spacer
spacer

PDBsum entry 1g0s

Go to PDB code: 
protein Protein-protein interface(s) links
Hydrolase PDB id
1g0s

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
201 a.a. *
Waters ×392
* Residue conservation analysis
PDB id:
1g0s
Name: Hydrolase
Title: The crystal structure of the e.Coli adp-ribose pyrophosphatase
Structure: Hypothetical 23.7 kda protein in icc-tolc intergenic region. Chain: a, b. Synonym: adp-ribose pyrophosphatase. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
Resolution:
1.90Å     R-factor:   0.192     R-free:   0.241
Authors: S.B.Gabelli,M.A.Bianchet,M.J.Bessman,L.M.Amzel
Key ref:
S.B.Gabelli et al. (2001). The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the Nudix family. Nat Struct Biol, 8, 467-472. PubMed id: 11323725 DOI: 10.1038/87647
Date:
08-Oct-00     Release date:   02-May-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q93K97  (ADPP_ECOLI) -  ADP-ribose pyrophosphatase from Escherichia coli (strain K12)
Seq:
Struc:
209 a.a.
201 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.6.1.13  - ADP-ribose diphosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ADP-D-ribose + H2O = D-ribose 5-phosphate + AMP + 2 H+
ADP-D-ribose
+ H2O
= D-ribose 5-phosphate
+ AMP
+ 2 × H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1038/87647 Nat Struct Biol 8:467-472 (2001)
PubMed id: 11323725  
 
 
The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the Nudix family.
S.B.Gabelli, M.A.Bianchet, M.J.Bessman, L.M.Amzel.
 
  ABSTRACT  
 
Regulation of cellular levels of ADP-ribose is important in preventing nonenzymatic ADP-ribosylation of proteins. The Escherichia coli ADP-ribose pyrophosphatase, a Nudix enzyme, catalyzes the hydrolysis of ADP-ribose to ribose-5-P and AMP, compounds that can be recycled as part of nucleotide metabolism. The structures of the apo enzyme, the active enzyme and the complex with ADP-ribose were determined to 1.9 A, 2.7 A and 2.3 A, respectively. The structures reveal a symmetric homodimer with two equivalent catalytic sites, each formed by residues of both monomers, requiring dimerization through domain swapping for substrate recognition and catalytic activity. The structures also suggest a role for the residues conserved in each Nudix subfamily. The Nudix motif residues, folded as a loop-helix-loop tailored for pyrophosphate hydrolysis, compose the catalytic center; residues conferring substrate specificity occur in regions of the sequence removed from the Nudix motif. This segregation of catalytic and recognition roles provides versatility to the Nudix family.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Coordination of the Gd^3+ in ADPRase. The side chains of the residues involved in ion coordination are shown in all-atom representation. The corresponding portion of the 2F[o] - F[c] electron density map is shown in sky blue. The metal ion is shown in green, and the metal-coordinating waters as red spheres.
Figure 4.
Figure 4. Substrate binding to ADPRase. a, Location of the two equivalent ADPR binding sites in the ADPRase dimer. In each binding site, loop L8 of the opposite monomer is in close proximity to the ribose moiety of ADPR. b, Stereo diagram of one ADPR binding site. Residues of the two monomers contributing to binding are labeled (B: main monomer, A: second monomer). The 2F[o] - F[c] electron density of the ADPR is shown in light blue. Carbons are gray, oxygens red, nitrogens blue, phosphorous yellow, and sulfur green; bound waters (labeled W3 and W4) are shown as red spheres. The adenosine group of the substrate binds to the enzyme in anti conformation (dihedral glycosylic bond is -143°); the adenine ribose ring has C3'-endo puckering and the terminal ribose binds with C2'-endo puckering. c, Interactions between ADPR and ADPRase. The ADPR molecule is drawn with heavy lines. Hydrogen bonds are shown with dashed blue lines; the distances between donors and acceptors are indicated. Amino acids providing van der Waals interactions are shown as decorated arcs. Residue numbers are followed by a letter (A or B) to indicate the monomer. Water molecules W1 to W4 are shown as spheres.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (2001, 8, 467-472) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20088964 S.Isogai, S.Kanno, M.Ariyoshi, H.Tochio, Y.Ito, A.Yasui, and M.Shirakawa (2010).
Solution structure of a zinc-finger domain that binds to poly-ADP-ribose.
  Genes Cells, 15, 101-110.  
20711189 S.N.Floor, B.N.Jones, G.A.Hernandez, and J.D.Gross (2010).
A split active site couples cap recognition by Dcp2 to activation.
  Nat Struct Mol Biol, 17, 1096-1101.  
19864691 T.Nakamura, S.Meshitsuka, S.Kitagawa, N.Abe, J.Yamada, T.Ishino, H.Nakano, T.Tsuzuki, T.Doi, Y.Kobayashi, S.Fujii, M.Sekiguchi, and Y.Yamagata (2010).
Structural and dynamic features of the MutT protein in the recognition of nucleotides with the mutagenic 8-oxoguanine base.
  J Biol Chem, 285, 444-452.
PDB codes: 3a6s 3a6t 3a6u 3a6v
19604474 N.Huang, J.De Ingeniis, L.Galeazzi, C.Mancini, Y.D.Korostelev, A.B.Rakhmaninova, M.S.Gelfand, D.A.Rodionov, N.Raffaelli, and H.Zhang (2009).
Structure and function of an ADP-ribose-dependent transcriptional regulator of NAD metabolism.
  Structure, 17, 939-951.
PDB codes: 3gz5 3gz6 3gz8
19278661 S.A.Messing, S.B.Gabelli, Q.Liu, H.Celesnik, J.G.Belasco, S.A.Piñeiro, and L.M.Amzel (2009).
Structure and biological function of the RNA pyrophosphohydrolase BdRppH from Bdellovibrio bacteriovorus.
  Structure, 17, 472-481.
PDB codes: 3ees 3eeu 3ef5 3ffu
18512963 G.W.Buchko, O.Litvinova, H.Robinson, A.F.Yakunin, and M.A.Kennedy (2008).
Functional and structural characterization of DR_0079 from Deinococcus radiodurans, a novel Nudix hydrolase with a preference for cytosine (deoxy)ribonucleoside 5'-Di- and triphosphates.
  Biochemistry, 47, 6571-6582.
PDB code: 2o5f
  18607096 J.Zhang, F.Gao, Q.Zhang, Q.Chen, J.Qi, and J.Yan (2008).
Crystallization and crystallographic analysis of human NUDT16.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 639-640.  
18445629 M.Coseno, G.Martin, C.Berger, G.Gilmartin, W.Keller, and S.Doublié (2008).
Crystal structure of the 25 kDa subunit of human cleavage factor Im.
  Nucleic Acids Res, 36, 3474-3483.
PDB codes: 3bap 3bho
18280238 M.V.Deshmukh, B.N.Jones, D.U.Quang-Dang, J.Flinders, S.N.Floor, C.Kim, J.Jemielity, M.Kalek, E.Darzynkiewicz, and J.D.Gross (2008).
mRNA decapping is promoted by an RNA-binding channel in Dcp2.
  Mol Cell, 29, 324-336.
PDB code: 2jvb
18275811 N.Huang, L.Sorci, X.Zhang, C.A.Brautigam, X.Li, N.Raffaelli, G.Magni, N.V.Grishin, A.L.Osterman, and H.Zhang (2008).
Bifunctional NMN adenylyltransferase/ADP-ribose pyrophosphatase: structure and function in bacterial NAD metabolism.
  Structure, 16, 196-209.
PDB codes: 2qjo 2qjt 2r5w
18215310 S.C.Zhang, K.A.MacDonald, M.Baguma-Nibasheka, L.Geldenhuys, A.G.Casson, and P.R.Murphy (2008).
Alternative splicing and differential subcellular localization of the rat FGF antisense gene product.
  BMC Mol Biol, 9, 10.  
18931106 S.R.Steyert, S.A.Messing, L.M.Amzel, S.B.Gabelli, and S.A.Piñeiro (2008).
Identification of Bdellovibrio bacteriovorus HD100 Bd0714 as a Nudix dGTPase.
  J Bacteriol, 190, 8215-8219.  
18039767 T.Wakamatsu, N.Nakagawa, S.Kuramitsu, and R.Masui (2008).
Structural basis for different substrate specificities of two ADP-ribose pyrophosphatases from Thermus thermophilus HB8.
  J Bacteriol, 190, 1108-1117.
PDB codes: 2yvm 2yvn 2yvo 2yvp
17698004 S.B.Gabelli, M.A.Bianchet, W.Xu, C.A.Dunn, Z.D.Niu, L.M.Amzel, and M.J.Bessman (2007).
Structure and function of the E. coli dihydroneopterin triphosphate pyrophosphatase: a Nudix enzyme involved in folate biosynthesis.
  Structure, 15, 1014-1022.
PDB codes: 2o1c 2o5w
17569023 S.C.Zhang, C.Barclay, L.A.Alexander, L.Geldenhuys, G.A.Porter, A.G.Casson, and P.R.Murphy (2007).
Alternative splicing of the FGF antisense gene: differential subcellular localization in human tissues and esophageal adenocarcinoma.
  J Mol Med, 85, 1215-1228.  
16815922 H.Tossavainen, T.Pihlajamaa, T.K.Huttunen, E.Raulo, H.Rauvala, P.Permi, and I.Kilpeläinen (2006).
The layered fold of the TSR domain of P. falciparum TRAP contains a heparin binding site.
  Protein Sci, 15, 1760-1768.
PDB code: 2bbx
16341225 M.She, C.J.Decker, N.Chen, S.Tumati, R.Parker, and H.Song (2006).
Crystal structure and functional analysis of Dcp2p from Schizosaccharomyces pombe.
  Nat Struct Mol Biol, 13, 63-70.
PDB code: 2a6t
15722447 D.Kumaran, S.Eswaramoorthy, F.W.Studier, and S.Swaminathan (2005).
Structure and mechanism of ADP-ribose-1''-monophosphatase (Appr-1''-pase), a ubiquitous cellular processing enzyme.
  Protein Sci, 14, 719-726.
PDB codes: 1njr 1txz
15952035 F.J.Kühn, I.Heiner, and A.Lückhoff (2005).
TRPM2: a calcium influx pathway regulated by oxidative stress and the novel second messenger ADP-ribose.
  Pflugers Arch, 451, 212-219.  
16021622 J.Badger, J.M.Sauder, J.M.Adams, S.Antonysamy, K.Bain, M.G.Bergseid, S.G.Buchanan, M.D.Buchanan, Y.Batiyenko, J.A.Christopher, S.Emtage, A.Eroshkina, I.Feil, E.B.Furlong, K.S.Gajiwala, X.Gao, D.He, J.Hendle, A.Huber, K.Hoda, P.Kearins, C.Kissinger, B.Laubert, H.A.Lewis, J.Lin, K.Loomis, D.Lorimer, G.Louie, M.Maletic, C.D.Marsh, I.Miller, J.Molinari, H.J.Muller-Dieckmann, J.M.Newman, B.W.Noland, B.Pagarigan, F.Park, T.S.Peat, K.W.Post, S.Radojicic, A.Ramos, R.Romero, M.E.Rutter, W.E.Sanderson, K.D.Schwinn, J.Tresser, J.Winhoven, T.A.Wright, L.Wu, J.Xu, and T.J.Harris (2005).
Structural analysis of a set of proteins resulting from a bacterial genomics project.
  Proteins, 60, 787-796.
PDB codes: 1o60 1o61 1o62 1o63 1o64 1o65 1o66 1o67 1o68 1o69 1o6b 1o6c 1o6d 1vgt 1vgu 1vgv 1vgw 1vgx 1vgy 1vgz 1vh0 1vh1 1vh2 1vh3 1vh4 1vh5 1vh6 1vh7 1vh8 1vh9 1vha 1vhc 1vhd 1vhe 1vhf 1vhg 1vhj 1vhk 1vhl 1vhm 1vho 1vhq 1vhs 1vht 1vhu 1vhv 1vhw 1vhx 1vhy 1vhz 1vi0 1vi1 1vi2 1vi3 1vi4 1vi5 1vi6 1vi8 1vi9 1via 1vic 1vim 1viq 1vis 1viu 1viv 1vix 1viy 1viz
15596429 J.D.Swarbrick, S.Buyya, D.Gunawardana, K.R.Gayler, A.G.McLennan, and P.R.Gooley (2005).
Structure and substrate-binding mechanism of human Ap4A hydrolase.
  J Biol Chem, 280, 8471-8481.
PDB codes: 1xsa 1xsb 1xsc
15995214 K.Okuda, H.Hayashi, and Y.Nishiyama (2005).
Systematic characterization of the ADP-ribose pyrophosphatase family in the Cyanobacterium Synechocystis sp. strain PCC 6803.
  J Bacteriol, 187, 4984-4991.  
15562515 M.A.Zachariah, G.E.Crooks, S.R.Holbrook, and S.E.Brenner (2005).
A generalized affine gap model significantly improves protein sequence alignment accuracy.
  Proteins, 58, 329-338.  
15347676 F.J.Kühn, and A.Lückhoff (2004).
Sites of the NUDT9-H domain critical for ADP-ribose activation of the cation channel TRPM2.
  J Biol Chem, 279, 46431-46437.  
15162484 G.W.Buchko, S.Ni, S.R.Holbrook, and M.A.Kennedy (2004).
Solution structure of hypothetical Nudix hydrolase DR0079 from extremely radiation-resistant Deinococcus radiodurans bacterium.
  Proteins, 56, 28-39.
PDB code: 1q27
15274914 S.B.Gabelli, M.A.Bianchet, H.F.Azurmendi, Z.Xia, V.Sarawat, A.S.Mildvan, and L.M.Amzel (2004).
Structure and mechanism of GDP-mannose glycosyl hydrolase, a Nudix enzyme that cleaves at carbon instead of phosphorus.
  Structure, 12, 927-935.
PDB code: 1rya
15053875 T.Ghosh, B.Peterson, N.Tomasevic, and B.A.Peculis (2004).
Xenopus U8 snoRNA binding protein is a conserved nuclear decapping enzyme.
  Mol Cell, 13, 817-828.  
15024014 T.Iwai, S.Kuramitsu, and R.Masui (2004).
The Nudix hydrolase Ndx1 from Thermus thermophilus HB8 is a diadenosine hexaphosphate hydrolase with a novel activity.
  J Biol Chem, 279, 21732-21739.  
12427752 A.L.Perraud, B.Shen, C.A.Dunn, K.Rippe, M.K.Smith, M.J.Bessman, B.L.Stoddard, and A.M.Scharenberg (2003).
NUDT9, a member of the Nudix hydrolase family, is an evolutionarily conserved mitochondrial ADP-ribose pyrophosphatase.
  J Biol Chem, 278, 1794-1801.  
12819083 B.J.Sheehan, J.T.Bossé, A.J.Beddek, A.N.Rycroft, J.S.Kroll, and P.R.Langford (2003).
Identification of Actinobacillus pleuropneumoniae genes important for survival during infection in its natural host.
  Infect Immun, 71, 3960-3970.  
12923261 C.Piccirillo, R.Khanna, and M.Kiledjian (2003).
Functional characterization of the mammalian mRNA decapping enzyme hDcp2.
  RNA, 9, 1138-1147.  
14609131 D.K.Kim, J.H.Kim, E.K.Song, M.K.Han, and J.S.Kim (2003).
Polymerization of ADP-ribose pyrophosphatase: conversion mechanism of Mg(2+)-dependent ADP-ribose pyrophosphatase into Mg(2+)-independent form.
  Arch Pharm Res, 26, 826-831.  
12475970 H.M.Abdelghany, S.Bailey, G.M.Blackburn, J.B.Rafferty, and A.G.McLennan (2003).
Analysis of the catalytic and binding residues of the diadenosine tetraphosphate pyrophosphohydrolase from Caenorhabditis elegans by site-directed mutagenesis.
  J Biol Chem, 278, 4435-4439.  
12906832 L.W.Kang, S.B.Gabelli, J.E.Cunningham, S.F.O'Handley, and L.M.Amzel (2003).
Structure and mechanism of MT-ADPRase, a nudix hydrolase from Mycobacterium tuberculosis.
  Structure, 11, 1015-1023.
PDB codes: 1mk1 1mp2 1mqe 1mqw 1mr2
12837785 L.W.Kang, S.B.Gabelli, M.A.Bianchet, W.L.Xu, M.J.Bessman, and L.M.Amzel (2003).
Structure of a coenzyme A pyrophosphatase from Deinococcus radiodurans: a member of the Nudix family.
  J Bacteriol, 185, 4110-4118.
PDB codes: 1nqy 1nqz
12871944 W.Xu, J.Shen, C.A.Dunn, and M.J.Bessman (2003).
A new subfamily of the Nudix hydrolase superfamily active on 5-methyl-UTP (ribo-TTP) and UTP.
  J Biol Chem, 278, 37492-37496.  
11867751 D.Tsuchiya, N.Kunishima, N.Kamiya, H.Jingami, and K.Morikawa (2002).
Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+.
  Proc Natl Acad Sci U S A, 99, 2660-2665.
PDB codes: 1isr 1iss
11839306 J.I.Fletcher, J.D.Swarbrick, D.Maksel, K.R.Gayler, and P.R.Gooley (2002).
The structure of Ap(4)A hydrolase complexed with ATP-MgF(x) reveals the basis of substrate binding.
  Structure, 10, 205-213.
PDB code: 1jkn
12370179 L.A.Rafty, M.T.Schmidt, A.L.Perraud, A.M.Scharenberg, and J.M.Denu (2002).
Analysis of O-acetyl-ADP-ribose as a target for Nudix ADP-ribose hydrolases.
  J Biol Chem, 277, 47114-47122.  
12399474 M.Dobrzanska, B.Szurmak, A.Wyslouch-Cieszynska, and E.Kraszewska (2002).
Cloning and characterization of the first member of the Nudix family from Arabidopsis thaliana.
  J Biol Chem, 277, 50482-50486.  
11937063 S.Bailey, S.E.Sedelnikova, G.M.Blackburn, H.M.Abdelghany, P.J.Baker, A.G.McLennan, and J.B.Rafferty (2002).
The crystal structure of diadenosine tetraphosphate hydrolase from Caenorhabditis elegans in free and binary complex forms.
  Structure, 10, 589-600.
PDB codes: 1kt9 1ktg
12218187 Z.Wang, X.Jiao, A.Carr-Schmid, and M.Kiledjian (2002).
The hDcp2 protein is a mammalian mRNA decapping enzyme.
  Proc Natl Acad Sci U S A, 99, 12663-12668.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer