spacer
spacer

PDBsum entry 2isp

Go to PDB code: 
protein dna_rna ligands metals links
Transferase/DNA PDB id
2isp

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
326 a.a. *
DNA/RNA
Ligands
GGH
Metals
_MG
_NA ×3
_CL ×5
Waters ×302
* Residue conservation analysis
PDB id:
2isp
Name: Transferase/DNA
Title: Ternary complex of DNA polymerase beta with a dideoxy terminated primer and 2'-deoxyguanosine 5'-beta, gamma-methylene triphosphate
Structure: 5'-d( Cp Cp Gp Ap Cp Cp Gp Cp Gp Cp Ap Tp Cp Ap Gp C)-3'. Chain: t. Engineered: yes. 5'-d( Gp Cp Tp Gp Ap Tp Gp Cp Gp (Doc))-3'. Chain: p. Engineered: yes. 5'-d(p Gp Tp Cp Gp G)-3'. Chain: d. Engineered: yes.
Source: Synthetic: yes. Homo sapiens. Human. Organism_taxid: 9606. Gene: polb. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
2.20Å     R-factor:   0.201     R-free:   0.261
Authors: C.A.Sucato,T.G.Upton,B.A.Kashemirov,V.Martinek,Y.Xiang,W.A.Beard
Key ref:
C.A.Sucato et al. (2007). Modifying the beta,gamma leaving-group bridging oxygen alters nucleotide incorporation efficiency, fidelity, and the catalytic mechanism of DNA polymerase beta. Biochemistry, 46, 461-471. PubMed id: 17209556 DOI: 10.1021/bi061517b
Date:
18-Oct-06     Release date:   30-Jan-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P06746  (DPOLB_HUMAN) -  DNA polymerase beta from Homo sapiens
Seq:
Struc:
335 a.a.
326 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

DNA/RNA chains
  C-C-G-A-C-C-G-C-G-C-A-T-C-A-G-C 16 bases
  G-C-T-G-A-T-G-C-G-DOC 10 bases
  G-T-C-G-G 5 bases

 Enzyme reactions 
   Enzyme class 1: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 2: E.C.4.2.99.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 3: E.C.4.2.99.18  - DNA-(apurinic or apyrimidinic site) lyase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 2'-deoxyribonucleotide-(2'-deoxyribose 5'-phosphate)- 2'-deoxyribonucleotide-DNA = a 3'-end 2'-deoxyribonucleotide-(2,3- dehydro-2,3-deoxyribose 5'-phosphate)-DNA + a 5'-end 5'-phospho- 2'-deoxyribonucleoside-DNA + H+
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1021/bi061517b Biochemistry 46:461-471 (2007)
PubMed id: 17209556  
 
 
Modifying the beta,gamma leaving-group bridging oxygen alters nucleotide incorporation efficiency, fidelity, and the catalytic mechanism of DNA polymerase beta.
C.A.Sucato, T.G.Upton, B.A.Kashemirov, V.K.Batra, V.Martínek, Y.Xiang, W.A.Beard, L.C.Pedersen, S.H.Wilson, C.E.McKenna, J.Florián, A.Warshel, M.F.Goodman.
 
  ABSTRACT  
 
DNA polymerase catalysis and fidelity studies typically compare incorporation of "right" versus "wrong" nucleotide bases where the leaving group is pyrophosphate. Here we use dGTP analogues replacing the beta,gamma-bridging O with CH2, CHF, CF2, or CCl2 to explore leaving-group effects on the nucleotidyl transfer mechanism and fidelity of DNA polymerase (pol) beta. T.G mismatches occur with fidelities similar to dGTP with the exception of the CH2 analogue, which is incorporated with 5-fold higher fidelity. All analogues are observed to bind opposite template C with Kds between 1 and 4 microM, and structural evidence suggests that the analogues bind in essentially the native conformation, making them suitable substrates for probing linear free energy relationships (LFERs) in transient-kinetics experiments. Importantly, Brnsted correlations of log(kpol) versus leaving-group pKa for both right and wrong base incorporation reveal similar sensitivities (betalg approximately -0.8) followed by departures from linearity, suggesting that a chemical step rather than enzyme conformational change is rate-limiting for either process. The location of the breaks relative to pKas of CF2, O, and the sterically bulky CCl2-bridging compounds suggests a modification-induced change in the mechanism by stabilization of leaving-group elimination. The results are addressed theoretically in terms of the energetics of successive primer 3'-O addition (bond forming) and pyrophosphate analogue elimination (bond breaking) reaction energy barriers.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20533494 A.Giraut, and P.Herdewijn (2010).
Influence of the linkage between leaving group and nucleoside on substrate efficiency for incorporation in DNA catalyzed by reverse transcriptase.
  Chembiochem, 11, 1399-1403.  
20097909 A.Giraut, X.P.Song, M.Froeyen, P.Marlière, and P.Herdewijn (2010).
Iminodiacetic-phosphoramidates as metabolic prototypes for diversifying nucleic acid polymerization in vivo.
  Nucleic Acids Res, 38, 2541-2550.  
19596089 E.A.Motea, and A.J.Berdis (2010).
Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase.
  Biochim Biophys Acta, 1804, 1151-1166.  
20724659 G.K.Surya Prakash, M.Zibinsky, T.G.Upton, B.A.Kashemirov, C.E.McKenna, K.Oertell, M.F.Goodman, V.K.Batra, L.C.Pedersen, W.A.Beard, D.D.Shock, S.H.Wilson, and G.A.Olah (2010).
Synthesis and biological evaluation of fluorinated deoxynucleotide analogs based on bis-(difluoromethylene)triphosphoric acid.
  Proc Natl Acad Sci U S A, 107, 15693-15698.
PDB code: 3lk9
19631767 J.Yamtich, and J.B.Sweasy (2010).
DNA polymerase family X: function, structure, and cellular roles.
  Biochim Biophys Acta, 1804, 1136-1150.  
  19842163 R.Rucker, P.Oelschlaeger, and A.Warshel (2010).
A binding free energy decomposition approach for accurate calculations of the fidelity of DNA polymerases.
  Proteins, 78, 671-680.  
20162624 R.Venkatramani, and R.Radhakrishnan (2010).
Computational delineation of the catalytic step of a high-fidelity DNA polymerase.
  Protein Sci, 19, 815-825.  
20844920 S.H.Wilson, W.A.Beard, D.D.Shock, V.K.Batra, N.A.Cavanaugh, R.Prasad, E.W.Hou, Y.Liu, K.Asagoshi, J.K.Horton, D.F.Stefanick, P.S.Kedar, M.J.Carrozza, A.Masaoka, and M.L.Heacock (2010).
Base excision repair and design of small molecule inhibitors of human DNA polymerase β.
  Cell Mol Life Sci, 67, 3633-3647.  
20526335 V.K.Batra, W.A.Beard, E.W.Hou, L.C.Pedersen, R.Prasad, and S.H.Wilson (2010).
Mutagenic conformation of 8-oxo-7,8-dihydro-2'-dGTP in the confines of a DNA polymerase active site.
  Nat Struct Mol Biol, 17, 889-890.
PDB code: 3mby
19850352 E.Gaidamauskas, H.Parker, B.A.Kashemirov, A.A.Holder, K.Saejueng, C.E.McKenna, and D.C.Crans (2009).
Complexation of bisphosphonates with ytterbium(III): application of phosphate and ATP detection assay based on Yb(3+)-pyrocatechol violet.
  J Inorg Biochem, 103, 1652-1657.  
19391628 S.C.Kamerlin, C.E.McKenna, M.F.Goodman, M.F.Goondman, and A.Warshel (2009).
A computational study of the hydrolysis of dGTP analogues with halomethylene-modified leaving groups in solution: implications for the mechanism of DNA polymerases.
  Biochemistry, 48, 5963-5971.  
19351147 T.G.Upton, B.A.Kashemirov, C.E.McKenna, M.F.Goodman, G.K.Prakash, R.Kultyshev, V.K.Batra, D.D.Shock, L.C.Pedersen, W.A.Beard, and S.H.Wilson (2009).
Alpha,beta-difluoromethylene deoxynucleoside 5'-triphosphates: a convenient synthesis of useful probes for DNA polymerase beta structure and function.
  Org Lett, 11, 1883-1886.
PDB code: 3gdx
18811136 F.Liang, N.Jain, T.Hutchens, D.D.Shock, W.A.Beard, S.H.Wilson, M.P.Chiarelli, and B.P.Cho (2008).
Alpha,beta-methylene-2'-deoxynucleoside 5'-triphosphates as noncleavable substrates for DNA polymerases: isolation, characterization, and stability studies of novel 2'-deoxycyclonucleosides, 3,5'-cyclo-dG, and 2,5'-cyclo-dT.
  J Med Chem, 51, 6460-6470.  
18717589 M.P.Roettger, M.Bakhtina, and M.D.Tsai (2008).
Mismatched and matched dNTP incorporation by DNA polymerase beta proceed via analogous kinetic pathways.
  Biochemistry, 47, 9718-9727.  
19006151 M.Renders, R.Lievrouw, M.Krecmerová, A.Holý, and P.Herdewijn (2008).
Enzymatic polymerization of phosphonate nucleosides.
  Chembiochem, 9, 2883-2888.  
17671961 Y.Xiang, M.F.Goodman, W.A.Beard, S.H.Wilson, and A.Warshel (2008).
Exploring the role of large conformational changes in the fidelity of DNA polymerase beta.
  Proteins, 70, 231-247.  
18031037 C.E.McKenna, B.A.Kashemirov, T.G.Upton, V.K.Batra, M.F.Goodman, L.C.Pedersen, W.A.Beard, and S.H.Wilson (2007).
(R)-beta,gamma-fluoromethylene-dGTP-DNA ternary complex with DNA polymerase beta.
  J Am Chem Soc, 129, 15412-15413.
PDB code: 2pxi
17652326 O.Adelfinskaya, M.Terrazas, M.Froeyen, P.Marlière, K.Nauwelaerts, and P.Herdewijn (2007).
Polymerase-catalyzed synthesis of DNA from phosphoramidate conjugates of deoxynucleotides and amino acids.
  Nucleic Acids Res, 35, 5060-5072.  
17286973 V.Martínek, U.Bren, M.F.Goodman, A.Warshel, and J.Florián (2007).
DNA polymerase beta catalytic efficiency mirrors the Asn279-dCTP H-bonding strength.
  FEBS Lett, 581, 775-780.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer