|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chains A, B:
E.C.3.4.22.36
- caspase-1.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Release of interleukin 1-beta by specific cleavage at 116-Asp-|-Ala-117 and 27-Asp-|-Gly-28 bonds in precursor. Also hydrolyzes the small- molecule substrate, Ac-Tyr-Val-Ala-Asp-|-NHMec.
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
Chem Biol
4:149-155
(1997)
|
|
PubMed id:
|
|
|
|
|
| |
|
A combinatorial approach for determining protease specificities: application to interleukin-1beta converting enzyme (ICE).
|
|
T.A.Rano,
T.Timkey,
E.P.Peterson,
J.Rotonda,
D.W.Nicholson,
J.W.Becker,
K.T.Chapman,
N.A.Thornberry.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
BACKGROUND: Interleukin-1beta converting enzyme (ICE/caspase-1) is the protease
responsible for interleukin-1beta (IL-1beta) production in monocytes. It was the
first member of a new cysteine protease family to be identified. Members of this
family have functions in both inflammation and apoptosis. RESULTS: A novel
method for identifying protease specificity, employing a positional-scanning
substrate library, was used to determine the amino-acid preferences of ICE.
Using this method, the complete specificity of a protease can be mapped in the
time required to perform one assay. The results indicate that the optimal
tetrapeptide recognition sequence for ICE is WEHD, not YVAD, as previously
believed, and this led to the synthesis of an unusually potent aldehyde
inhibitor, Ac-WEHD-CHO (Ki = 56 pM). The structural basis for this potent
inhibition was determined by X-ray crystallography. CONCLUSIONS: The results
presented in this study establish a positional-scanning library as a powerful
tool for rapidly and accurately assessing protease specificity. The preferred
sequence for ICE (WEHD) differs significantly from that found in human
pro-interleukin-1beta (YVHD), which suggests that this protease may have
additional endogenous substrates, consistent with evidence linking it to
apoptosis and IL-1alpha production.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
R.M.Raju,
A.L.Goldberg,
and
E.J.Rubin
(2012).
Bacterial proteolytic complexes as therapeutic targets.
|
| |
Nat Rev Drug Discov,
11,
777-789.
|
 |
|
|
|
|
 |
M.Drag,
and
G.S.Salvesen
(2010).
Emerging principles in protease-based drug discovery.
|
| |
Nat Rev Drug Discov,
9,
690-701.
|
 |
|
|
|
|
 |
M.Drag,
M.Bogyo,
J.A.Ellman,
and
G.S.Salvesen
(2010).
Aminopeptidase fingerprints, an integrated approach for identification of good substrates and optimal inhibitors.
|
| |
J Biol Chem,
285,
3310-3318.
|
 |
|
|
|
|
 |
M.Kindermann,
H.Roschitzki-Voser,
D.Caglic,
U.Repnik,
C.Miniejew,
P.R.Mittl,
G.Kosec,
M.G.Grütter,
B.Turk,
and
K.U.Wendt
(2010).
Selective and sensitive monitoring of caspase-1 activity by a novel bioluminescent activity-based probe.
|
| |
Chem Biol,
17,
999.
|
 |
|
|
|
|
 |
N.Gupta,
K.K.Hixson,
D.E.Culley,
R.D.Smith,
and
P.A.Pevzner
(2010).
Analyzing protease specificity and detecting in vivo proteolytic events using tandem mass spectrometry.
|
| |
Proteomics,
10,
2833-2844.
|
 |
|
|
|
|
 |
Y.C.Lim,
K.W.Cho,
H.C.Kwon,
S.U.Kang,
J.H.Pyun,
M.H.Lee,
H.S.Hwang,
J.H.Kim,
H.N.Lee,
E.C.Choi,
and
C.H.Kim
(2010).
Growth Inhibition and Apoptosis with H31 Metabolites from Marine Bacillus SW31 in Head and Neck Cancer Cells.
|
| |
Clin Exp Otorhinolaryngol,
3,
217-225.
|
 |
|
|
|
|
 |
J.L.Reymond,
V.S.Fluxà,
and
N.Maillard
(2009).
Enzyme assays.
|
| |
Chem Commun (Camb),
(),
34-46.
|
 |
|
|
|
|
 |
M.D.Lim,
and
C.S.Craik
(2009).
Using specificity to strategically target proteases.
|
| |
Bioorg Med Chem,
17,
1094-1100.
|
 |
|
|
|
|
 |
M.Orzáez,
A.Gortat,
L.Mondragón,
and
E.Pérez-Payá
(2009).
Peptides and peptide mimics as modulators of apoptotic pathways.
|
| |
ChemMedChem,
4,
146-160.
|
 |
|
|
|
|
 |
D.Datta,
J.M.Scheer,
M.J.Romanowski,
and
J.A.Wells
(2008).
An allosteric circuit in caspase-1.
|
| |
J Mol Biol,
381,
1157-1167.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.E.Wickliffe,
S.H.Leppla,
and
M.Moayeri
(2008).
Anthrax lethal toxin-induced inflammasome formation and caspase-1 activation are late events dependent on ion fluxes and the proteasome.
|
| |
Cell Microbiol,
10,
332-343.
|
 |
|
|
|
|
 |
O.Schilling,
and
C.M.Overall
(2008).
Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites.
|
| |
Nat Biotechnol,
26,
685-694.
|
 |
|
|
|
|
 |
A.W.Patterson,
W.J.Wood,
and
J.A.Ellman
(2007).
Substrate activity screening (SAS): a general procedure for the preparation and screening of a fragment-based non-peptidic protease substrate library for inhibitor discovery.
|
| |
Nat Protoc,
2,
424-433.
|
 |
|
|
|
|
 |
A.Yoshimori,
J.Sakai,
S.Sunaga,
T.Kobayashi,
S.Takahashi,
N.Okita,
R.Takasawa,
and
S.Tanuma
(2007).
Structural and functional definition of the specificity of a novel caspase-3 inhibitor, Ac-DNLD-CHO.
|
| |
BMC Pharmacol,
7,
8.
|
 |
|
|
|
|
 |
B.A.Callus,
and
D.L.Vaux
(2007).
Caspase inhibitors: viral, cellular and chemical.
|
| |
Cell Death Differ,
14,
73-78.
|
 |
|
|
|
|
 |
B.Faustin,
L.Lartigue,
J.M.Bruey,
F.Luciano,
E.Sergienko,
B.Bailly-Maitre,
N.Volkmann,
D.Hanein,
I.Rouiller,
and
J.C.Reed
(2007).
Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation.
|
| |
Mol Cell,
25,
713-724.
|
 |
|
|
|
|
 |
O.Schilling,
and
C.M.Overall
(2007).
Proteomic discovery of protease substrates.
|
| |
Curr Opin Chem Biol,
11,
36-45.
|
 |
|
|
|
|
 |
R.Swanson,
M.P.Raghavendra,
W.Zhang,
C.Froelich,
P.G.Gettins,
and
S.T.Olson
(2007).
Serine and cysteine proteases are translocated to similar extents upon formation of covalent complexes with serpins. Fluorescence perturbation and fluorescence resonance energy transfer mapping of the protease binding site in CrmA complexes with granzyme B and caspase-1.
|
| |
J Biol Chem,
282,
2305-2313.
|
 |
|
|
|
|
 |
S.L.Diamond
(2007).
Methods for mapping protease specificity.
|
| |
Curr Opin Chem Biol,
11,
46-51.
|
 |
|
|
|
|
 |
A.E.Bednarski,
S.C.Elgin,
and
H.B.Pakrasi
(2005).
An inquiry into protein structure and genetic disease: introducing undergraduates to bioinformatics in a large introductory course.
|
| |
Cell Biol Educ,
4,
207-220.
|
 |
|
|
|
|
 |
J.Li,
S.P.Lim,
D.Beer,
V.Patel,
D.Wen,
C.Tumanut,
D.C.Tully,
J.A.Williams,
J.Jiricek,
J.P.Priestle,
J.L.Harris,
and
S.G.Vasudevan
(2005).
Functional profiling of recombinant NS3 proteases from all four serotypes of dengue virus using tetrapeptide and octapeptide substrate libraries.
|
| |
J Biol Chem,
280,
28766-28774.
|
 |
|
|
|
|
 |
T.O'Brien,
B.T.Fahr,
M.M.Sopko,
J.W.Lam,
N.D.Waal,
B.C.Raimundo,
H.E.Purkey,
P.Pham,
and
M.J.Romanowski
(2005).
Structural analysis of caspase-1 inhibitors derived from Tethering.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
61,
451-458.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Yongzheng,
and
J.L.Reymond
(2005).
Protease profiling using a fluorescent domino peptide cocktail.
|
| |
Mol Biosyst,
1,
57-63.
|
 |
|
|
|
|
 |
C.M.Forsyth,
D.Lemongello,
D.J.LaCount,
P.D.Friesen,
and
A.J.Fisher
(2004).
Crystal structure of an invertebrate caspase.
|
| |
J Biol Chem,
279,
7001-7008.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.C.Hang,
and
H.Ploegh
(2004).
Catching proteases in action with microarrays.
|
| |
Chem Biol,
11,
1328-1330.
|
 |
|
|
|
|
 |
J.A.Hardy,
J.Lam,
J.T.Nguyen,
T.O'Brien,
and
J.A.Wells
(2004).
Discovery of an allosteric site in the caspases.
|
| |
Proc Natl Acad Sci U S A,
101,
12461-12466.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.F.Kisselev,
M.Garcia-Calvo,
H.S.Overkleeft,
E.Peterson,
M.W.Pennington,
H.L.Ploegh,
N.A.Thornberry,
and
A.L.Goldberg
(2003).
The caspase-like sites of proteasomes, their substrate specificity, new inhibitors and substrates, and allosteric interactions with the trypsin-like sites.
|
| |
J Biol Chem,
278,
35869-35877.
|
 |
|
|
|
|
 |
C.Z.Ni,
C.Li,
J.C.Wu,
A.P.Spada,
and
K.R.Ely
(2003).
Conformational restrictions in the active site of unliganded human caspase-3.
|
| |
J Mol Recognit,
16,
121-124.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.A.Erlanson,
J.W.Lam,
C.Wiesmann,
T.N.Luong,
R.L.Simmons,
W.L.DeLano,
I.C.Choong,
M.T.Burdett,
W.M.Flanagan,
D.Lee,
E.M.Gordon,
and
T.O'Brien
(2003).
In situ assembly of enzyme inhibitors using extended tethering.
|
| |
Nat Biotechnol,
21,
308-314.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Alsina,
and
F.Albericio
(2003).
Solid-phase synthesis of C-terminal modified peptides.
|
| |
Biopolymers,
71,
454-477.
|
 |
|
|
|
|
 |
L.Zhu,
C.Tamvakopoulos,
D.Xie,
J.Dragovic,
X.Shen,
J.E.Fenyk-Melody,
K.Schmidt,
A.Bagchi,
P.R.Griffin,
N.A.Thornberry,
and
R.Sinha Roy
(2003).
The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: in vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1-38).
|
| |
J Biol Chem,
278,
22418-22423.
|
 |
|
|
|
|
 |
M.Sulpizi,
A.Laio,
J.VandeVondele,
A.Cattaneo,
U.Rothlisberger,
and
P.Carloni
(2003).
Reaction mechanism of caspases: insights from QM/MM Car-Parrinello simulations.
|
| |
Proteins,
52,
212-224.
|
 |
|
|
|
|
 |
M.Sulpizi,
U.Rothlisberger,
and
P.Carloni
(2003).
Molecular dynamics studies of caspase-3.
|
| |
Biophys J,
84,
2207-2215.
|
 |
|
|
|
|
 |
D.J.Maly,
L.Huang,
and
J.A.Ellman
(2002).
Combinatorial strategies for targeting protein families: application to the proteases.
|
| |
Chembiochem,
3,
16-37.
|
 |
|
|
|
|
 |
O.Micheau,
M.Thome,
P.Schneider,
N.Holler,
J.Tschopp,
D.W.Nicholson,
C.Briand,
and
M.G.Grütter
(2002).
The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex.
|
| |
J Biol Chem,
277,
45162-45171.
|
 |
|
|
|
|
 |
B.R.Gastman
(2001).
Apoptosis and its clinical impact.
|
| |
Head Neck,
23,
409-425.
|
 |
|
|
|
|
 |
N.Dekker,
R.C.Cox,
R.A.Kramer,
and
M.R.Egmond
(2001).
Substrate specificity of the integral membrane protease OmpT determined by spatially addressed peptide libraries.
|
| |
Biochemistry,
40,
1694-1701.
|
 |
|
|
|
|
 |
C.L.Wellington,
and
M.R.Hayden
(2000).
Caspases and neurodegeneration: on the cutting edge of new therapeutic approaches.
|
| |
Clin Genet,
57,
1.
|
 |
|
|
|
|
 |
J.C.Reed,
and
K.J.Tomaselli
(2000).
Drug discovery opportunities from apoptosis research.
|
| |
Curr Opin Biotechnol,
11,
586-592.
|
 |
|
|
|
|
 |
J.Deadman
(2000).
Proteinase inhibitors and activators strategic targets for therapeutic intervention.
|
| |
J Pept Sci,
6,
421-431.
|
 |
|
|
|
|
 |
J.L.Harris,
B.J.Backes,
F.Leonetti,
S.Mahrus,
J.A.Ellman,
and
C.S.Craik
(2000).
Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries.
|
| |
Proc Natl Acad Sci U S A,
97,
7754-7759.
|
 |
|
|
|
|
 |
P.D.Edwards,
R.C.Mauger,
K.M.Cottrell,
F.X.Morris,
K.K.Pine,
M.A.Sylvester,
C.W.Scott,
and
S.T.Furlong
(2000).
Synthesis and enzymatic evaluation of a P1 arginine aminocoumarin substrate library for trypsin-like serine proteases.
|
| |
Bioorg Med Chem Lett,
10,
2291-2294.
|
 |
|
|
|
|
 |
R.A.Houghten,
D.B.Wilson,
and
C.Pinilla
(2000).
Drug discovery and vaccine development using mixture-based synthetic combinatorial libraries.
|
| |
Drug Discov Today,
5,
276-285.
|
 |
|
|
|
|
 |
S.J.Kang,
S.Wang,
H.Hara,
E.P.Peterson,
S.Namura,
S.Amin-Hanjani,
Z.Huang,
A.Srinivasan,
K.J.Tomaselli,
N.A.Thornberry,
M.A.Moskowitz,
and
J.Yuan
(2000).
Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions.
|
| |
J Cell Biol,
149,
613-622.
|
 |
|
|
|
|
 |
A.Eichinger,
H.G.Beisel,
U.Jacob,
R.Huber,
F.J.Medrano,
A.Banbula,
J.Potempa,
J.Travis,
and
W.Bode
(1999).
Crystal structure of gingipain R: an Arg-specific bacterial cysteine proteinase with a caspase-like fold.
|
| |
EMBO J,
18,
5453-5462.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Waters
(1999).
Molecular mechanisms of cell death in the ear.
|
| |
Ann N Y Acad Sci,
884,
41-51.
|
 |
|
|
|
|
 |
F.G.Gervais,
D.Xu,
G.S.Robertson,
J.P.Vaillancourt,
Y.Zhu,
J.Huang,
A.LeBlanc,
D.Smith,
M.Rigby,
M.S.Shearman,
E.E.Clarke,
H.Zheng,
L.H.Van Der Ploeg,
S.C.Ruffolo,
N.A.Thornberry,
S.Xanthoudakis,
R.J.Zamboni,
S.Roy,
and
D.W.Nicholson
(1999).
Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-beta precursor protein and amyloidogenic A beta peptide formation.
|
| |
Cell,
97,
395-406.
|
 |
|
|
|
|
 |
H.Blanchard,
L.Kodandapani,
P.R.Mittl,
S.D.Marco,
J.F.Krebs,
J.C.Wu,
K.J.Tomaselli,
and
M.G.Grütter
(1999).
The three-dimensional structure of caspase-8: an initiator enzyme in apoptosis.
|
| |
Structure,
7,
1125-1133.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.S.Braun,
E.I.Tuomanen,
and
J.L.Cleveland
(1999).
Neuroprotection by caspase inhibitors.
|
| |
Expert Opin Investig Drugs,
8,
1599-1610.
|
 |
|
|
|
|
 |
K.Takuma,
E.Lee,
M.Kidawara,
K.Mori,
Y.Kimura,
A.Baba,
and
T.Matsuda
(1999).
Apoptosis in Ca2 + reperfusion injury of cultured astrocytes: roles of reactive oxygen species and NF-kappaB activation.
|
| |
Eur J Neurosci,
11,
4204-4212.
|
 |
|
|
|
|
 |
L.Pellegrini,
B.J.Passer,
M.Tabaton,
J.K.Ganjei,
and
L.D'Adamio
(1999).
Alternative, non-secretase processing of Alzheimer's beta-amyloid precursor protein during apoptosis by caspase-6 and -8.
|
| |
J Biol Chem,
274,
21011-21016.
|
 |
|
|
|
|
 |
N.J.Rothwell
(1999).
Annual review prize lecture cytokines - killers in the brain?
|
| |
J Physiol,
514,
3.
|
 |
|
|
|
|
 |
C.L.Wellington,
L.M.Ellerby,
A.S.Hackam,
R.L.Margolis,
M.A.Trifiro,
R.Singaraja,
K.McCutcheon,
G.S.Salvesen,
S.S.Propp,
M.Bromm,
K.J.Rowland,
T.Zhang,
D.Rasper,
S.Roy,
N.Thornberry,
L.Pinsky,
A.Kakizuka,
C.A.Ross,
D.W.Nicholson,
D.E.Bredesen,
and
M.R.Hayden
(1998).
Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract.
|
| |
J Biol Chem,
273,
9158-9167.
|
 |
|
|
|
|
 |
J.L.Harris,
E.P.Peterson,
D.Hudig,
N.A.Thornberry,
and
C.S.Craik
(1998).
Definition and redesign of the extended substrate specificity of granzyme B.
|
| |
J Biol Chem,
273,
27364-27373.
|
 |
|
|
|
|
 |
L.F.Lincz
(1998).
Deciphering the apoptotic pathway: all roads lead to death.
|
| |
Immunol Cell Biol,
76,
1.
|
 |
|
|
|
|
 |
M.Garcia-Calvo,
E.P.Peterson,
B.Leiting,
R.Ruel,
D.W.Nicholson,
and
N.A.Thornberry
(1998).
Inhibition of human caspases by peptide-based and macromolecular inhibitors.
|
| |
J Biol Chem,
273,
32608-32613.
|
 |
|
|
|
|
 |
M.Whittaker
(1998).
Discovery of protease inhibitors using targeted libraries.
|
| |
Curr Opin Chem Biol,
2,
386-396.
|
 |
|
|
|
|
 |
P.King,
and
S.Goodbourn
(1998).
STAT1 is inactivated by a caspase.
|
| |
J Biol Chem,
273,
8699-8704.
|
 |
|
|
|
|
 |
C.H.Lin,
S.Chen,
D.S.Kwon,
J.K.Coward,
and
C.T.Walsh
(1997).
Aldehyde and phosphinate analogs of glutathione and glutathionylspermidine: potent, selective binding inhibitors of the E. coli bifunctional glutathionylspermidine synthetase/amidase.
|
| |
Chem Biol,
4,
859-866.
|
 |
|
|
|
|
 |
D.W.Nicholson,
and
N.A.Thornberry
(1997).
Caspases: killer proteases.
|
| |
Trends Biochem Sci,
22,
299-306.
|
 |
|
|
|
|
 |
E.H.Cheng,
D.G.Kirsch,
R.J.Clem,
R.Ravi,
M.B.Kastan,
A.Bedi,
K.Ueno,
and
J.M.Hardwick
(1997).
Conversion of Bcl-2 to a Bax-like death effector by caspases.
|
| |
Science,
278,
1966-1968.
|
 |
|
|
|
|
 |
H.R.Stennicke,
and
G.S.Salvesen
(1997).
Biochemical characteristics of caspases-3, -6, -7, and -8.
|
| |
J Biol Chem,
272,
25719-25723.
|
 |
|
|
|
|
 |
N.A.Thornberry,
T.A.Rano,
E.P.Peterson,
D.M.Rasper,
T.Timkey,
M.Garcia-Calvo,
V.M.Houtzager,
P.A.Nordstrom,
S.Roy,
J.P.Vaillancourt,
K.T.Chapman,
and
D.W.Nicholson
(1997).
A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis.
|
| |
J Biol Chem,
272,
17907-17911.
|
 |
|
|
|
|
 |
P.Jallepalli,
and
M.Bogyo
(1997).
A degrading business: the biology of proteolysis.
|
| |
Trends Cell Biol,
7,
333-335.
|
 |
|
|
|
|
 |
P.Vito,
T.Ghayur,
and
L.D'Adamio
(1997).
Generation of anti-apoptotic presenilin-2 polypeptides by alternative transcription, proteolysis, and caspase-3 cleavage.
|
| |
J Biol Chem,
272,
28315-28320.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |