spacer
spacer

PDBsum entry 2a6t

Go to PDB code: 
protein Protein-protein interface(s) links
RNA binding protein,hydrolase PDB id
2a6t

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
230 a.a. *
173 a.a. *
Waters ×107
* Residue conservation analysis
PDB id:
2a6t
Name: RNA binding protein,hydrolase
Title: Crystal structure of s.Pombe mRNA decapping enzyme dcp2p
Structure: Spac19a8.12. Chain: a, b. Fragment: n-terminal conserved region. Synonym: mRNA decapping enzyme dcp2. Engineered: yes
Source: Schizosaccharomyces pombe. Fission yeast. Organism_taxid: 4896. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
Resolution:
2.50Å     R-factor:   0.250     R-free:   0.289
Authors: M.She,N.Chen,H.Song
Key ref:
M.She et al. (2006). Crystal structure and functional analysis of Dcp2p from Schizosaccharomyces pombe. Nat Struct Mol Biol, 13, 63-70. PubMed id: 16341225 DOI: 10.1038/nsmb1033
Date:
04-Jul-05     Release date:   20-Dec-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
O13828  (DCP2_SCHPO) -  mRNA decapping complex subunit 2 from Schizosaccharomyces pombe (strain 972 / ATCC 24843)
Seq:
Struc:
 
Seq:
Struc:
741 a.a.
230 a.a.
Protein chain
Pfam   ArchSchema ?
O13828  (DCP2_SCHPO) -  mRNA decapping complex subunit 2 from Schizosaccharomyces pombe (strain 972 / ATCC 24843)
Seq:
Struc:
 
Seq:
Struc:
741 a.a.
173 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chains A, B: E.C.3.-.-.-
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1038/nsmb1033 Nat Struct Mol Biol 13:63-70 (2006)
PubMed id: 16341225  
 
 
Crystal structure and functional analysis of Dcp2p from Schizosaccharomyces pombe.
M.She, C.J.Decker, N.Chen, S.Tumati, R.Parker, H.Song.
 
  ABSTRACT  
 
Decapping is a key step in both general and nonsense-mediated 5' --> 3' mRNA-decay pathways. Removal of the cap structure is catalyzed by the Dcp1-Dcp2 complex. The crystal structure of a C-terminally truncated Schizosaccharomyces pombe Dcp2p reveals two distinct domains: an all-helical N-terminal domain and a C-terminal domain that is a classic Nudix fold. The C-terminal domain of both Saccharomyces cerevisiae and S. pombe Dcp2p proteins is sufficient for decapping activity, although the N-terminal domain can affect the efficiency of Dcp2p function. The binding of Dcp2p to Dcp1p is mediated by a conserved surface on its N-terminal domain, and the N-terminal domain is required for Dcp1p to stimulate Dcp2p activity. The flexible nature of the N-terminal domain relative to the C-terminal domain suggests that Dcp1p binding to Dcp2p may regulate Dcp2p activity through conformational changes of the two domains.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Crystal structure of spDcp2n and comparison with other Nudix enzymes. (a) Schematic representation of the domain organization of Dcp2p from S. pombe. (b) Ribbon diagram of spDcp2n. Orange, the N-terminal helical domain; light green, the C-terminal Nudix domain; red, the Nudix motif. Secondary structure elements are labeled. (c) Structure of Ap4AP in complex with a phosphate and AMP (PDB entry 1KTG). Sticks, AMP and phosphates; purple, the Nudix motif. (d) Structure of ADPRP in complex with ADP-ribose (PDB entry 1G9Q). Green, subunit A; gray, subunit B; sticks, ADP-ribose; magenta, the Nudix motif. The view of the Nudix domain for subunit A is the same as those for spDcp2n and Ap4AP.
Figure 3.
Figure 3. Surface views of spDcp2n. (a) Surface representation of spDcp2n showing the regions of high to low sequence conservation among the eukaryotic Dcp2 proteins. Besides the highly conserved Nudix motif, a large conserved patch in the N-terminal domain is revealed and corresponding residues are labeled. (b) Back view of the molecular surface of spDcp2n showing the sequence conservation. The molecule is rotated 180° along a vertical axis relative to the view in a.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Mol Biol (2006, 13, 63-70) copyright 2006.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20513766 J.H.Yoon, E.J.Choi, and R.Parker (2010).
Dcp2 phosphorylation by Ste20 modulates stress granule assembly and mRNA decay in Saccharomyces cerevisiae.
  J Cell Biol, 189, 813-827.  
20639534 M.F.Soulière, J.P.Perreault, and M.Bisaillon (2010).
Insights into the molecular determinants involved in cap recognition by the vaccinia virus D10 decapping enzyme.
  Nucleic Acids Res, 38, 7599-7610.  
20711189 S.N.Floor, B.N.Jones, G.A.Hernandez, and J.D.Gross (2010).
A split active site couples cap recognition by Dcp2 to activation.
  Nat Struct Mol Biol, 17, 1096-1101.  
19864691 T.Nakamura, S.Meshitsuka, S.Kitagawa, N.Abe, J.Yamada, T.Ishino, H.Nakano, T.Tsuzuki, T.Doi, Y.Kobayashi, S.Fujii, M.Sekiguchi, and Y.Yamagata (2010).
Structural and dynamic features of the MutT protein in the recognition of nucleotides with the mutagenic 8-oxoguanine base.
  J Biol Chem, 285, 444-452.
PDB codes: 3a6s 3a6t 3a6u 3a6v
20086104 Y.Harigaya, B.N.Jones, D.Muhlrad, J.D.Gross, and R.Parker (2010).
Identification and analysis of the interaction between Edc3 and Dcp2 in Saccharomyces cerevisiae.
  Mol Cell Biol, 30, 1446-1456.  
19210265 M.F.Soulière, J.P.Perreault, and M.Bisaillon (2009).
Characterization of the vaccinia virus D10 decapping enzyme provides evidence for a two-metal-ion mechanism.
  Biochem J, 420, 27-35.  
18653466 A.Aizer, Y.Brody, L.W.Ler, N.Sonenberg, R.H.Singer, and Y.Shav-Tal (2008).
The dynamics of mammalian P body transport, assembly, and disassembly in vivo.
  Mol Biol Cell, 19, 4154-4166.  
18162578 C.Beckham, A.Hilliker, A.M.Cziko, A.Noueiry, M.Ramaswami, and R.Parker (2008).
The DEAD-Box RNA Helicase Ded1p Affects and Accumulates in Saccharomyces cerevisiae P-Bodies.
  Mol Biol Cell, 19, 984-993.  
18025047 D.Gunawardana, H.C.Cheng, and K.R.Gayler (2008).
Identification of functional domains in Arabidopsis thaliana mRNA decapping enzyme (AtDcp2).
  Nucleic Acids Res, 36, 203-216.  
  18607096 J.Zhang, F.Gao, Q.Zhang, Q.Chen, J.Qi, and J.Yan (2008).
Crystallization and crystallographic analysis of human NUDT16.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 639-640.  
18445629 M.Coseno, G.Martin, C.Berger, G.Gilmartin, W.Keller, and S.Doublié (2008).
Crystal structure of the 25 kDa subunit of human cleavage factor Im.
  Nucleic Acids Res, 36, 3474-3483.
PDB codes: 3bap 3bho
18755833 M.Jinek, A.Eulalio, A.Lingel, S.Helms, E.Conti, and E.Izaurralde (2008).
The C-terminal region of Ge-1 presents conserved structural features required for P-body localization.
  RNA, 14, 1991-1998.
PDB code: 2vxg
18280239 M.She, C.J.Decker, D.I.Svergun, A.Round, N.Chen, D.Muhlrad, R.Parker, and H.Song (2008).
Structural basis of dcp2 recognition and activation by dcp1.
  Mol Cell, 29, 337-349.
PDB codes: 2qkl 2qkm
18280238 M.V.Deshmukh, B.N.Jones, D.U.Quang-Dang, J.Flinders, S.N.Floor, C.Kim, J.Jemielity, M.Kalek, E.Darzynkiewicz, and J.D.Gross (2008).
mRNA decapping is promoted by an RNA-binding channel in Dcp2.
  Mol Cell, 29, 324-336.
PDB code: 2jvb
  18971632 S.N.Floor, B.N.Jones, and J.D.Gross (2008).
Control of mRNA decapping by Dcp2: An open and shut case?
  RNA Biol, 5, 189-192.  
18931106 S.R.Steyert, S.A.Messing, L.M.Amzel, S.B.Gabelli, and S.A.Piñeiro (2008).
Identification of Bdellovibrio bacteriovorus HD100 Bd0714 as a Nudix dGTPase.
  J Bacteriol, 190, 8215-8219.  
19061636 T.M.Franks, and J.Lykke-Andersen (2008).
The control of mRNA decapping and P-body formation.
  Mol Cell, 32, 605-615.  
17498957 A.G.McLennan (2007).
Decapitation: poxvirus makes RNA lose its head.
  Trends Biochem Sci, 32, 297-299.  
17567574 B.A.Peculis, K.Reynolds, and M.Cleland (2007).
Metal determines efficiency and substrate specificity of the nuclear NUDIX decapping proteins X29 and H29K (Nudt16).
  J Biol Chem, 282, 24792-24805.  
17984320 C.J.Decker, D.Teixeira, and R.Parker (2007).
Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae.
  J Cell Biol, 179, 437-449.  
17429074 D.Teixeira, and R.Parker (2007).
Analysis of P-body assembly in Saccharomyces cerevisiae.
  Mol Biol Cell, 18, 2274-2287.  
17923697 F.Tritschler, A.Eulalio, V.Truffault, M.D.Hartmann, S.Helms, S.Schmidt, M.Coles, E.Izaurralde, and O.Weichenrieder (2007).
A divergent Sm fold in EDC3 proteins mediates DCP1 binding and P-body targeting.
  Mol Cell Biol, 27, 8600-8611.
PDB codes: 2rm4 2vc8
17698004 S.B.Gabelli, M.A.Bianchet, W.Xu, C.A.Dunn, Z.D.Niu, L.M.Amzel, and M.J.Bessman (2007).
Structure and function of the E. coli dihydroneopterin triphosphate pyrophosphatase: a Nudix enzyme involved in folate biosynthesis.
  Structure, 15, 1014-1022.
PDB codes: 2o1c 2o5w
16580207 E.Simon, S.Camier, and B.Séraphin (2006).
New insights into the control of mRNA decapping.
  Trends Biochem Sci, 31, 241-243.  
16618368 K.Peng, P.Radivojac, S.Vucetic, A.K.Dunker, and Z.Obradovic (2006).
Length-dependent prediction of protein intrinsic disorder.
  BMC Bioinformatics, 7, 208.  
16472736 V.Shen, and M.Kiledjian (2006).
Decapper comes into focus.
  Structure, 14, 171-172.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer