spacer
spacer

PDBsum entry 1emh

Go to PDB code: 
protein dna_rna links
Hydrolase/DNA PDB id
1emh

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
223 a.a. *
DNA/RNA
Waters ×171
* Residue conservation analysis
PDB id:
1emh
Name: Hydrolase/DNA
Title: Crystal structure of human uracil-DNA glycosylase bound to uncleaved substrate-containing DNA
Structure: DNA (5'-d( Tp Gp Tp (P2u)p Ap Tp Cp Tp T)-3'). Chain: b. Engineered: yes. DNA (5'-d( Ap Ap Ap Gp Ap Tp Ap Ap Cp A)-3'). Chain: c. Engineered: yes. Uracil-DNA glycosylase. Chain: a. Engineered: yes.
Source: Synthetic: yes. Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Trimer (from PQS)
Resolution:
1.80Å     R-factor:   0.216     R-free:   0.233
Authors: S.S.Parikh,G.Slupphaug,H.E.Krokan,G.M.Blackburn,J.A.Tainer
Key ref:
S.S.Parikh et al. (2000). Uracil-DNA glycosylase-DNA substrate and product structures: conformational strain promotes catalytic efficiency by coupled stereoelectronic effects. Proc Natl Acad Sci U S A, 97, 5083-5088. PubMed id: 10805771 DOI: 10.1073/pnas.97.10.5083
Date:
16-Mar-00     Release date:   16-May-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P13051  (UNG_HUMAN) -  Uracil-DNA glycosylase from Homo sapiens
Seq:
Struc:
313 a.a.
223 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

DNA/RNA chains
  T-G-T-P2U-A-T-C-T-T 9 bases
  A-A-A-G-A-T-A-A-C-A 10 bases

 Enzyme reactions 
   Enzyme class: E.C.3.2.2.27  - uracil-DNA glycosylase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1073/pnas.97.10.5083 Proc Natl Acad Sci U S A 97:5083-5088 (2000)
PubMed id: 10805771  
 
 
Uracil-DNA glycosylase-DNA substrate and product structures: conformational strain promotes catalytic efficiency by coupled stereoelectronic effects.
S.S.Parikh, G.Walcher, G.D.Jones, G.Slupphaug, H.E.Krokan, G.M.Blackburn, J.A.Tainer.
 
  ABSTRACT  
 
Enzymatic transformations of macromolecular substrates such as DNA repair enzyme/DNA transformations are commonly interpreted primarily by active-site functional-group chemistry that ignores their extensive interfaces. Yet human uracil-DNA glycosylase (UDG), an archetypical enzyme that initiates DNA base-excision repair, efficiently excises the damaged base uracil resulting from cytosine deamination even when active-site functional groups are deleted by mutagenesis. The 1.8-A resolution substrate analogue and 2.0-A resolution cleaved product cocrystal structures of UDG bound to double-stranded DNA suggest enzyme-DNA substrate-binding energy from the macromolecular interface is funneled into catalytic power at the active site. The architecturally stabilized closing of UDG enforces distortions of the uracil and deoxyribose in the flipped-out nucleotide substrate that are relieved by glycosylic bond cleavage in the product complex. This experimentally defined substrate stereochemistry implies the enzyme alters the orientation of three orthogonal electron orbitals to favor electron transpositions for glycosylic bond cleavage. By revealing the coupling of this anomeric effect to a delocalization of the glycosylic bond electrons into the uracil aromatic system, this structurally implicated mechanism resolves apparent paradoxes concerning the transpositions of electrons among orthogonal orbitals and the retention of catalytic efficiency despite mutational removal of active-site functional groups. These UDG/DNA structures and their implied dissociative excision chemistry suggest biology favors a chemistry for base-excision repair initiation that optimizes pathway coordination by product binding to avoid the release of cytotoxic and mutagenic intermediates. Similar excision chemistry may apply to other biological reaction pathways requiring the coordination of complex multistep chemical transformations.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. UDG activity assays for substrate and product DNA constructs. Human UDG cleaves the glycosylic bonds of deoxyuridine and 4'S-dU but not the glycosylic bond of d U (see Methods). This is true even at high concentrations of UDG relative to DNA and over periods of weeks.
Figure 5.
Fig. 5. Structure-based reaction mechanism that resolves the apparent orthogonal paradox for electron transpositions by altering the substrate stereochemistry. (A) A simplified valence-bond representation of the glycosylic bond dissociation hides the paradox that the three electron pairs to be transposed are involved in orthogonal orbitals. (B) In the normal anti-conformation of deoxyuridine, the *-orbital involved in the anomeric effect and the -orbital of the C2==O bond are orthogonal to one another, thus preventing orbital overlap. (C) Severe distortions of the deoxyribose and the glycosylic bond in the strained conformation of deoxyuridine enforced by the UDG active center align the pairs of atomic orbitals participating in each electron transposition, thereby electronically coupling the anomeric and - [Arom] effects to promote bond cleavage.
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20876689 E.Fadda, and R.Pomès (2011).
On the molecular basis of uracil recognition in DNA: comparative study of T-A versus U-A structure, dynamics and open base pair kinetics.
  Nucleic Acids Res, 39, 767-780.  
21318276 R.Y.Zhao, G.Li, and M.I.Bukrinsky (2011).
Vpr-Host Interactions During HIV-1 Viral Life Cycle.
  J Neuroimmune Pharmacol, 6, 216-229.  
19909758 D.O.Zharkov, G.V.Mechetin, and G.A.Nevinsky (2010).
Uracil-DNA glycosylase: Structural, thermodynamic and kinetic aspects of lesion search and recognition.
  Mutat Res, 685, 11-20.  
20927102 E.H.Rubinson, A.S.Gowda, T.E.Spratt, B.Gold, and B.F.Eichman (2010).
An unprecedented nucleic acid capture mechanism for excision of DNA damage.
  Nature, 468, 406-411.
PDB codes: 3jx7 3jxy 3jxz 3jy1
19933279 H.A.Cole, J.M.Tabor-Godwin, and J.J.Hayes (2010).
Uracil DNA glycosylase activity on nucleosomal DNA depends on rotational orientation of targets.
  J Biol Chem, 285, 2876-2885.  
20502938 J.L.Tubbs, and J.A.Tainer (2010).
Alkyltransferase-like proteins: molecular switches between DNA repair pathways.
  Cell Mol Life Sci, 67, 3749-3762.  
19339520 J.I.Friedman, A.Majumdar, and J.T.Stivers (2009).
Nontarget DNA binding shapes the dynamic landscape for enzymatic recognition of DNA damage.
  Nucleic Acids Res, 37, 3493-3500.  
19516334 J.L.Tubbs, V.Latypov, S.Kanugula, A.Butt, M.Melikishvili, R.Kraehenbuehl, O.Fleck, A.Marriott, A.J.Watson, B.Verbeek, G.McGown, M.Thorncroft, M.F.Santibanez-Koref, C.Millington, A.S.Arvai, M.D.Kroeger, L.A.Peterson, D.M.Williams, M.G.Fried, G.P.Margison, A.E.Pegg, and J.A.Tainer (2009).
Flipping of alkylated DNA damage bridges base and nucleotide excision repair.
  Nature, 459, 808-813.
PDB codes: 3gva 3gx4 3gyh
19920175 M.C.Ho, M.B.Sturm, S.C.Almo, and V.L.Schramm (2009).
Transition state analogues in structures of ricin and saporin ribosome-inactivating proteins.
  Proc Natl Acad Sci U S A, 106, 20276-20281.
PDB codes: 3hio 3hiq 3his 3hit 3hiv 3hiw
18408731 E.D.Garcin, D.J.Hosfield, S.A.Desai, B.J.Haas, M.Björas, R.P.Cunningham, and J.A.Tainer (2008).
DNA apurinic-apyrimidinic site binding and excision by endonuclease IV.
  Nat Struct Mol Biol, 15, 515-522.
PDB codes: 2nq9 2nqh 2nqj
18820295 G.Tamulaitis, M.Zaremba, R.H.Szczepanowski, M.Bochtler, and V.Siksnys (2008).
How PspGI, catalytic domain of EcoRII and Ecl18kI acquire specificities for different DNA targets.
  Nucleic Acids Res, 36, 6101-6108.  
18652484 J.B.Parker, and J.T.Stivers (2008).
Uracil DNA glycosylase: revisiting substrate-assisted catalysis by DNA phosphate anions.
  Biochemistry, 47, 8614-8622.  
18000994 J.T.Stivers (2008).
Extrahelical damaged base recognition by DNA glycosylase enzymes.
  Chemistry, 14, 786-793.  
18196298 M.Olufsen, A.O.Smalås, and B.O.Brandsdal (2008).
Electrostatic interactions play an essential role in DNA repair and cold-adaptation of Uracil DNA glycosylase.
  J Mol Model, 14, 201-213.  
18453691 P.S.Kaushal, R.K.Talawar, P.D.Krishna, U.Varshney, and M.Vijayan (2008).
Unique features of the structure and interactions of mycobacterial uracil-DNA glycosylase: structure of a complex of the Mycobacterium tuberculosis enzyme in comparison with those from other sources.
  Acta Crystallogr D Biol Crystallogr, 64, 551-560.
PDB code: 2zhx
18669665 R.H.Porecha, and J.T.Stivers (2008).
Uracil DNA glycosylase uses DNA hopping and short-range sliding to trap extrahelical uracils.
  Proc Natl Acad Sci U S A, 105, 10791-10796.  
17496048 B.Bouvier, and H.Grubmüller (2007).
A molecular dynamics study of slow base flipping in DNA using conformational flooding.
  Biophys J, 93, 770-786.  
17537817 H.S.Pettersen, O.Sundheim, K.M.Gilljam, G.Slupphaug, H.E.Krokan, and B.Kavli (2007).
Uracil-DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms.
  Nucleic Acids Res, 35, 3879-3892.  
17704764 J.B.Parker, M.A.Bianchet, D.J.Krosky, J.I.Friedman, L.M.Amzel, and J.T.Stivers (2007).
Enzymatic capture of an extrahelical thymine in the search for uracil in DNA.
  Nature, 449, 433-437.
PDB codes: 2oxm 2oyt
17605817 N.Schormann, A.Grigorian, A.Samal, R.Krishnan, L.DeLucas, and D.Chattopadhyay (2007).
Crystal structure of vaccinia virus uracil-DNA glycosylase reveals dimeric assembly.
  BMC Struct Biol, 7, 45.
PDB codes: 2owq 2owr
17539821 S.O.Meroueh, and S.Mobashery (2007).
Conformational transition in the aminoacyl t-RNA site of the bacterial ribosome both in the presence and absence of an aminoglycoside antibiotic.
  Chem Biol Drug Des, 69, 291-297.  
16500982 A.Krueger, E.Protozanova, and M.D.Frank-Kamenetskii (2006).
Sequence-dependent base pair opening in DNA double helix.
  Biophys J, 90, 3091-3099.  
17017766 C.Cao, Y.L.Jiang, D.J.Krosky, and J.T.Stivers (2006).
The catalytic power of uracil DNA glycosylase in the opening of thymine base pairs.
  J Am Chem Soc, 128, 13034-13035.  
17062624 D.J.Krosky, M.A.Bianchet, L.Seiple, S.Chung, L.M.Amzel, and J.T.Stivers (2006).
Mimicking damaged DNA with a small molecule inhibitor of human UNG2.
  Nucleic Acids Res, 34, 5872-5879.
PDB code: 2hxm
16895336 J.T.Stivers, and R.Nagarajan (2006).
Probing enzyme phosphoester interactions by combining mutagenesis and chemical modification of phosphate ester oxygens.
  Chem Rev, 106, 3443-3467.  
16984202 M.T.Bennett, M.T.Rodgers, A.S.Hebert, L.E.Ruslander, L.Eisele, and A.C.Drohat (2006).
Specificity of human thymine DNA glycosylase depends on N-glycosidic bond stability.
  J Am Chem Soc, 128, 12510-12519.  
17115714 R.K.Walker, A.K.McCullough, and R.S.Lloyd (2006).
Uncoupling of nucleotide flipping and DNA bending by the t4 pyrimidine dimer DNA glycosylase.
  Biochemistry, 45, 14192-14200.  
15970468 C.Y.Chen, D.W.Mosbaugh, and S.E.Bennett (2005).
Mutations at Arginine 276 transform human uracil-DNA glycosylase into a single-stranded DNA-specific uracil-DNA glycosylase.
  DNA Repair (Amst), 4, 793-805.  
16041069 I.Leiros, E.Moe, A.O.Smalås, and S.McSweeney (2005).
Structure of the uracil-DNA N-glycosylase (UNG) from Deinococcus radiodurans.
  Acta Crystallogr D Biol Crystallogr, 61, 1049-1056.
PDB code: 2boo
15558051 C.Cao, Y.L.Jiang, J.T.Stivers, and F.Song (2004).
Dynamic opening of DNA during the enzymatic search for a damaged base.
  Nat Struct Mol Biol, 11, 1230-1236.  
15339922 C.Y.Chen, D.W.Mosbaugh, and S.E.Bennett (2004).
Mutational analysis of arginine 276 in the leucine-loop of human uracil-DNA glycosylase.
  J Biol Chem, 279, 48177-48188.  
15466595 M.Matsubara, T.Tanaka, H.Terato, E.Ohmae, S.Izumi, K.Katayanagi, and H.Ide (2004).
Mutational analysis of the damage-recognition and catalytic mechanism of human SMUG1 DNA glycosylase.
  Nucleic Acids Res, 32, 5291-5302.  
14769949 V.V.Koval, N.A.Kuznetsov, D.O.Zharkov, A.A.Ishchenko, K.T.Douglas, G.A.Nevinsky, and O.S.Fedorova (2004).
Pre-steady-state kinetics shows differences in processing of various DNA lesions by Escherichia coli formamidopyrimidine-DNA glycosylase.
  Nucleic Acids Res, 32, 926-935.  
12876336 I.Leiros, E.Moe, O.Lanes, A.O.Smalås, and N.P.Willassen (2003).
The structure of uracil-DNA glycosylase from Atlantic cod (Gadus morhua) reveals cold-adaptation features.
  Acta Crystallogr D Biol Crystallogr, 59, 1357-1365.
PDB code: 1okb
12725863 K.Kwon, Y.L.Jiang, and J.T.Stivers (2003).
Rational engineering of a DNA glycosylase specific for an unnatural cytosine:pyrene base pair.
  Chem Biol, 10, 351-359.  
14580190 M.A.Bianchet, L.A.Seiple, Y.L.Jiang, Y.Ichikawa, L.M.Amzel, and J.T.Stivers (2003).
Electrostatic guidance of glycosyl cation migration along the reaction coordinate of uracil DNA glycosylase.
  Biochemistry, 42, 12455-12460.
PDB code: 1q3f
12065430 A.A.Sartori, S.Fitz-Gibbon, H.Yang, J.H.Miller, and J.Jiricny (2002).
A novel uracil-DNA glycosylase with broad substrate specificity and an unusual active site.
  EMBO J, 21, 3182-3191.  
12413546 A.Vasella, G.J.Davies, and M.Böhm (2002).
Glycosidase mechanisms.
  Curr Opin Chem Biol, 6, 619-629.  
12057763 D.O.Zharkov, and A.P.Grollman (2002).
Combining structural and bioinformatics methods for the analysis of functionally important residues in DNA glycosylases.
  Free Radic Biol Med, 32, 1254-1263.  
11847126 D.O.Zharkov, G.Golan, R.Gilboa, A.S.Fernandes, S.E.Gerchman, J.H.Kycia, R.A.Rieger, A.P.Grollman, and G.Shoham (2002).
Structural analysis of an Escherichia coli endonuclease VIII covalent reaction intermediate.
  EMBO J, 21, 789-800.
PDB codes: 1k3w 1k3x
12136137 K.Saikrishnan, M.Bidya Sagar, R.Ravishankar, S.Roy, K.Purnapatre, P.Handa, U.Varshney, and M.Vijayan (2002).
Domain closure and action of uracil DNA glycosylase (UDG): structures of new crystal forms containing the Escherichia coli enzyme and a comparative study of the known structures involving UDG.
  Acta Crystallogr D Biol Crystallogr, 58, 1269-1276.
PDB codes: 1lqg 1lqj 1lqm 1lqn
12208357 K.Sakano, S.Oikawa, Y.Hiraku, and S.Kawanishi (2002).
Metabolism of carcinogenic urethane to nitric oxide is involved in oxidative DNA damage.
  Free Radic Biol Med, 33, 703-714.  
12216739 M.A.Kurinovich, and J.K.Lee (2002).
The acidity of uracil and uracil analogs in the gas phase: four surprisingly acidic sites and biological implications.
  J Am Soc Mass Spectrom, 13, 985-995.  
11937293 M.L.Dodson, and R.S.Lloyd (2002).
Mechanistic comparisons among base excision repair glycosylases.
  Free Radic Biol Med, 32, 678-682.  
12136091 P.Handa, N.Acharya, and U.Varshney (2002).
Effects of mutations at tyrosine 66 and asparagine 123 in the active site pocket of Escherichia coli uracil DNA glycosylase on uracil excision from synthetic DNA oligomers: evidence for the occurrence of long-range interactions between the enzyme and substrate.
  Nucleic Acids Res, 30, 3086-3095.  
12000829 V.Starkuviene, and H.J.Fritz (2002).
A novel type of uracil-DNA glycosylase mediating repair of hydrolytic DNA damage in the extremely thermophilic eubacterium Thermus thermophilus.
  Nucleic Acids Res, 30, 2097-2102.  
12220189 Y.L.Jiang, and J.T.Stivers (2002).
Mutational analysis of the base-flipping mechanism of uracil DNA glycosylase.
  Biochemistry, 41, 11236-11247.  
11170417 E.L.Rachofsky, E.Seibert, J.T.Stivers, R.Osman, and J.B.Ross (2001).
Conformation and dynamics of abasic sites in DNA investigated by time-resolved fluorescence of 2-aminopurine.
  Biochemistry, 40, 957-967.  
11223884 O.D.Schärer, and J.Jiricny (2001).
Recent progress in the biology, chemistry and structural biology of DNA glycosylases.
  Bioessays, 23, 270-281.  
11557818 S.R.Bellamy, and G.S.Baldwin (2001).
A kinetic analysis of substrate recognition by uracil-DNA glycosylase from herpes simplex virus type 1.
  Nucleic Acids Res, 29, 3857-3863.  
11578929 V.L.Schramm (2001).
Transition state variation in enzymatic reactions.
  Curr Opin Chem Biol, 5, 556-563.  
11557810 X.Cheng, and R.J.Roberts (2001).
AdoMet-dependent methylation, DNA methyltransferases and base flipping.
  Nucleic Acids Res, 29, 3784-3795.  
11052677 J.Dong, A.C.Drohat, J.T.Stivers, K.W.Pankiewicz, and P.R.Carey (2000).
Raman spectroscopy of uracil DNA glycosylase-DNA complexes: insights into DNA damage recognition and catalysis.
  Biochemistry, 39, 13241-13250.  
12760026 K.P.Hopfner, S.S.Parikh, and J.A.Tainer (2000).
Envisioning the fourth dimension of the genetic code: the structural biology of macromolecular recognition and conformational switching in DNA repair.
  Cold Spring Harb Symp Quant Biol, 65, 113-126.  
11087352 R.M.Werner, and J.T.Stivers (2000).
Kinetic isotope effect studies of the reaction catalyzed by uracil DNA glycosylase: evidence for an oxocarbenium ion-uracil anion intermediate.
  Biochemistry, 39, 14054-14064.  
11027138 R.M.Werner, Y.L.Jiang, R.G.Gordley, G.J.Jagadeesh, J.E.Ladner, G.Xiao, M.Tordova, G.L.Gilliland, and J.T.Stivers (2000).
Stressing-out DNA? The contribution of serine-phosphodiester interactions in catalysis by uracil DNA glycosylase.
  Biochemistry, 39, 12585-12594.
PDB code: 1flz
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer