviral integration from X-ray structures of its key intermediates.
  Nature, 468, 326-329.
PDB codes: 3os0 3os1 3os2
20862319 J.Reguera, F.Weber, and S.Cusack (2010).
Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription.
  PLoS Pathog, 6, 0.
PDB codes: 2xi5 2xi7
20406807 K.Gupta, T.Diamond, Y.Hwang, F.Bushman, and G.D.Van Duyne (2010).
Structural properties of HIV integrase. Lens epithelium-derived growth factor oligomers.
  J Biol Chem, 285, 20303-20315.  
20733078 L.Krishnan, X.Li, H.L.Naraharisetty, S.Hare, P.Cherepanov, and A.Engelman (2010).
Structure-based modeling of the functional HIV-1 intasome and its inhibition.
  Proc Natl Acad Sci U S A, 107, 15910-15915.  
20805464 M.Nadal, P.J.Mas, P.J.Mas, A.G.Blanco, C.Arnan, M.Solà, D.J.Hart, and M.Coll (2010).
Structure and inhibition of herpesvirus DNA packaging terminase nuclease domain.
  Proc Natl Acad Sci U S A, 107, 16078-16083.
PDB codes: 3n4p 3n4q
20428106 P.Cherepanov (2010).
Integrase illuminated.
  EMBO Rep, 11, 328.  
  20807431 R.A.Smith, G.S.Gottlieb, and A.D.Miller (2010).
Susceptibility of the human retrovirus XMRV to antiretroviral inhibitors.
  Retrovirology, 7, 70.  
20220826 R.Craigie (2010).
Structural biology: When four become one.
  Nature, 464, 167-168.  
21209864 S.Azzi, V.Parissi, R.G.Maroun, P.Eid, O.Mauffret, and S.Fermandjian (2010).
The HIV-1 integrase α4-helix involved in LTR-DNA recognition is also a highly antigenic peptide element.
  PLoS One, 5, e16001.  
21030679 S.Hare, A.M.Vos, R.F.Clayton, J.W.Thuring, M.D.Cummings, and P.Cherepanov (2010).
Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance.
  Proc Natl Acad Sci U S A, 107, 20057-20062.
PDB codes: 3oya 3oyb 3oyc 3oyd 3oye 3oyf 3oyg 3oyh 3oyi 3oyj 3oyk 3oyl 3oym 3oyn
20647908 T.Bar-Magen, D.A.Donahue, E.I.McDonough, B.D.Kuhl, V.H.Faltenbacher, H.Xu, V.Michaud, R.D.Sloan, and M.A.Wainberg (2010).
HIV-1 subtype B and C integrase enzymes exhibit differential patterns of resistance to integrase inhibitors in biochemical assays.
  AIDS, 24, 2171-2179.  
20610719 T.Bar-Magen, R.D.Sloan, D.A.Donahue, B.D.Kuhl, A.Zabeida, H.Xu, M.Oliveira, D.J.Hazuda, and M.A.Wainberg (2010).
Identification of novel mutations responsible for resistance to MK-2048, a second-generation HIV-1 integrase inhibitor.
  J Virol, 84, 9210-9216.  
20592097 T.Crépin, A.Dias, A.Palencia, C.Swale, S.Cusack, and R.W.Ruigrok (2010).
Mutational and metal binding analysis of the endonuclease domain of the influenza virus polymerase PA subunit.
  J Virol, 84, 9096-9104.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer