spacer
spacer

PDBsum entry 1g6t

Go to PDB code: 
protein ligands links
Transferase PDB id
1g6t

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
427 a.a. *
Ligands
PO4
S3P
FMT ×13
Waters ×555
* Residue conservation analysis
PDB id:
1g6t
Name: Transferase
Title: Structure of epsp synthase liganded with shikimate-3-phosphate
Structure: Epsp synthase. Chain: a. Synonym: 3-phosphoshikimate 1-carboxyvinyltransferase. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Gene: aroa. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
1.60Å     R-factor:   0.155     R-free:   0.185
Authors: E.Schonbrunn,S.Eschenburg,W.Shuttleworth,J.V.Schloss,N.Amrhein, J.N.S.Evans,W.Kabsch
Key ref:
E.Schönbrunn et al. (2001). Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc Natl Acad Sci U S A, 98, 1376-1380. PubMed id: 11171958 DOI: 10.1073/pnas.98.4.1376
Date:
07-Nov-00     Release date:   07-Feb-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P0A6D3  (AROA_ECOLI) -  3-phosphoshikimate 1-carboxyvinyltransferase from Escherichia coli (strain K12)
Seq:
Struc:
427 a.a.
427 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.2.5.1.19  - 3-phosphoshikimate 1-carboxyvinyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Shikimate and Chorismate Biosynthesis
      Reaction: 3-phosphoshikimate + phosphoenolpyruvate = 5-O-(1-carboxyvinyl)-3- phosphoshikimate + phosphate
3-phosphoshikimate
+
phosphoenolpyruvate
Bound ligand (Het Group name = S3P)
matches with 52.94% similarity
= 5-O-(1-carboxyvinyl)-3- phosphoshikimate
+
phosphate
Bound ligand (Het Group name = PO4)
corresponds exactly
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1073/pnas.98.4.1376 Proc Natl Acad Sci U S A 98:1376-1380 (2001)
PubMed id: 11171958  
 
 
Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail.
E.Schönbrunn, S.Eschenburg, W.A.Shuttleworth, J.V.Schloss, N.Amrhein, J.N.Evans, W.Kabsch.
 
  ABSTRACT  
 
Biosynthesis of aromatic amino acids in plants, many bacteria, and microbes relies on the enzyme 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, a prime target for drugs and herbicides. We have identified the interaction of EPSP synthase with one of its two substrates (shikimate 3-phosphate) and with the widely used herbicide glyphosate by x-ray crystallography. The two-domain enzyme closes on ligand binding, thereby forming the active site in the interdomain cleft. Glyphosate appears to occupy the binding site of the second substrate of EPSP synthase (phosphoenol pyruvate), mimicking an intermediate state of the ternary enzyme.substrates complex. The elucidation of the active site of EPSP synthase and especially of the binding pattern of glyphosate provides a valuable roadmap for engineering new herbicides and herbicide-resistant crops, as well as new antibiotic and antiparasitic drugs.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. Cartoon of EPSP synthase in the open and closed conformation. Top domain, residues 20-240; bottom domain, residues 1-19 plus 241-427. (a) Unliganded state (open) as reconstructed from the deposited -carbon atoms (Protein Data Bank entry code 1EPS). (b) Liganded state (closed). S3P and glyphosate are shown as ball-and-stick models in green and magenta, respectively. Drawn with BOBSCRIPT (24).
Figure 3.
Fig. 3. Schematic representation of ligand binding in the EPSP synthase·S3P·glyphosate complex. Ligands are drawn in bold lines. Dashed lines indicate hydrogen bonds and ionic interactions. Strictly conserved residues are highlighted by bold labels. Protein atoms are labeled according to the Protein Data Bank nomenclature. Circled labels W1 to W4 designate solvent molecules. Hydrophobic interactions between S3P and Tyr-200 are omitted.
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21327882 K.Haghani, K.Khajeh, A.H.Salmanian, B.Ranjbar, and S.Bakhtiyari (2011).
Acid-Induced Formation of Molten Globule States in the Wild Type Escherichia coli 5-Enolpyruvylshikimate 3-Phosphate Synthase and its Three Mutated Forms: G96A, A183T and G96A/A183T.
  Protein J, 30, 132-137.  
20192743 S.B.Powles, and Q.Yu (2010).
Evolution in action: plants resistant to herbicides.
  Annu Rev Plant Biol, 61, 317-347.  
20601515 Y.S.Tian, A.S.Xiong, J.Xu, W.Zhao, F.Gao, X.Y.Fu, H.Xu, J.L.Zheng, R.H.Peng, and Q.H.Yao (2010).
Isolation from Ochrobactrum anthropi of a novel class II 5-enopyruvylshikimate-3-phosphate synthase with high tolerance to glyphosate.
  Appl Environ Microbiol, 76, 6001-6005.  
19043750 G.B.Barcellos, R.A.Caceres, and W.F.de Azevedo (2009).
Structural studies of shikimate dehydrogenase from Bacillus anthracis complexed with cofactor NADP.
  J Mol Model, 15, 147-155.  
19211556 T.Funke, Y.Yang, H.Han, M.Healy-Fried, S.Olesen, A.Becker, and E.Schönbrunn (2009).
Structural basis of glyphosate resistance resulting from the double mutation Thr97 -> Ile and Pro101 -> Ser in 5-enolpyruvylshikimate-3-phosphate synthase from Escherichia coli.
  J Biol Chem, 284, 9854-9860.
PDB codes: 3fjx 3fjz 3fk0 3fk1
18172892 B.J.Vande Berg, P.E.Hammer, B.L.Chun, L.C.Schouten, B.Carr, R.Guo, C.Peters, T.K.Hinson, V.Beilinson, A.Shekita, R.Deter, Z.Chen, V.Samoylov, C.T.Bryant, M.E.Stauffer, T.Eberle, D.J.Moellenbeck, N.B.Carozzi, M.G.Koziel, and N.B.Duck (2008).
Characterization and plant expression of a glyphosate-tolerant enolpyruvylshikimate phosphate synthase.
  Pest Manag Sci, 64, 340-345.  
17323079 A.Perez-Jones, K.W.Park, N.Polge, J.Colquhoun, and C.A.Mallory-Smith (2007).
Investigating the mechanisms of glyphosate resistance in Lolium multiflorum.
  Planta, 226, 395-404.  
17708521 C.H.Huangfu, X.L.Song, S.Qiang, and H.J.Zhang (2007).
Response of wild Brassica juncea populations to glyphosate.
  Pest Manag Sci, 63, 1133-1140.  
17639514 M.Hoff, D.Y.Son, M.Gubesch, K.Ahn, S.I.Lee, S.Vieths, R.E.Goodman, B.K.Ballmer-Weber, and G.A.Bannon (2007).
Serum testing of genetically modified soybeans with special emphasis on potential allergenicity of the heterologous protein CP4 EPSPS.
  Mol Nutr Food Res, 51, 946-955.  
16906433 Q.Yu, A.Cairns, and S.Powles (2007).
Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype.
  Planta, 225, 499-513.  
17123171 M.D'Alessandro, M.Held, Y.Triponez, and T.C.Turlings (2006).
The role of indole and other shikimic acid derived maize volatiles in the attraction of two parasitic wasps.
  J Chem Ecol, 32, 2733-2748.  
16916934 T.Funke, H.Han, M.L.Healy-Fried, M.Fischer, and E.Schönbrunn (2006).
Molecular basis for the herbicide resistance of Roundup Ready crops.
  Proc Natl Acad Sci U S A, 103, 13010-13015.
PDB codes: 2gg4 2gg6 2gga 2ggd
  15929894 S.Richard, S.Moslemi, H.Sipahutar, N.Benachour, and G.E.Seralini (2005).
Differential effects of glyphosate and roundup on human placental cells and aromatase.
  Environ Health Perspect, 113, 716-720.  
16085874 Y.C.Sun, Y.C.Chen, Z.X.Tian, F.M.Li, X.Y.Wang, J.Zhang, Z.L.Xiao, M.Lin, N.Gilmartin, D.N.Dowling, and Y.P.Wang (2005).
Novel AroA with high tolerance to glyphosate, encoded by a gene of Pseudomonas putida 4G-1 isolated from an extremely polluted environment in China.
  Appl Environ Microbiol, 71, 4771-4776.  
15206933 A.M.Thomas, C.Ginj, I.Jelesarov, N.Amrhein, and P.Macheroux (2004).
Role of K22 and R120 in the covalent binding of the antibiotic fosfomycin and the substrate-induced conformational change in UDP-N-acetylglucosamine enolpyruvyl transferase.
  Eur J Biochem, 271, 2682-2690.  
14705034 C.M.Viola, V.Saridakis, and D.Christendat (2004).
Crystal structure of chorismate synthase from Aquifex aeolicus reveals a novel beta alpha beta sandwich topology.
  Proteins, 54, 166-169.
PDB code: 1q1l
14763973 H.Park, J.L.Hilsenbeck, H.J.Kim, W.A.Shuttleworth, Y.H.Park, J.N.Evans, and C.Kang (2004).
Structural studies of Streptococcus pneumoniae EPSP synthase in unliganded state, tetrahedral intermediate-bound state and S3P-GLP-bound state.
  Mol Microbiol, 51, 963-971.
PDB codes: 1rf4 1rf5 1rf6
12906831 A.K.Padyana, and S.K.Burley (2003).
Crystal structure of shikimate 5-dehydrogenase (SDH) bound to NADP: insights into function and evolution.
  Structure, 11, 1005-1013.
PDB code: 1nvt
12906820 E.Vogan (2003).
Shikimate dehydrogenase structure reveals novel fold.
  Structure, 11, 902-903.  
12595729 H.J.Ahn, J.K.Yang, B.I.Lee, H.J.Yoon, H.W.Kim, and S.W.Suh (2003).
Crystallization and preliminary X-ray crystallographic studies of chorismate synthase from Helicobacter pylori.
  Acta Crystallogr D Biol Crystallogr, 59, 569-571.  
12843673 M.He, Y.F.Nie, and P.Xu (2003).
A T42M substitution in bacterial 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) generates enzymes with increased resistance to glyphosate.
  Biosci Biotechnol Biochem, 67, 1405-1409.  
12837789 S.Ye, F.Von Delft, A.Brooun, M.W.Knuth, R.V.Swanson, and D.E.McRee (2003).
The crystal structure of shikimate dehydrogenase (AroE) reveals a unique NADPH binding mode.
  J Bacteriol, 185, 4144-4151.
PDB codes: 1p74 1p77
11248008 M.F.Alibhai, and W.C.Stallings (2001).
Closing down on glyphosate inhibition--with a new structure for drug discovery.
  Proc Natl Acad Sci U S A, 98, 2944-2946.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer