spacer
spacer

PDBsum entry 1jvb

Go to PDB code: 
protein metals links
Oxidoreductase PDB id
1jvb

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
347 a.a. *
Metals
_ZN ×2
Waters ×193
* Residue conservation analysis
PDB id:
1jvb
Name: Oxidoreductase
Title: Alcohol dehydrogenase from the archaeon sulfolobus solfataricus
Structure: NAD(h)-dependent alcohol dehydrogenase. Chain: a. Fragment: apo-enzyme form. Engineered: yes. Other_details: apo-enzyme form
Source: Sulfolobus solfataricus. Organism_taxid: 2287. Gene: adh. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Tetramer (from PDB file)
Resolution:
1.85Å     R-factor:   0.191     R-free:   0.220
Authors: L.Esposito,F.Sica,A.Zagari,L.Mazzarella
Key ref:
L.Esposito et al. (2002). Crystal structure of the alcohol dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus at 1.85 A resolution. J Mol Biol, 318, 463-477. PubMed id: 12051852 DOI: 10.1016/S0022-2836(02)00088-8
Date:
29-Aug-01     Release date:   29-Aug-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P39462  (ADH_SULSO) -  NAD-dependent alcohol dehydrogenase from Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2)
Seq:
Struc:
347 a.a.
347 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.1.1.1.1  - alcohol dehydrogenase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. a primary alcohol + NAD+ = an aldehyde + NADH + H+
2. a secondary alcohol + NAD+ = a ketone + NADH + H+
primary alcohol
+ NAD(+)
= aldehyde
+ NADH
+ H(+)
secondary alcohol
+ NAD(+)
= ketone
+ NADH
+ H(+)
      Cofactor: Zn(2+) or Fe cation
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1016/S0022-2836(02)00088-8 J Mol Biol 318:463-477 (2002)
PubMed id: 12051852  
 
 
Crystal structure of the alcohol dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus at 1.85 A resolution.
L.Esposito, F.Sica, C.A.Raia, A.Giordano, M.Rossi, L.Mazzarella, A.Zagari.
 
  ABSTRACT  
 
The crystal structure of a medium-chain NAD(H)-dependent alcohol dehydrogenase (ADH) from an archaeon has been solved by multiwavelength anomalous diffraction, using a selenomethionine-substituted enzyme. The protein (SsADH), extracted from the hyperthermophilic organism Sulfolobus solfataricus, is a homo-tetramer with a crystallographic 222 symmetry. Despite the low level of sequence identity, the overall fold of the monomer is similar to that of the other homologous ADHs of known structure. However, a significant difference is the orientation of the catalytic domain relative to the coenzyme-binding domain that results in a larger interdomain cleft. At the bottom of this cleft, the catalytic zinc ion is coordinated tetrahedrally and lacks the zinc-bound water molecule that is usually found in ADH apoform structures. The fourth coordination position is indeed occupied by a Glu residue, as found in bacterial tetrameric ADHs. Other differences are found in the architecture of the substrate pocket whose entrance is more restricted than in other ADHs. SsADH is the first tetrameric ADH X-ray structure containing a second zinc ion playing a structural role. This latter metal ion shows a peculiar coordination, with a glutamic acid residue replacing one of the four cysteine ligands that are highly conserved throughout the structural zinc-containing dimeric ADHs.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. A stereo view of the SsADH subunit. The C^a trace is marked with a ball every tenth C^a atom. Figure 1, Figure 3 and Figure 4 were prepared with MOLSCRIPT. [48.]
Figure 5.
Figure 5. Ribbon diagram of the SsADH homo-tetramer generated from crystallographic symmetry. The tetramer is a dimer of dimers (A/B and C/D). The catalytic zinc ions are coloured green. The Figure was prepared with MOLSCRIPT[48.] and Raster3D. [50.]
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2002, 318, 463-477) copyright 2002.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21265764 J.A.Littlechild (2011).
Thermophilic archaeal enzymes and applications in biocatalysis.
  Biochem Soc Trans, 39, 155-158.  
19583966 B.V.Plapp (2010).
Conformational changes and catalysis by alcohol dehydrogenase.
  Arch Biochem Biophys, 493, 3.  
19588068 A.Pennacchio, L.Esposito, A.Zagari, M.Rossi, and C.A.Raia (2009).
Role of Tryptophan 95 in substrate specificity and structural stability of Sulfolobus solfataricus alcohol dehydrogenase.
  Extremophiles, 13, 751-761.
PDB code: 3i4c
19058034 E.N.Marino-Marmolejo, A.De León-Rodríguez, A.P.de la Rosa, and L.Santos (2009).
Heterologous Expression and Characterization of an Alcohol Dehydrogenase from the Archeon Thermoplasma acidophilum.
  Mol Biotechnol, 42, 61-67.  
19139244 H.Yanai, K.Doi, and T.Ohshima (2009).
Sulfolobus tokodaii ST0053 produces a novel thermostable, NAD-dependent medium-chain alcohol dehydrogenase.
  Appl Environ Microbiol, 75, 1758-1763.  
19307254 Q.Bashir, N.Rashid, F.Jamil, T.Imanaka, and M.Akhtar (2009).
Highly thermostable L-threonine dehydrogenase from the hyperthermophilic archaeon Thermococcus kodakaraensis.
  J Biochem, 146, 95.  
19429610 R.Teufel, J.W.Kung, D.Kockelkorn, B.E.Alber, and G.Fuchs (2009).
3-hydroxypropionyl-coenzyme A dehydratase and acryloyl-coenzyme A reductase, enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in the Sulfolobales.
  J Bacteriol, 191, 4572-4581.  
19011751 B.Persson, J.Hedlund, and H.Jörnvall (2008).
Medium- and short-chain dehydrogenase/reductase gene and protein families : the MDR superfamily.
  Cell Mol Life Sci, 65, 3879-3894.  
18260103 E.Goihberg, O.Dym, S.Tel-Or, L.Shimon, F.Frolow, M.Peretz, and Y.Burstein (2008).
Thermal stabilization of the protozoan Entamoeba histolytica alcohol dehydrogenase by a single proline substitution.
  Proteins, 72, 711-719.
PDB codes: 2nvb 2oui
17063493 E.Goihberg, O.Dym, S.Tel-Or, I.Levin, M.Peretz, and Y.Burstein (2007).
A single proline substitution is critical for the thermostabilization of Clostridium beijerinckii alcohol dehydrogenase.
  Proteins, 66, 196-204.
PDB code: 2b83
17294170 X.Ying, Y.Wang, H.R.Badiei, V.Karanassios, and K.Ma (2007).
Purification and characterization of an iron-containing alcohol dehydrogenase in extremely thermophilic bacterium Thermotoga hypogea.
  Arch Microbiol, 187, 499-510.  
16633561 B.Youn, R.Camacho, S.G.Moinuddin, C.Lee, L.B.Davin, N.G.Lewis, and C.Kang (2006).
Crystal structures and catalytic mechanism of the Arabidopsis cinnamyl alcohol dehydrogenases AtCAD5 and AtCAD4.
  Org Biomol Chem, 4, 1687-1697.
PDB codes: 2cf5 2cf6
16627948 L.J.Shimon, E.Goihberg, M.Peretz, Y.Burstein, and F.Frolow (2006).
Structure of alcohol dehydrogenase from Entamoeba histolytica.
  Acta Crystallogr D Biol Crystallogr, 62, 541-547.
PDB code: 1y9a
15811801 H.Atomi (2005).
Recent progress towards the application of hyperthermophiles and their enzymes.
  Curr Opin Chem Biol, 9, 166-173.  
16080154 K.Miyazono, Y.Sawano, and M.Tanokura (2005).
Crystal structure and structural stability of acylphosphatase from hyperthermophilic archaeon Pyrococcus horikoshii OT3.
  Proteins, 61, 196-205.  
16131762 R.Willaert, I.Zegers, L.Wyns, and M.Sleutel (2005).
Protein crystallization in hydrogel beads.
  Acta Crystallogr D Biol Crystallogr, 61, 1280-1288.  
15968504 S.Liu, B.S.Dien, and M.A.Cotta (2005).
Functional expression of bacterial Zymobacter palmae pyruvate decarboxylase gene in Lactococcus lactis.
  Curr Microbiol, 50, 324-328.  
15623532 S.Watanabe, T.Kodaki, and K.Makino (2005).
Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc.
  J Biol Chem, 280, 10340-10349.  
  16511007 Y.Papanikolau, I.Tsigos, M.Papadovasilaki, V.Bouriotis, and K.Petratos (2005).
Crystallization and preliminary X-ray diffraction studies of an alcohol dehydrogenase from the Antarctic psychrophile Moraxella sp. TAE123.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 61, 246-248.  
15152088 I.Levin, G.Meiri, M.Peretz, Y.Burstein, and F.Frolow (2004).
The ternary complex of Pseudomonas aeruginosa alcohol dehydrogenase with NADH and ethylene glycol.
  Protein Sci, 13, 1547-1556.
PDB code: 1llu
14745009 S.J.Kim, M.R.Kim, D.L.Bedgar, S.G.Moinuddin, C.L.Cardenas, L.B.Davin, C.Kang, and N.G.Lewis (2004).
Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis.
  Proc Natl Acad Sci U S A, 101, 1455-1460.  
12885660 E.Occhipinti, P.L.Martelli, F.Spinozzi, F.Corsi, C.Formantici, L.Molteni, H.Amenitsch, P.Mariani, P.Tortora, and R.Casadio (2003).
3D structure of Sulfolobus solfataricus carboxypeptidase developed by molecular modeling is confirmed by site-directed mutagenesis and small angle X-ray scattering.
  Biophys J, 85, 1165-1175.  
14645052 E.T.Powers, and D.L.Powers (2003).
A perspective on mechanisms of protein tetramer formation.
  Biophys J, 85, 3587-3599.  
12813087 G.Fiorentino, R.Cannio, M.Rossi, and S.Bartolucci (2003).
Transcriptional regulation of the gene encoding an alcohol dehydrogenase in the archaeon Sulfolobus solfataricus involves multiple factors and control elements.
  J Bacteriol, 185, 3926-3934.  
14638414 H.Radianingtyas, and P.C.Wright (2003).
Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria.
  FEMS Microbiol Rev, 27, 593-616.  
14661950 L.Esposito, I.Bruno, F.Sica, C.A.Raia, A.Giordano, M.Rossi, L.Mazzarella, and A.Zagari (2003).
Crystal structure of a ternary complex of the alcohol dehydrogenase from Sulfolobus solfataricus.
  Biochemistry, 42, 14397-14407.
PDB code: 1r37
12592017 O.Kleifeld, S.P.Shi, R.Zarivach, M.Eisenstein, and I.Sagi (2003).
The conserved Glu-60 residue in Thermoanaerobacter brockii alcohol dehydrogenase is not essential for catalysis.
  Protein Sci, 12, 468-479.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer